1
|
Li X, Wu M, Chen G, Ma W, Chen Y, Ding Y, Dong P, Ding W, Zhang L, Yang L, Gan W, Li D. The Role of HADHB in Mitochondrial Fatty Acid Metabolism During Initiation of Metastasis in ccRCC. Mol Carcinog 2025; 64:923-935. [PMID: 39991877 DOI: 10.1002/mc.23898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/07/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
The initiation and progression of clear cell renal cell carcinoma (ccRCC) are closely linked to significant metabolic alterations. Specifically, lipid metabolism alterations and their association with the high invasiveness in ccRCC require further investigation. After conducting RNA-sequencing (RNA-seq), we discovered that Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Beta (HADHB) was significantly downregulated in the highly invasive ccRCC cell line. It was found that the expression of HADHB in ccRCC tumor tissues was lower than that in paracancer tissues, which is associated with poor patient prognosis. Subsequently, we confirmed that highly invasive ccRCC exhibited an increased lipid accumulation due to the suppression of mitochondrial fatty acid transport and enhanced conversion of fatty acids to triglycerides within cancer cells. Specifically, the downregulation of HADHB inhibited mitochondrial fatty acid β-oxidation (FAO) in cancer cells, leading to partial impairment of mitochondrial function and decreased ATP production. However, this trade-off involving the reduction of a high-yield ATP production conferred an advantage by reducing reactive oxygen species (ROS) generation within cancer cells, thereby protecting them from oxidative stress and enhancing their invasive potential. Furthermore, the downregulation of HADHB promoted epithelial-mesenchymal transition (EMT) and angiogenesis in cancer cells, accelerating the progression of ccRCC and endowing ccRCC cells with metastatic capabilities.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Mengmeng Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Guijuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Wenliang Ma
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yi Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yibing Ding
- Translational Medicine Core Facilities, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Ping Dong
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Weidong Ding
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Luqing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Lei Yang
- Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Dongmei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Fatfat Z, Hussein M, Fatfat M, Gali-Muhtasib H. Omics technologies as powerful approaches to unravel colorectal cancer complexity and improve its management. Mol Cells 2025; 48:100200. [PMID: 40024318 PMCID: PMC11976254 DOI: 10.1016/j.mocell.2025.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/31/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025] Open
Abstract
Colorectal cancer (CRC) continues to rank among the deadliest and most prevalent cancers worldwide, necessitating an innovative and comprehensive approach that addresses this serious health challenge at various stages, from screening and diagnosis to treatment and prognosis. As CRC research progresses, the adoption of an omics-centered approach holds transformative potential to revolutionize the management of this disease. Advances in omics technologies encompassing genomics, transcriptomics, proteomics, metabolomics, and epigenomics allow to unravel the oncogenic alterations at these levels, elucidating the intricacies and the heterogeneous nature of CRC. By providing a comprehensive molecular landscape of CRC, omics technologies enable the discovery of potential biomarkers for early non-invasive detection of CRC, definition of CRC subtypes, prediction of its staging, prognosis, and overall survival of CRC patients. They also allow the identification of potential therapeutic targets, prediction of drug response, tracking treatment efficacy, detection of residual disease and cancer relapse, and deciphering the mechanisms of drug resistance. Moreover, they allow the distinction of non-metastatic CRC patients from metastatic ones as well as the stratification of metastatic risk. Importantly, omics technologies open up new opportunities to establish molecular-based criteria to guide the selection of effective treatment paving the way for the personalization of therapy for CRC patients. This review consolidates current knowledge on the omics-based preclinical discoveries in CRC research emphasizing the significant potential of these technologies to improve CRC screening, diagnosis, and prognosis and promote the implementation of personalized medicine to ultimately reduce CRC prevalence and mortality.
Collapse
Affiliation(s)
- Zaynab Fatfat
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Marwa Hussein
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Maamoun Fatfat
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | | |
Collapse
|
3
|
Song Y, Ren S, Wu S, Liu W, Hu C, Feng S, Chen X, Tu R, Gao F. Glucocorticoid promotes metastasis of colorectal cancer via co-regulation of glucocorticoid receptor and TET2. Int J Cancer 2025; 156:1572-1582. [PMID: 39661335 DOI: 10.1002/ijc.35285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Glucocorticoids (GCs), commonly used for anti-inflammatory and cancer treatments, have been linked to the promotion of cancer metastasis. Yet, the molecular mechanisms behind this potential remain poorly understood. Clarifying these mechanisms is crucial for a nuanced understanding and potential refinement of GC therapies in the context of cancer treatment. In HEK293T cells, co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation sequencing (ChIP-seq) were used with antibodies of glucocorticoid receptor (GR) and ten-eleven translocation enzymes (TET) family proteins (TET1, TET2, TET3). Drug repositioning was performed through the Connectivity Map database, using common target genes of GR and TET2 in HEK293 and HCT116 cell lines and differentially expressed genes (DEGs) of colorectal cancer (CRC). Cell migration and invasion were tested in CRC cell lines with varying GR expression, that is, HCT116 and HT29 cell lines. Dexamethasone (Dex) treatment resulted in a significant difference in cell migration rates in two CRC cell lines with disparate GR expression levels. Co-IP and ChIP-seq analyses substantiated the interaction between GR and TET family proteins in HEK293T cells. Belinostat, the selected compound, was successfully validated for its potential to counteract the effects of GC-induced invasion in CRC cells in vitro. Transcriptomic analyses of Belinostat-treated HCT116 cells revealed down-regulation of target genes associated with cancer metastasis. This study provides valuable insights into the molecular mechanisms underlying GC-induced metastasis, introducing newly repositioned compounds that could serve as potential adjuvant therapy to GC treatment. Furthermore, it opens avenues for exploring novel drug candidates for CRC treatment.
Collapse
Affiliation(s)
- Yanwei Song
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shuqiang Ren
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shumei Wu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Chenghao Hu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Siting Feng
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xinyu Chen
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Rui Tu
- E-GENE Co., Ltd, Shenzhen, China
| | - Fei Gao
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Povedano E, Pérez-Ginés V, Torrente-Rodríguez RM, Rejas-González R, Montero-Calle A, Peláez-García A, Feliú J, Pedrero M, Pingarrón JM, Barderas R, Campuzano S. Tracking Globally 5-Methylcytosine and Its Oxidized Derivatives in Colorectal Cancer Epigenome Using Bioelectroanalytical Technologies. ACS Sens 2025; 10:2049-2059. [PMID: 40007152 DOI: 10.1021/acssensors.4c03290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
This work presents the first electroanalytical bioplatforms to track individually or simultaneously at a global level all four methylation marks involved in the DNA methylation-demethylation cycle: 5-methylcytosine (5mC) and their sequential oxidative derivatives (5-hydroxymethyl-(5hmC), 5-formyl-(5fC), and 5-carboxyl-(5caC) cytosines). The bioplatforms employed direct competitive immunoassay formats implemented on the surface of magnetic microparticles (MBs) and involved capture antibodies specific to each epimark as well as synthetic biotinylated DNA oligomers with a single epimark that were enzymatically marked with horseradish peroxidase (HRP) to perform an amperometric readout on disposable platforms for single or multiplexed detection. These new electroanalytical biotechnologies, groundbreaking from analytical and clinical perspectives, achieved attractive operational characteristics, reaching detection limits at pM levels for synthetic single epimark-bearing DNA oligomers. The developed methodology was applied to track globally all four target epimarks in a fast, simple, sensitive, and selective way while their correlation in genomic DNA extracted from paired healthy and tumor tissues of patients with colorectal cancer (CRC) was established for the first time.
Collapse
Affiliation(s)
- Eloy Povedano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain
| | - Víctor Pérez-Ginés
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain
| | - Rebeca M Torrente-Rodríguez
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain
| | - Raquel Rejas-González
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | | | - Jaime Feliú
- La Paz University Hospital (IdIPAZ), 28046 Madrid, Spain
- CIBER of Oncology (CIBERONC), Instituto de Salud Carlos III, 28046 Madrid, Spain
| | - María Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28046 Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28046 Madrid, Spain
| |
Collapse
|
5
|
Li L, Jiang M, Wang W, Cao X, Ma Q, Han J, Liu Z, Huang Y, Chen Y. DNA demethylase TET2-mediated reduction of HADHB expression contributes to cadmium-induced malignant progression of colorectal cancer. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116579. [PMID: 38865940 DOI: 10.1016/j.ecoenv.2024.116579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/27/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Environmental exposure to the cadmium (Cd) has been shown to be a risk factor for colorectal cancer (CRC) progression, but the exact mechanism has not been fully elucidated. In this study, we found that chronic Cd (3 μM) exposure promoted the proliferation, adhesion, migration, and invasion of CRC cells in vitro, as well as lung metastasis in vivo. RNA-seq and TCGA-COAD datasets revealed that decreased hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta (HADHB) expression may be a crucial factor in Cd-induced CRC progression. Further analysis using qRT-PCR and tissue microarrays from CRC patients showed that HADHB expression was significantly reduced in CRC tissues compared to adjacent normal tissues, and low HADHB expression was associated with adverse clinical features and poor overall survival, either directly or through TNM stage. Furthermore, HADHB was found to play an important role in the Cd-induced malignant metastatic phenotype of CRC cells and lung metastasis in mice. Mechanistically, we discovered that chronic Cd exposure resulted in hypermethylation of the HADHB promoter region via inhibition of DNA demethylase tet methylcytosine dioxygenase 2 (TET2), which then led to decreased HADHB expression and activation of the FAK signaling pathway, and ultimately contributed to CRC progression. In conclusion, this study provided a new potential insight and evaluable biomarker for Cd exposure-induced CRC progression and treatment.
Collapse
Affiliation(s)
- Lingling Li
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Min Jiang
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Weimin Wang
- Department of Oncology, Yixing People's Hospital, Yixing, Jiangsu 214200, China
| | - Xingyue Cao
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qun Ma
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jingyi Han
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zixuan Liu
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yefei Huang
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Yansu Chen
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
6
|
Wang WL, Jiang HJ, Shen ZL, Tang YL, Jiang J, Liang XH. Identification of ACAA1 and HADHB as potential prognostic biomarkers based on a novel fatty acid oxidation-related gene model in head and neck squamous cell carcinoma: A retrospective study. Arch Oral Biol 2024; 163:105982. [PMID: 38678878 DOI: 10.1016/j.archoralbio.2024.105982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVES To investigate the importance of fatty acid oxidation (FAO)-related genes in predicting the progression and prognosis of head and neck squamous cell carcinoma (HNSCC). METHODS The FAO-related gene prognostic model was established employing Cox regression analyses, during which accuracy and sensitivity of the gene model were evaluated in The Cancer Genome Atlas (TCGA) internal testing and Gene Expression Omnibus (GEO) external validation cohorts. Ultimately, hub genes were identified among 13 model genes using STRING and Cytoscape, with preliminary validation carried out through immunohistochemistry. RESULTS The model, which comprised 13 genes (ABCD2, ACAA1, ACACB, AKT1, CNR1, CPT1C, CROT, ECHDC2, ETFA, HADHB, IRS2, LONP2, and SLC25A17), was established. On the basis of the median risk score, the two cohorts were grouped into low-and high-risk groups in the subsequent test and validation, and the former exhibited significantly higher survival rates than the latter. Nomograms were established based on prognostic factors, including stage and risk score, and individualized for the prediction of HNSCC patients. Ultimately, immunohistochemical staining showed that ACAA1 and HADHB were significantly under-expressed in HNSCC, with a favorable prognosis associated with low HADHB and high ACAA1. CONCLUSIONS The gene prognostic model has illustrated promising capability in predicting the prognosis, and ACAA1 and HADHB might serve as potential therapeutic biomarkers for HNSCC patients.
Collapse
Affiliation(s)
- Wan-Li Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Hong-Jie Jiang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Ze-Liang Shen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jian Jiang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
7
|
Cho SH, Kim YM, An HJ, Kim JH, Kim NK. miR-665-Mediated Regulation of AHCYL2 and BVES Genes in Recurrent Implantation Failure. Genes (Basel) 2024; 15:244. [PMID: 38397233 PMCID: PMC10888078 DOI: 10.3390/genes15020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The primary goal of this investigation was to identify mRNA targets affected by dysregulated miRNAs in RIF. This was accomplished by comprehensively analyzing mRNA and miRNA expression profiles in two groups: female subjects with normal reproductive function (control, n = 5) and female subjects experiencing recurrent implantation failure (RIF, n = 5). We conducted transcriptome sequencing and small RNA sequencing on endometrial tissue samples from these cohorts. Subsequently, we validated a selection of intriguing findings using real-time PCR with samples from the same cohort. In total, our analysis revealed that 929 mRNAs exhibited differential expression patterns between the control and RIF patient groups. Notably, our investigation confirmed the significant involvement of dysregulated genes in the context of RIF. Furthermore, we uncovered promising correlation patterns within these mRNA/miRNA pairs. Functional categorization of these miRNA/mRNA pairs highlighted that the differentially expressed genes were predominantly associated with processes such as angiogenesis and cell adhesion. We identified new target genes that are regulated by miR-665, including Blood Vessel Epicardial Substance (BVES) and Adenosylhomocysteinase like 2 (AHCYL2). Our findings suggest that abnormal regulation of genes involved in angiogenesis and cell adhesion, including BVES and AHCYL2, contributes to the endometrial dysfunction observed in women with recurrent implantation failure (RIF) compared to healthy women.
Collapse
Affiliation(s)
- Sung Hwan Cho
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (S.H.C.); (H.J.A.)
- College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Young Myeong Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Hui Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (S.H.C.); (H.J.A.)
- College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (S.H.C.); (H.J.A.)
| |
Collapse
|
8
|
Chen JJ, Zhang LL, Liu Z, Men WQ, Chen F, Shen J. Comprehensive Analysis of TICRR in Hepatocellular Carcinoma Based on Bioinformatics Analysis. Biochem Genet 2024; 62:1-17. [PMID: 37266876 PMCID: PMC10902024 DOI: 10.1007/s10528-023-10378-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/10/2023] [Indexed: 06/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading cause of cancer-associated death in the world. However, due to the complexity of HCC, it is urgent for us to find a reliable and accurate biomarker for HCC gene therapy.TopBP1-interacting checkpoint and replication regulator (TICRR), known as Treslin in vertebrate and sld3 in yeast, is involved in the tumorigenesis, progression, matastasis, diagnosis, and predicting prognosis of HCC. Disappointingly, the mechanism of TICRR expression in HCC is still not described in detail and requires further analysis. In this study, TCGA ( www.tcga-data.nci.nih.gov/tcga/ ) datasets and GEO ( www.ncbi.nlm.nih.gov/geo ) datasets were used to analyze the expression of TICRR in HCC, the relevance of TICRR mRNA expression and clinicopathological characteristics in patients with HCC, and the relationship between TICRR expression and immune infiltration level in Patients with HCC. Based on MethSurv database, the impact of TICRR in patients with HCC was investigated. In addition, GO/KEGG enrichment analysis of TICRR co-expression was performed using the R package. TICRR was found drastically highly expressed in a variety of cancer types including HCC.ROC curve analysis showed that TICRR had higher accuracy in predicting HCC compared with AFP. The expression level of TICRR was marked positively correlated with tumor stage and prognosis in Patients with HCC.GO/KEGG enrichment analysis showed that TICRR was associated with cell division and cell cycle as well as p53 signaling pathway. In addition, patients with high TICRR methylation of cg05841809, cg09403165, and cg03312532 CpG sites were significantly correlated with poor prognosis of HCC. This study demonstrated that increased TICRR expression in HCC might play an important role in the tumorigenesis, progression, diagnosis, and predicting prognosis of HCC. Therefore, TICRR might be used as a promising diagnostic and prognostic biomarker for HCC gene therapy.
Collapse
Affiliation(s)
- Jing-Jing Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Clinical Laboratory, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Lu-Lu Zhang
- Public Center of Experimental Technology, The School of Basic Medical, Science and Southwest Medical University, Luzhou, Sichuan, China
| | - Zhen Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Clinical Laboratory, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Wan Qi Men
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Clinical Laboratory, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Fang Chen
- UItrasonic Diagnosis Deparment, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- UItrasonic Diagnosis Deparment, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Jilu Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
- Department of Clinical Laboratory, Anhui Public Health Clinical Center, Hefei, Anhui, China.
| |
Collapse
|
9
|
Liu C, Tang H, Hu N, Li T. Methylomics and cancer: the current state of methylation profiling and marker development for clinical care. Cancer Cell Int 2023; 23:242. [PMID: 37840147 PMCID: PMC10577916 DOI: 10.1186/s12935-023-03074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Epigenetic modifications have long been recognized as an essential level in transcriptional regulation linking behavior and environmental conditions or stimuli with biological processes and disease development. Among them, methylation is the most abundant of these reversible epigenetic marks, predominantly occurring on DNA, RNA, and histones. Methylation modification is intimately involved in regulating gene transcription and cell differentiation, while aberrant methylation status has been linked with cancer development in several malignancies. Early detection and precise restoration of dysregulated methylation form the basis for several epigenetics-based therapeutic strategies. In this review, we summarize the current basic understanding of the regulation and mechanisms responsible for methylation modification and cover several cutting-edge research techniques for detecting methylation across the genome and transcriptome. We then explore recent advances in clinical diagnostic applications of methylation markers of various cancers and address the current state and future prospects of methylation modifications in therapies for different diseases, especially comparing pharmacological methylase/demethylase inhibitors with the CRISPRoff/on methylation editing systems. This review thus provides a resource for understanding the emerging role of epigenetic methylation in cancer, the use of methylation-based biomarkers in cancer detection, and novel methylation-targeted drugs.
Collapse
Affiliation(s)
- Chengyin Liu
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Han Tang
- BioChain (Beijing) Science & Technology Inc., Beijing, People's Republic of China
| | - Nana Hu
- BioChain (Beijing) Science & Technology Inc., Beijing, People's Republic of China
| | - Tianbao Li
- Department of Molecular Medicine, The University of Texas Health, San Antonio, USA.
| |
Collapse
|
10
|
Mahé M, Rios-Fuller TJ, Karolin A, Schneider RJ. Genetics of enzymatic dysfunctions in metabolic disorders and cancer. Front Oncol 2023; 13:1230934. [PMID: 37601653 PMCID: PMC10433910 DOI: 10.3389/fonc.2023.1230934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Inherited metabolic disorders arise from mutations in genes involved in the biogenesis, assembly, or activity of metabolic enzymes, leading to enzymatic deficiency and severe metabolic impairments. Metabolic enzymes are essential for the normal functioning of cells and are involved in the production of amino acids, fatty acids and nucleotides, which are essential for cell growth, division and survival. When the activity of metabolic enzymes is disrupted due to mutations or changes in expression levels, it can result in various metabolic disorders that have also been linked to cancer development. However, there remains much to learn regarding the relationship between the dysregulation of metabolic enzymes and metabolic adaptations in cancer cells. In this review, we explore how dysregulated metabolism due to the alteration or change of metabolic enzymes in cancer cells plays a crucial role in tumor development, progression, metastasis and drug resistance. In addition, these changes in metabolism provide cancer cells with a number of advantages, including increased proliferation, resistance to apoptosis and the ability to evade the immune system. The tumor microenvironment, genetic context, and different signaling pathways further influence this interplay between cancer and metabolism. This review aims to explore how the dysregulation of metabolic enzymes in specific pathways, including the urea cycle, glycogen storage, lysosome storage, fatty acid oxidation, and mitochondrial respiration, contributes to the development of metabolic disorders and cancer. Additionally, the review seeks to shed light on why these enzymes represent crucial potential therapeutic targets and biomarkers in various cancer types.
Collapse
Affiliation(s)
| | | | | | - Robert J. Schneider
- Department of Microbiology, Grossman NYU School of Medicine, New York, NY, United States
| |
Collapse
|
11
|
Maurya NS, Kushwah S, Kushwaha S, Chawade A, Mani A. Prognostic model development for classification of colorectal adenocarcinoma by using machine learning model based on feature selection technique boruta. Sci Rep 2023; 13:6413. [PMID: 37076536 PMCID: PMC10115869 DOI: 10.1038/s41598-023-33327-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer type and accounts for nearly one million deaths worldwide. The CRC mRNA gene expression datasets from TCGA and GEO (GSE144259, GSE50760, and GSE87096) were analyzed to find the significant differentially expressed genes (DEGs). These significant genes were further processed for feature selection through boruta and the confirmed features of importance (genes) were subsequently used for ML-based prognostic classification model development. These genes were analyzed for survival and correlation analysis between final genes and infiltrated immunocytes. A total of 770 CRC samples were included having 78 normal and 692 tumor tissue samples. 170 significant DEGs were identified after DESeq2 analysis along with the topconfects R package. The 33 confirmed features of importance-based RF prognostic classification model have given accuracy, precision, recall, and f1-score of 100% with 0% standard deviation. The overall survival analysis had finalized GLP2R and VSTM2A genes that were significantly downregulated in tumor samples and had a strong correlation with immunocyte infiltration. The involvement of these genes in CRC prognosis was further confirmed on the basis of their biological function and literature analysis. The current findings indicate that GLP2R and VSTM2A may play a significant role in CRC progression and immune response suppression.
Collapse
Affiliation(s)
- Neha Shree Maurya
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Shikha Kushwah
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Sandeep Kushwaha
- National Institute of Animal Biotechnology, Hyderabad, 500032, India
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53, Alnarp, Sweden.
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India.
| |
Collapse
|
12
|
Zhang J, Ma C, Qin H, Wang Z, Zhu C, Liu X, Hao X, Liu J, Li L, Cai Z. Construction and validation of a metabolic-related genes prognostic model for oral squamous cell carcinoma based on bioinformatics. BMC Med Genomics 2022; 15:269. [PMID: 36566175 PMCID: PMC9789624 DOI: 10.1186/s12920-022-01417-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) accounts for a frequently-occurring head and neck cancer, which is characterized by high rates of morbidity and mortality. Metabolism-related genes (MRGs) show close association with OSCC development, metastasis and progression, so we constructed an MRGs-based OSCC prognosis model for evaluating OSCC prognostic outcome. METHODS This work obtained gene expression profile as well as the relevant clinical information from the The Cancer Genome Atlas (TCGA) database, determined the MRGs related to OSCC by difference analysis, screened the prognosis-related MRGs by performing univariate Cox analysis, and used such identified MRGs for constructing the OSCC prognosis prediction model through Lasso-Cox regression. Besides, we validated the model with the GSE41613 dataset based on Gene Expression Omnibus (GEO) database. RESULTS The present work screened 317 differentially expressed MRGs from the database, identified 12 OSCC prognostic MRGs through univariate Cox regression, and then established a clinical prognostic model composed of 11 MRGs by Lasso-Cox analysis. Based on the optimal risk score threshold, cases were classified as low- or high-risk group. As suggested by Kaplan-Meier (KM) analysis, survival rate was obviously different between the two groups in the TCGA training set (P < 0.001). According to subsequent univariate and multivariate Cox regression, risk score served as the factor to predict prognosis relative to additional clinical features (P < 0.001). Besides, area under ROC curve (AUC) values for patient survival at 1, 3 and 5 years were determined as 0.63, 0.70, and 0.76, separately, indicating that the prognostic model has good predictive accuracy. Then, we validated this clinical prognostic model using GSE41613. To enhance our model prediction accuracy, age, gender, risk score together with TNM stage were incorporated in a nomogram. As indicated by results of ROC curve and calibration curve analyses, the as-constructed nomogram had enhanced prediction accuracy compared with clinicopathological features alone, besides, combining clinicopathological characteristics with risk score contributed to predicting patient prognosis and guiding clinical decision-making. CONCLUSION In this study, 11 MRGs prognostic models based on TCGA database showed superior predictive performance and had a certain clinical application prospect in guiding individualized.
Collapse
Affiliation(s)
- Jingfei Zhang
- grid.440653.00000 0000 9588 091XDepartment of Stomatology, Binzhou Medical University, Yantai, 264000 Shandong China
| | - Chenxi Ma
- grid.27255.370000 0004 1761 1174Department of Human Microbiome, School and Hospital of Stomatology, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, 250000 Shandong China
| | - Han Qin
- grid.440653.00000 0000 9588 091XDepartment of Stomatology, Binzhou Medical University, Yantai, 264000 Shandong China
| | - Zhi Wang
- grid.415946.b0000 0004 7434 8069Department of Stomatology, Linyi People’s Hospital, Linyi, 276000 Shandong China
| | - Chao Zhu
- grid.415946.b0000 0004 7434 8069Department of Stomatology, Linyi People’s Hospital, Linyi, 276000 Shandong China
| | - Xiujuan Liu
- grid.415946.b0000 0004 7434 8069Department of Stomatology, Linyi People’s Hospital, Linyi, 276000 Shandong China
| | - Xiuyan Hao
- grid.415946.b0000 0004 7434 8069Department of Stomatology, Linyi People’s Hospital, Linyi, 276000 Shandong China
| | - Jinghua Liu
- grid.415946.b0000 0004 7434 8069Department of Hepatobiliary Surgery and Minimally Invasive Institute of Digestive Surgery and Prof. Cai’s Laboratory, Linyi People’s Hospital, Shandong University, Linyi, 264000 Shandong China
| | - Ling Li
- grid.415946.b0000 0004 7434 8069Department of Stomatology, Linyi People’s Hospital, Linyi, 276000 Shandong China
| | - Zhen Cai
- grid.415946.b0000 0004 7434 8069Department of Stomatology, Linyi People’s Hospital, Linyi, 276000 Shandong China
| |
Collapse
|
13
|
Wu J, Zhang L, Kuchi A, Otohinoyi D, Hicks C. CpG Site-Based Signature Predicts Survival of Colorectal Cancer. Biomedicines 2022; 10:biomedicines10123163. [PMID: 36551919 PMCID: PMC9776399 DOI: 10.3390/biomedicines10123163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND A critical unmet medical need in clinical management of colorectal cancer (CRC) pivots around lack of noninvasive and or minimally invasive techniques for early diagnosis and prognostic prediction of clinical outcomes. Because DNA methylation can capture the regulatory landscape of tumors and can be measured in body fluids, it provides unparalleled opportunities for the discovery of early diagnostic and prognostics markers predictive of clinical outcomes. Here we investigated use of DNA methylation for the discovery of potential clinically actionable diagnostic and prognostic markers for predicting survival in CRC. METHODS We analyzed DNA methylation patterns between tumor and control samples to discover signatures of CpG sites and genes associated with CRC and predictive of survival. We conducted functional analysis to identify molecular networks and signaling pathways driving clinical outcomes. RESULTS We discovered a signature of aberrantly methylated genes associated with CRC and a signature of thirteen (13) CpG sites predictive of survival. We discovered molecular networks and signaling pathways enriched for CpG sites likely to drive clinical outcomes. CONCLUSIONS The investigation revealed that CpG sites can predict survival in CRC and that DNA methylation can capture the regulatory state of tumors through aberrantly methylated molecular networks and signaling pathways.
Collapse
Affiliation(s)
- Jiande Wu
- Department of Genetics and the Bioinformatics and Genomics Program, School of Medicine, Louisiana State University Health Sciences Center, Bolivar 533, New Orleans, LA 70112, USA
| | - Lu Zhang
- Department of Public Health Sciences, Clemson University, Clemson, SC 29634, USA
| | - Aditi Kuchi
- Department of Genetics and the Bioinformatics and Genomics Program, School of Medicine, Louisiana State University Health Sciences Center, Bolivar 533, New Orleans, LA 70112, USA
| | - David Otohinoyi
- Department of Genetics and the Bioinformatics and Genomics Program, School of Medicine, Louisiana State University Health Sciences Center, Bolivar 533, New Orleans, LA 70112, USA
| | - Chindo Hicks
- Department of Genetics and the Bioinformatics and Genomics Program, School of Medicine, Louisiana State University Health Sciences Center, Bolivar 533, New Orleans, LA 70112, USA
- Correspondence:
| |
Collapse
|
14
|
Wang X, Song H, Liang J, Jia Y, Zhang Y. Abnormal expression of HADH, an enzyme of fatty acid oxidation, affects tumor development and prognosis (Review). Mol Med Rep 2022; 26:355. [PMID: 36239258 PMCID: PMC9607826 DOI: 10.3892/mmr.2022.12871] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Tumor occurrence and progression are closely associated with abnormal energy metabolism and energy metabolism associated with glucose, proteins and lipids. The reprogramming of energy metabolism is one of the hallmarks of cancer. As a form of energy metabolism, fatty acid metabolism includes fatty acid uptake, de novo synthesis and β‑oxidation. In recent years, the role of abnormal fatty acid β‑oxidation in tumors has gradually been recognized. Mitochondrial trifunctional protein (MTP) serves an important role in fatty acid β‑oxidation and HADH (two subtypes: α subunit, HADHA and β subunit, HADHB) are important subunits of MTP. HADH participates in the steps of 2, 3 and 4 fatty acid β‑oxidation. However, there is no review summarizing the specific role of HADH in tumors. Therefore, the present study focused on HADH as the main indicator to explore the changes in fatty acid β‑oxidation in several types of tumors. The present review summarized the changes in HADH in 11 organs (cerebrum, oral cavity, esophagus, liver, pancreas, stomach, colorectum, lymph, lung, breast, kidney), the effect of up‑ and downregulation and the relationship of HADH with prognosis. In summary, HADH can be either a suppressor or a promoter depending on where the tumor is located, which is closely associated with prognostic assessment. HADHA and HADHB have similar prognostic roles in known and comparable tumors.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Post-doctoral Research Station of Clinical Medicine, Liaocheng People's Hospital, Jinan, Shandong 252004, P.R. China
| | - Honghao Song
- Department of Pediatric Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Junyu Liang
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yang Jia
- Post-doctoral Research Station of Clinical Medicine, Liaocheng People's Hospital, Jinan, Shandong 252004, P.R. China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yongfei Zhang
- Department of Dermatology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
15
|
Li Y, Xiong JB, Jie ZG, Xiong H. Hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta gene as a tumour suppressor in stomach adenocarcinoma. Front Oncol 2022; 12:1069875. [PMID: 36518312 PMCID: PMC9743170 DOI: 10.3389/fonc.2022.1069875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is the most common type of gastric cancer. In this study, the functions and potential mechanisms of hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta (HADHB) in STAD were explored. METHODS Different bioinformatics analyses were performed to confirm HADHB expression in STAD. HADHB expression in STAD tissues and cells was also evaluated using western blot, qRT-PCR, and immunohistochemistry. Further, the viability, proliferation, colony formation, cell cycle determination, migration, and wound healing capacity were assessed, and the effects of HADHB on tumour growth, cell apoptosis, and proliferation in nude mice were determined. The upstream effector of HADHB was examined using bioinformatics analysis and dual luciferase reporter assay. GSEA was also employed for pathway enrichment analysis and the expression of Hippo-YAP pathway-related proteins was detected. RESULTS The expression of HADHB was found to be low in STAD tissues and cells. The upregulation of HADHB distinctly repressed the viability, proliferation, colony formation, cell cycle progression, migration, invasion, and wound healing of HGC27 cells, while knockdown of HADHB led to opposite effects. HADHB upregulation impeded tumour growth and cell proliferation, and enhanced apoptosis in nude mice. KLF4, whose expression was low in STAD, was identified as an upstream regulator of HADHB. KLF4 upregulation abolished the HADHB knockdown-induced tumour promoting effects in AGS cells. Further, HADHB regulates the Hippo-YAP pathway, which was validated using a pathway rescue assay. Low expression of KLF4 led to HADHB downregulation in STAD. CONCLUSION HADHB might function as a tumour suppressor gene in STAD by regulation the Hippo-YAP pathway.
Collapse
Affiliation(s)
- Yun Li
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastrointestinal Surgical Institute of Nanchang University, Nanchang, Jiangxi, China
| | - Jian-Bo Xiong
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastrointestinal Surgical Institute of Nanchang University, Nanchang, Jiangxi, China
| | - Zhi-Gang Jie
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastrointestinal Surgical Institute of Nanchang University, Nanchang, Jiangxi, China
| | - Hui Xiong
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastrointestinal Surgical Institute of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Multi-Omics Approaches in Colorectal Cancer Screening and Diagnosis, Recent Updates and Future Perspectives. Cancers (Basel) 2022; 14:cancers14225545. [PMID: 36428637 PMCID: PMC9688479 DOI: 10.3390/cancers14225545] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022] Open
Abstract
Colorectal cancer (CRC) is common Cancer as well as the third leading cause of mortality around the world; its exact molecular mechanism remains elusive. Although CRC risk is significantly correlated with genetic factors, the pathophysiology of CRC is also influenced by external and internal exposures and their interactions with genetic factors. The field of CRC research has recently benefited from significant advances through Omics technologies for screening biomarkers, including genes, transcripts, proteins, metabolites, microbiome, and lipidome unbiasedly. A promising application of omics technologies could enable new biomarkers to be found for the screening and diagnosis of CRC. Single-omics technologies cannot fully understand the molecular mechanisms of CRC. Therefore, this review article aims to summarize the multi-omics studies of Colorectal cancer, including genomics, transcriptomics, proteomics, microbiomics, metabolomics, and lipidomics that may shed new light on the discovery of novel biomarkers. It can contribute to identifying and validating new CRC biomarkers and better understanding colorectal carcinogenesis. Discovering biomarkers through multi-omics technologies could be difficult but valuable for disease genotyping and phenotyping. That can provide a better knowledge of CRC prognosis, diagnosis, and treatments.
Collapse
|
17
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
18
|
Müller D, Győrffy B. DNA methylation-based diagnostic, prognostic, and predictive biomarkers in colorectal cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188722. [PMID: 35307512 DOI: 10.1016/j.bbcan.2022.188722] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 12/12/2022]
Abstract
DNA methylation is an epigenetic mechanism regulating gene expression. Changes in DNA methylation were suggested to be useful biomarkers for diagnosis, and for the determination of prognosis and treatment response. Here, we provide an overview of methylation-based biomarkers in colorectal cancer. First, we start with the two methylation-based diagnostic biomarkers already approved for colorectal cancer, SEPT9 and the combination of NDRG4 and BMP3. Then, we provide a list-based overview of new biomarker candidates depending on the sample source including plasma, stool, urine, and surgically removed tumor tissues. The most often identified markers like SDC2, VIM, APC, MGMT, SFRP1, SFRP2, and NDRG4 have distinct functions previously linked to tumor progression. Although numerous studies have identified tumor-specific methylation changes, most of these alterations were observed in a single study only. The lack of validation in independent samples means low reproducibility and is a major limitation. The genome-wide determination of methylation status (methylome) can provide data to solve these issues. In the third section of the review, methylome studies focusing on different aspects related to CRC, including precancerous lesions, CRC-specific changes, molecular subtypes, aging, and chemotherapy response are summarized. Notably, techniques simultaneously analyzing a large set of regions can also uncover epigenetic regulation of genes which have not yet been associated with tumorigenesis previously. A remaining constraint of studies published to date is the low patient number utilized in these preventing the identification of clinically valuable biomarker candidates. Either future large-scale studies or the integration of already available methylome-level data will be necessary to uncover biomarkers sufficiently robust for clinical application.
Collapse
Affiliation(s)
- Dalma Müller
- Dept. of Bioinformatics, Semmelweis University, Budapest, Hungary; Cancer Biomarker Research Group, RCNS, Budapest, Hungary
| | - Balázs Győrffy
- Dept. of Bioinformatics, Semmelweis University, Budapest, Hungary; Cancer Biomarker Research Group, RCNS, Budapest, Hungary.
| |
Collapse
|
19
|
Huang Y, Huang C, Jiang X, Yan Y, Zhuang K, Liu F, Li P, Wen Y. Exploration of Potential Roles of m5C-Related Regulators in Colon Adenocarcinoma Prognosis. Front Genet 2022; 13:816173. [PMID: 35281843 PMCID: PMC8908034 DOI: 10.3389/fgene.2022.816173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives: The purpose of this study was to investigate the role of 13 m5C-related regulators in colon adenocarcinoma (COAD) and determine their prognostic value. Methods: Gene expression and clinicopathological data were obtained from The Cancer Genome Atlas (TCGA) datasets. The expression of m5C-related regulators was analyzed with clinicopathological characteristics and alterations within m5C-related regulators. Subsequently, different subtypes of patients with COAD were identified. Then, the prognostic value of m5C-related regulators in COAD was confirmed via univariate Cox regression and least absolute shrinkage and selection operator (LASSO) Cox regression analyses. The prognostic value of risk scores was evaluated using the Kaplan-Meier method, receiver operating characteristic (ROC) curve. The correlation between the two m5C-related regulators, risk score, and clinicopathological characteristics were explored. Additionally, Gene Set Enrichment Analysis (GSEA), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and Gene Ontology (GO) analysis were performed for biological functional analysis. Finally, the expression level of two m5C-related regulators in clinical samples and cell lines was detected by quantitative reverse transcription-polymerase chain reaction and through the Human Protein Atlas database. Results: m5C-related regulators were found to be differentially expressed in COAD with different clinicopathological features. We observed a high alteration frequency in these genes, which were significantly correlated with their mRNA expression levels. Two clusters with different prognostic features were identified. Based on two independent prognostic m5C-related regulators (NSUN6 and ALYREF), a risk signature with good predictive significance was constructed. Univariate and multivariate Cox regression analyses suggested that the risk score was an independent prognostic factor. Furthermore, this risk signature could serve as a prognostic indicator for overall survival in subgroups of patients with different clinical characteristics. Biological processes and pathways associated with cancer, immune response, and RNA processing were identified. Conclusion: We revealed the genetic signatures and prognostic values of m5C-related regulators in COAD. Together, this has improved our understanding of m5C RNA modification and provided novel insights to identify predictive biomarkers and develop molecular targeted therapy for COAD.
Collapse
Affiliation(s)
- Yuancheng Huang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaoyuan Huang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaotao Jiang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhua Yan
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kunhai Zhuang
- Department of Gastroenterology, Baiyun Branch of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengbin Liu
- Department of Gastroenterology, Baiyun Branch of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Fengbin Liu, ; Peiwu Li, ; Yi Wen,
| | - Peiwu Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Fengbin Liu, ; Peiwu Li, ; Yi Wen,
| | - Yi Wen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Fengbin Liu, ; Peiwu Li, ; Yi Wen,
| |
Collapse
|
20
|
Wang G, Wang F, Meng Z, Wang N, Zhou C, Zhang J, Zhao L, Wang G, Shan B. Uncovering potential genes in colorectal cancer based on integrated and DNA methylation analysis in the gene expression omnibus database. BMC Cancer 2022; 22:138. [PMID: 35114976 PMCID: PMC8815138 DOI: 10.1186/s12885-022-09185-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
Background Colorectal cancer (CRC) is major cancer-related death. The aim of this study was to identify differentially expressed and differentially methylated genes, contributing to explore the molecular mechanism of CRC. Methods Firstly, the data of gene transcriptome and genome-wide DNA methylation expression were downloaded from the Gene Expression Omnibus database. Secondly, functional analysis of differentially expressed and differentially methylated genes was performed, followed by protein-protein interaction (PPI) analysis. Thirdly, the Cancer Genome Atlas (TCGA) dataset and in vitro experiment was used to validate the expression of selected differentially expressed and differentially methylated genes. Finally, diagnosis and prognosis analysis of selected differentially expressed and differentially methylated genes was performed. Results Up to 1958 differentially expressed (1025 up-regulated and 993 down-regulated) genes and 858 differentially methylated (800 hypermethylated and 58 hypomethylated) genes were identified. Interestingly, some genes, such as GFRA2 and MDFI, were differentially expressed-methylated genes. Purine metabolism (involved IMPDH1), cell adhesion molecules and PI3K-Akt signaling pathway were significantly enriched signaling pathways. GFRA2, FOXQ1, CDH3, CLDN1, SCGN, BEST4, CXCL12, CA7, SHMT2, TRIP13, MDFI and IMPDH1 had a diagnostic value for CRC. In addition, BEST4, SHMT2 and TRIP13 were significantly associated with patients’ survival. Conclusions The identified altered genes may be involved in tumorigenesis of CRC. In addition, BEST4, SHMT2 and TRIP13 may be considered as diagnosis and prognostic biomarkers for CRC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09185-0.
Collapse
Affiliation(s)
- Guanglin Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feifei Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zesong Meng
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Wang
- Institute of Tumor, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chaoxi Zhou
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Juan Zhang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lianmei Zhao
- Scientific Research Center, The Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Chang'an District, Shijiazhuang, 050010, Hebei Province, China
| | - Guiying Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Department of General Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoen Shan
- Scientific Research Center, The Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Chang'an District, Shijiazhuang, 050010, Hebei Province, China.
| |
Collapse
|
21
|
Sekine Y, Yamamoto K, Kurata M, Honda A, Onishi I, Kinowaki Y, Kawade G, Watabe S, Nomura S, Fukuda S, Ishibashi S, Ikeda M, Yamamoto M, Kitagawa M. HADHB, a fatty acid beta-oxidation enzyme, is a potential prognostic predictor in malignant lymphoma. Pathology 2021; 54:286-293. [PMID: 34531036 DOI: 10.1016/j.pathol.2021.06.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
In haematological malignancies, such as malignant lymphoma, reprogramming of fatty acid metabolism favours tumour cell survival and drug resistance. Hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha (HADHA), an enzyme involved in fatty acid beta-oxidation (FAO), is overexpressed in high-grade lymphoma and is a predictor of poor prognosis in diffuse large B-cell lymphoma (DLBCL). HADHB forms a heterodimer with HADHA and functions as an FAO enzyme together with HADHA; however, the relevance of its expression in malignant lymphoma is unknown. In this study, we investigated the roles and antitumour effects of HADHB expression in malignant lymphoma. Immunohistochemical analysis showed that HADHB was frequently overexpressed in the high-grade lymphoma subtype. HADHB overexpression was observed in 68% (87/128) of DLBCL cases and was an independent predictor of poor prognosis (p=0.001). In vitro analysis demonstrated that HADHB knockdown suppressed cell proliferation in LCL-K and MD901 cells (p<0.05). Additionally, treatment with the FAO inhibitor, ranolazine, increased cell death in control cells compared with that in HADHB knockdown LCL-K and MD901 cells (p<0.01). Cell death was also suppressed by the ferroptosis inhibitor, ferrosatin-1, in LCL-K and MD901 cells (p<0.05). Collectively, these findings provide basic evidence for the development of new cell death-based therapies for refractory malignant lymphoma. We plan to perform prospective studies and preclinical studies using animal models to confirm these results.
Collapse
Affiliation(s)
- Yuji Sekine
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Cardiovascular Surgery, Nara Prefecture General Medical Centre, Nara, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayaka Honda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Iichiroh Onishi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Kinowaki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Genji Kawade
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiori Watabe
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Serina Nomura
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sho Fukuda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sachiko Ishibashi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masumi Ikeda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahide Yamamoto
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
22
|
Sharma J, Kumari R, Bhargava A, Tiwari R, Mishra PK. Mitochondrial-induced Epigenetic Modifications: From Biology to Clinical Translation. Curr Pharm Des 2021; 27:159-176. [PMID: 32851956 DOI: 10.2174/1381612826666200826165735] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
Mitochondria are maternally inherited semi-autonomous organelles that play a central role in redox balance, energy metabolism, control of integrated stress responses, and cellular homeostasis. The molecular communication between mitochondria and the nucleus is intricate and bidirectional in nature. Though mitochondrial genome encodes for several key proteins involved in oxidative phosphorylation, several regulatory factors encoded by nuclear DNA are prominent contributors to mitochondrial biogenesis and function. The loss of synergy between this reciprocal control of anterograde (nuclear to mitochondrial) and retrograde (mitochondrial to nuclear) signaling, triggers epigenomic imbalance and affects mitochondrial function and global gene expressions. Recent expansions of our knowledge on mitochondrial epigenomics have offered novel perspectives for the study of several non-communicable diseases including cancer. As mitochondria are considered beacons for pharmacological interventions, new frontiers in targeted delivery approaches could provide opportunities for effective disease management and cure through reversible epigenetic reprogramming. This review focuses on recent progress in the area of mitochondrial-nuclear cross-talk and epigenetic regulation of mitochondrial DNA methylation, mitochondrial micro RNAs, and post-translational modification of mitochondrial nucleoid-associated proteins that hold major opportunities for targeted drug delivery and clinical translation.
Collapse
Affiliation(s)
- Jahnavi Sharma
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
23
|
Han Q, Kono TJY, Knutson CG, Parry NM, Seiler CL, Fox JG, Tannenbaum SR, Tretyakova NY. Multi-Omics Characterization of Inflammatory Bowel Disease-Induced Hyperplasia/Dysplasia in the Rag2-/-/ Il10-/- Mouse Model. Int J Mol Sci 2020; 22:E364. [PMID: 33396408 PMCID: PMC7795000 DOI: 10.3390/ijms22010364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022] Open
Abstract
Epigenetic dysregulation is hypothesized to play a role in the observed association between inflammatory bowel disease (IBD) and colon tumor development. In the present work, DNA methylome, hydroxymethylome, and transcriptome analyses were conducted in proximal colon tissues harvested from the Helicobacter hepaticus (H. hepaticus)-infected murine model of IBD. Reduced representation bisulfite sequencing (RRBS) and oxidative RRBS (oxRRBS) analyses identified 1606 differentially methylated regions (DMR) and 3011 differentially hydroxymethylated regions (DhMR). These DMR/DhMR overlapped with genes that are associated with gastrointestinal disease, inflammatory disease, and cancer. RNA-seq revealed pronounced expression changes of a number of genes associated with inflammation and cancer. Several genes including Duox2, Tgm2, Cdhr5, and Hk2 exhibited changes in both DNA methylation/hydroxymethylation and gene expression levels. Overall, our results suggest that chronic inflammation triggers changes in methylation and hydroxymethylation patterns in the genome, altering the expression of key tumorigenesis genes and potentially contributing to the initiation of colorectal cancer.
Collapse
Affiliation(s)
- Qiyuan Han
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Thomas J. Y. Kono
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Charles G. Knutson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.G.K.); (J.G.F.); (S.R.T.)
| | - Nicola M. Parry
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Christopher L. Seiler
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - James G. Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.G.K.); (J.G.F.); (S.R.T.)
| | - Steven R. Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.G.K.); (J.G.F.); (S.R.T.)
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
24
|
Zhang Q, Zhao H, Wu D, Cao D, Ma W. A comprehensive analysis of the microbiota composition and gene expression in colorectal cancer. BMC Microbiol 2020; 20:308. [PMID: 33050883 PMCID: PMC7557014 DOI: 10.1186/s12866-020-01938-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/09/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The dysregulation of gut microbiota is pivotal in colorectal carcinogenesis. Meanwhile, altered gut microbiome may affect the development of intestinal diseases through interaction with the host genes. However, the synergy between the altered gut microbiota composition and differential expression of specific genes in colorectal cancer (CRC) remains elusive. Thus, we integrated the data from 16S rRNA gene sequences and RNA sequences to investigate the potential relationship between genes and gut microbes in patients with CRC. RESULTS Compared with normal samples, the presence of Proteobacteria and Fusobacteria increased considerably in CRC samples; conversely, the abundance of Firmicutes and Spirochaetes decreased markedly. In particular, the genera Fusobacterium, Catenibacterium, and Shewanella were only detected in tumor samples. Meanwhile, a closely interaction between Butyricimonas and Clostridium was observed in the microbiome network. Furthermore, a total of 246 (differentially expressed genes) DEGs were identified between tumor and normal tissues. Both DEGs and microbiota were involved in bile secretion and steroid hormone biosynthesis pathways. Finally, genes like cytochrome P450 family 3 subfamily A member 4 (CYP3A4) and ATP binding cassette subfamily G member 2 (ABCG2) enriched in these two pathways were connected with the prognosis of CRC, and CRC patients with low expression level of CYP3A4 and ABCG2 had longer survival time. CONCLUSION Identifying the complicated interaction between gut microbiota and the DEGs contributed to further understand the pathogenesis of CRC, and these findings might enable better diagnosis and treatment of CRC patients.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Erqi District, Zhengzhou, 450000, Henan, China.,Department of Oncology, The First People's Hospital of Zhengzhou, Zhengzhou, 450004, Henan, China
| | - Huan Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Dedong Wu
- Department of Oncology, The First People's Hospital of Zhengzhou, Zhengzhou, 450004, Henan, China
| | - Dayong Cao
- Department of Burns, The First People's Hospital of Zhengzhou, Zhengzhou, 450004, Henan, China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Erqi District, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
25
|
HMST-Seq-Analyzer: A new python tool for differential methylation and hydroxymethylation analysis in various DNA methylation sequencing data. Comput Struct Biotechnol J 2020; 18:2877-2889. [PMID: 33163148 PMCID: PMC7593523 DOI: 10.1016/j.csbj.2020.09.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/04/2022] Open
Abstract
DNA methylation (5mC) and hydroxymethylation (5hmC) are chemical modifications of cytosine bases which play a crucial role in epigenetic gene regulation. However, cost, data complexity and unavailability of comprehensive analytical tools is one of the major challenges in exploring these epigenetic marks. Hydroxymethylation-and Methylation-Sensitive Tag sequencing (HMST-seq) is one of the most cost-effective techniques that enables simultaneous detection of 5mC and 5hmC at single base pair resolution. We present HMST-Seq-Analyzer as a comprehensive and robust method for performing simultaneous differential methylation analysis on 5mC and 5hmC data sets. HMST-Seq-Analyzer can detect Differentially Methylated Regions (DMRs), annotate them, give a visual overview of methylation status and also perform preliminary quality check on the data. In addition to HMST-Seq, our tool can be used on whole-genome bisulfite sequencing (WGBS) and reduced representation bisulfite sequencing (RRBS) data sets as well. The tool is written in Python with capacity to process data in parallel and is available at (https://hmst-seq.github.io/hmst/).
Collapse
|
26
|
Romero-Garcia S, Prado-Garcia H, Carlos-Reyes A. Role of DNA Methylation in the Resistance to Therapy in Solid Tumors. Front Oncol 2020; 10:1152. [PMID: 32850327 PMCID: PMC7426728 DOI: 10.3389/fonc.2020.01152] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in chemotherapeutic treatments against cancer, some types of highly aggressive and invasive cancer develop drug resistance against conventional therapies, which continues to be a major problem in the fight against cancer. In recent years, studies of alterations of DNA methylome have given us a better understanding of the role of DNA methylation in the development of tumors. DNA methylation (DNAm) is an epigenetic change that promotes the covalent transfer of methyl groups to DNA. This process suppresses gene expression through the modulation of the transcription machinery access to the chromatin or through the recruitment of methyl binding proteins. DNAm is regulated mainly by DNA methyltransferases. Aberrant DNAm contributes to tumor progression, metastasis, and resistance to current anti-tumoral therapies. Aberrant DNAm may occur through hypermethylation in the promoter regions of tumor suppressor genes, which leads to their silencing, while hypomethylation in the promoter regions of oncogenes can activate them. In this review, we discuss the impact of dysregulated methylation in certain genes, which impact signaling pathways associated with apoptosis avoidance, metastasis, and resistance to therapy. The analysis of methylome has revealed patterns of global methylation, which regulate important signaling pathways involved in therapy resistance in different cancer types, such as breast, colon, and lung cancer, among other solid tumors. This analysis has provided gene-expression signatures of methylated region-specific DNA that can be used to predict the treatment outcome in response to anti-cancer therapy. Additionally, changes in cancer methylome have been associated with the acquisition of drug resistance. We also review treatments with demethylating agents that, in combination with standard therapies, seem to be encouraging, as tumors that are in early stages can be successfully treated. On the other hand, tumors that are in advanced stages can be treated with these combination schemes, which could sensitize tumor cells that are resistant to the therapy. We propose that rational strategies, which combine specific demethylating agents with conventional treatment, may improve overall survival in cancer patients.
Collapse
Affiliation(s)
- Susana Romero-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| | - Heriberto Prado-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| | - Angeles Carlos-Reyes
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
27
|
Dang Y, Hu D, Xu J, Li C, Tang Y, Yang Z, Liu Y, Zhou W, Zhang L, Xu H, Xu Y, Ji G. Comprehensive analysis of 5-hydroxymethylcytosine in zw10 kinetochore protein as a promising biomarker for screening and diagnosis of early colorectal cancer. Clin Transl Med 2020; 10:e125. [PMID: 32628818 PMCID: PMC7418801 DOI: 10.1002/ctm2.125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As a new epigenetic biomarker, 5-hydroxymethylcytosine (5hmC) is broadly involved in various diseases including cancers. However, the function and diagnostic performance of 5hmC in colorectal cancer (CRC) remain unclear. RESULTS High-throughput sequencing was used to profile 5hmC levels in adjacent normal colon, advanced adenomas, and CRC. The expression and 5hmC levels in zw10 kinetochore protein (ZW10) were significantly increased in the tissues and blood samples for patients with advanced adenoma and CRC, and were much higher in the early stages of CRC (I and II). The receiver operating characteristic analysis had potential diagnostic value for CRC. The area under the curve (AUC) of ZW10 5hmC levels in tissue samples of CRC was 0.901. In blood samples, the AUC was 0.748 for CRC. In addition, the ZW10 5hmC level had much higher diagnostic performance in early stages of CRC (AUC = 0.857) than it did in advanced stages (AUC = 0.594). Compared with FHC cell, ZW10 expression in HT29 cell was significantly increased. The ZW10 knockdown could inhibit cell proliferation and the ZW10 overexpression could promote cell proliferation in HT-29 cell. Furthermore, ZW10 knockdown inhibited AKT and mTOR phosphorylation, and ZW10 overexpression promoted AKT and mTOR phosphorylation. CONCLUSIONS The ZW10 5hmC level may serve as an effective epigenetic biomarker for minimally invasive screening and diagnosis of CRC, and it has higher diagnostic performance in early stages of CRC than it does in advanced stages. In addition, ZW10 could regulate CRC progression through the AKT-mTOR signaling.
Collapse
Affiliation(s)
- Yanqi Dang
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Dan Hu
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Traditional Chinese MedicineSeventh People's Hospital of Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jingjuan Xu
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Chunlin Li
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yingjue Tang
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhenhua Yang
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- Digestive Endoscopy DepartmentLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yang Liu
- Department of General SurgeryLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Wenjun Zhou
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Li Zhang
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hanchen Xu
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yangxian Xu
- Department of General SurgeryLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guang Ji
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
28
|
Zhu H, Zhu H, Tian M, Wang D, He J, Xu T. DNA Methylation and Hydroxymethylation in Cervical Cancer: Diagnosis, Prognosis and Treatment. Front Genet 2020; 11:347. [PMID: 32328088 PMCID: PMC7160865 DOI: 10.3389/fgene.2020.00347] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
Recent discoveries have led to the development of novel ideas and techniques that have helped elucidate the correlation between epigenetics and tumor biology. Nowadays, the field of tumor genetics has evolved to include a new type of regulation by epigenetics. An increasing number of studies have demonstrated the importance of DNA methylation and hydroxymethylation in specific genes in the progression of cervical cancer. Determining the methylation and hydroxymethylation profiles of these genes will help in the early prevention and diagnosis, monitoring recurrence, prognosis, and treatment of patients with cervical cancer. In this review, we focus on the significance of aberrant DNA methylation and hydroxymethylation in cervical cancer and the use of these epigenetic signatures in clinical settings.
Collapse
Affiliation(s)
- Hongming Zhu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Miao Tian
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Dongying Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Jiaxing He
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Tianmin Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Sun X, Chen D, Jin Z, Chen T, Lin A, Jin H, Zhu Y, Lai M. Genome-wide methylation and expression profiling identify methylation-associated genes in colorectal cancer. Epigenomics 2019; 12:19-36. [PMID: 31833403 DOI: 10.2217/epi-2019-0133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: To identify methylation-associated genes in the carcinogenesis of colorectal cancer (CRC). Materials & methods: Genome-wide patterns of DNA methylation and gene expression in CRC tissues and adjacent normal tissues were determined and further validated in The Cancer Genome Atlas data and Chinese CRC patients, respectively. Gene overexpression and knockdown cells were constructed to investigate their biological roles in CRC. Results: After validations, hypermethylation of eight genes were found to be correlated with their reduced transcription, and hypomethyaltion of three genes were associated with their upregulation. CADM3, CNRIP1, GRHL2, GRIA4, GSTM2 and NRXN1 were associated with the overall survival of CRC patients. CNRIP1 and GSTM2 were mainly responsible for the proliferation in CRC cells. Conclusion: A total of 11 genes may be promising biomarkers for CRC.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Diyu Chen
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, PR China
| | - Ziqi Jin
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Tianhui Chen
- Group of Molecular Epidemiology & Cancer Precision Prevention, Zhejiang Academy of Medical Sciences, Hangzhou 310013, PR China
| | - Aifen Lin
- Human Tissue Bank/Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, PR China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Provincial Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou 310020, PR China
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, Zhejiang, PR China.,Department of Respiratory Diseases, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, PR China
| | - Maode Lai
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| |
Collapse
|
30
|
Zhao Z, Liu Y, Liu Q, Wu F, Liu X, Qu H, Yuan Y, Ge J, Xu Y, Wang H. The mRNA Expression Signature and Prognostic Analysis of Multiple Fatty Acid Metabolic Enzymes in Clear Cell Renal Cell Carcinoma. J Cancer 2019; 10:6599-6607. [PMID: 31777589 PMCID: PMC6856888 DOI: 10.7150/jca.33024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022] Open
Abstract
Renal cell carcinoma (RCC) is a metabolic disease, and accumulating evidences indicate significant alterations in the cellular metabolism, especial aerobic glycolysis and glutamine metabolism, in RCC. However, fatty acid (FA) metabolism has received less attention, and the mRNA expression pattern and prognostic role of FA metabolic enzymes in clear cell RCC (ccRCC) have not been carefully examined. In the current study, we first investigated the mRNA expression profiles of multiple FA metabolic enzymes, i.e., ACLY, ACC, FASN, SCD, CPT1A, HADHA, HADHB, and ACAT1, in 42 ccRCC and 33 normal kidney tissues using the Oncomine database, validated their mRNA expression profiles using GEPIA resource, then evaluated and validated the prognostic significance of these metabolic enzymes in 530 ccRCC patients using Kaplan-Meier plotter and GEPIA analyses respectively. The Oncomine and GEPIA confirmed higher ACLY, SCD, and lower ACAT1 mRNA expression in ccRCC than normal tissues (P<0.05). And further prognostic analysis displayed that overexpression of the some FA anabolic enzymes (FASN) was correlated to poor overall survival (OS), while overexpression of the FA catabolic enzymes (CPT1A, HADHA, HADHB, and ACAT1) was correlated to favorable OS in ccRCC patients. In conclusion, multiple FA metabolic enzymes, such as FASN, HADHA, and ACAT1, were potential prognostic markers of ccRCC, which implied alterations in FA metabolism might be involved in ccRCC tumorigenesis and progression.
Collapse
Affiliation(s)
- Zuohui Zhao
- Department of Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical University, Jingshi Road, No. 16766, Jinan, Shandong 250014, China
| | - Yueran Liu
- Department of Operatology, School of Medicine, Shandong University, Wenhuaxi Road, No. 44, Jinan, Shandong 250012, China
| | - Qiang Liu
- Laboratory of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jingshi Road, No. 16766, Jinan, Shandong 250014, China
| | - Fei Wu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jingshi Road, No. 16766, Jinan, Shandong 250014, China
| | - Xiaoli Liu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jiyan Road, No. 440, Jinan, Shandong 250117, China
| | - Hongyi Qu
- Department of Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical University, Jingshi Road, No. 16766, Jinan, Shandong 250014, China
| | - Yijiao Yuan
- Department of Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical University, Jingshi Road, No. 16766, Jinan, Shandong 250014, China
| | - Juntao Ge
- Department of Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical University, Jingshi Road, No. 16766, Jinan, Shandong 250014, China
| | - Yue Xu
- Department of Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical University, Jingshi Road, No. 16766, Jinan, Shandong 250014, China
| | - Hao Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical University, Jingshi Road, No. 16766, Jinan, Shandong 250014, China
| |
Collapse
|
31
|
Slynko A, Benner A. Statistical methods for classification of 5hmC levels based on the Illumina Inifinium HumanMethylation450 (450k) array data, under the paired bisulfite (BS) and oxidative bisulfite (oxBS) treatment. PLoS One 2019; 14:e0218103. [PMID: 31194780 PMCID: PMC6563990 DOI: 10.1371/journal.pone.0218103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/27/2019] [Indexed: 12/22/2022] Open
Abstract
Hydroxymethylcytosine (5hmC) methylation is a well-known epigenetic mark that is involved in gene regulation and may impact genome stability. To investigate a possible role of 5hmC in cancer development and progression, one must be able to detect and quantify its level first. In this paper, we address the issue of 5hmC detection at a single base resolution, starting with consideration of the well-established 5hmC measure Δβ and, in particular, with an analysis of its properties, both analytically and empirically. Then we propose several alternative hydroxymethylation measures and compare their properties with those of Δβ. In the absence of a gold standard, the (pairwise) resemblance of those 5hmC measures to Δβ is characterized by means of a similarity analysis and relative accuracy analysis. All results are illustrated on matched healthy and cancer tissue data sets as derived by means of bisulfite (BS) and oxidative bisulfite converting (oxBS) procedures.
Collapse
Affiliation(s)
- Alla Slynko
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Canada
- * E-mail:
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
32
|
Povedano E, Montiel VRV, Valverde A, Navarro-Villoslada F, Yáñez-Sedeño P, Pedrero M, Montero-Calle A, Barderas R, Peláez-García A, Mendiola M, Hardisson D, Feliú J, Camps J, Rodríguez-Tomàs E, Joven J, Arenas M, Campuzano S, Pingarrón JM. Versatile Electroanalytical Bioplatforms for Simultaneous Determination of Cancer-Related DNA 5-Methyl- and 5-Hydroxymethyl-Cytosines at Global and Gene-Specific Levels in Human Serum and Tissues. ACS Sens 2019; 4:227-234. [PMID: 30499292 DOI: 10.1021/acssensors.8b01339] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This paper reports the preparation of versatile electrochemical biosensing platforms for the simple, rapid, and PCR-independent detection of the most frequent DNA methylation marks (5-methylcytosine, 5-mC, and/or 5-hydroxymethylcytosine, 5-hmC) both at global and gene-specific levels. The implemented strategies, relying on the smart coupling of immuno-magnetic beads (MBs), specific DNA probes and amperometric detection at screen-printed carbon electrodes (SPCEs), provided sensitive and selective determination of the target methylated DNAs in less than 90 min with a great reproducibility and demonstrated feasibility for the simultaneous detection of the same or different cytosine epimarks both at global level and in different loci of the same gene or in different genes. The bioplatforms were applied to determine global methylation events in paraffin-embedded colorectal tissues and specific methylation at promoters of tumor suppressor genes in genomic DNA extracted from cancer cells and paraffin-embedded colorectal tissues, and in serum without previous DNA extraction from cancer patients.
Collapse
Affiliation(s)
- Eloy Povedano
- Departamento de
Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | - Alejandro Valverde
- Departamento de
Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Fernando Navarro-Villoslada
- Departamento de
Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Paloma Yáñez-Sedeño
- Departamento de
Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - María Pedrero
- Departamento de
Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Ana Montero-Calle
- Departamento de
Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Rodrigo Barderas
- UFIEC, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group Hospital Universitario La Paz IdiPAZ, 28046 Madrid, Spain
| | - Marta Mendiola
- Molecular Pathology and Therapeutic Targets Group Hospital Universitario La Paz IdiPAZ, 28046 Madrid, Spain
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - David Hardisson
- Molecular Pathology and Therapeutic Targets Group Hospital Universitario La Paz IdiPAZ, 28046 Madrid, Spain
| | - Jaime Feliú
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Translational Oncology Group Hospital Universitario La Paz IdiPAZ, 28046 Madrid, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d́Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, E-43204 Reus, Spain
| | - Elisabet Rodríguez-Tomàs
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d́Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, E-43204 Reus, Spain
- Department of Radiation Oncology, Hospital Universitari Sant Joan, Institut d́Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, E-43204 Reus, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d́Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, E-43204 Reus, Spain
| | - Meritxell Arenas
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d́Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, E-43204 Reus, Spain
| | - Susana Campuzano
- Departamento de
Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - José M. Pingarrón
- Departamento de
Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|