1
|
Kwon Y, Blazyte A, Jeon Y, Kim YJ, An K, Jeon S, Ryu H, Shin DH, Ahn J, Um H, Kang Y, Bak H, Kim BC, Lee S, Jung HT, Shin ES, Bhak J. Identification of 17 novel epigenetic biomarkers associated with anxiety disorders using differential methylation analysis followed by machine learning-based validation. Clin Epigenetics 2025; 17:24. [PMID: 39962544 PMCID: PMC11831770 DOI: 10.1186/s13148-025-01819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND The changes in DNA methylation patterns may reflect both physical and mental well-being, the latter being a relatively unexplored avenue in terms of clinical utility for psychiatric disorders. In this study, our objective was to identify the methylation-based biomarkers for anxiety disorders and subsequently validate their reliability. METHODS A comparative differential methylation analysis was performed on whole blood samples from 94 anxiety disorder patients and 296 control samples using targeted bisulfite sequencing. Subsequent validation of identified biomarkers employed an artificial intelligence-based risk prediction models: a linear calculation-based methylation risk score model and two tree-based machine learning models: Random Forest and XGBoost. RESULTS Seventeen novel epigenetic methylation biomarkers were identified to be associated with anxiety disorders. These biomarkers were predominantly localized near CpG islands, and they were associated with two distinct biological processes: 1) cell apoptosis and mitochondrial dysfunction and 2) the regulation of neurosignaling. We further developed a robust diagnostic risk prediction system to classify anxiety disorders from healthy controls using the 17 biomarkers. Machine learning validation confirmed the robustness of our biomarker set, with XGBoost as the best-performing algorithm, an area under the curve of 0.876. CONCLUSION Our findings support the potential of blood liquid biopsy in enhancing the clinical utility of anxiety disorder diagnostics. This unique set of epigenetic biomarkers holds the potential for early diagnosis, prediction of treatment efficacy, continuous monitoring, health screening, and the delivery of personalized therapeutic interventions for individuals affected by anxiety disorders.
Collapse
Grants
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1425156792 Ministry of SMEs and Startups
- 1425156792 Ministry of SMEs and Startups
- 1425157253 Ministry of SMEs and Startups
- 1415170577 Ministry of Trade, Industry and Energy
- 1415170577 Ministry of Trade, Industry and Energy
- 1415170577 Ministry of Trade, Industry and Energy
- 1415170577 Ministry of Trade, Industry and Energy
- 1415170577 Ministry of Trade, Industry and Energy
- 1415170577 Ministry of Trade, Industry and Energy
- 1415170577 Ministry of Trade, Industry and Energy
- 1415187694 Ministry of Trade, Industry and Energy
- 1415187694 Ministry of Trade, Industry and Energy
- 1415187694 Ministry of Trade, Industry and Energy
- 1415187694 Ministry of Trade, Industry and Energy
- 1415187694 Ministry of Trade, Industry and Energy
- 1415170577 Ministry of Trade, Industry and Energy
- 1.200108.01 Ulsan National Institute of Science and Technology
- 1.200108.01 Ulsan National Institute of Science and Technology
- 1.200108.01 Ulsan National Institute of Science and Technology
- 1.200108.01 Ulsan National Institute of Science and Technology
- 1.200108.01 Ulsan National Institute of Science and Technology
- 1.200108.01 Ulsan National Institute of Science and Technology
- 1.200108.01 Ulsan National Institute of Science and Technology
Collapse
Affiliation(s)
- Yoonsung Kwon
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Asta Blazyte
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea
| | - Yeonsu Jeon
- Clinomics Inc, Osong, 66819, Republic of Korea
| | - Yeo Jin Kim
- Clinomics Inc, Osong, 66819, Republic of Korea
| | - Kyungwhan An
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sungwon Jeon
- Clinomics Inc, Osong, 66819, Republic of Korea
- AgingLab, Ulsan 44919, Republic of Korea
- Geromics Inc., Suwon 16226, Republic of Korea
| | - Hyojung Ryu
- Clinomics Inc, Osong, 66819, Republic of Korea
| | - Dong-Hyun Shin
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jihye Ahn
- Clinomics Inc, Osong, 66819, Republic of Korea
| | - Hyojin Um
- Clinomics Inc, Osong, 66819, Republic of Korea
| | | | - Hyebin Bak
- Clinomics Inc, Osong, 66819, Republic of Korea
| | | | - Semin Lee
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyung-Tae Jung
- Department of Psychiatry, Ulsan Medical Center, Ulsan, 44686, Republic of Korea.
| | - Eun-Seok Shin
- Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 44033, Republic of Korea.
| | - Jong Bhak
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Clinomics Inc, Osong, 66819, Republic of Korea.
- AgingLab, Ulsan 44919, Republic of Korea.
| |
Collapse
|
2
|
Ota VK, Oliveira AM, Bugiga AVG, Conceição HB, Galante PAF, Asprino PF, Schäfer JL, Hoffmann MS, Bressan R, Brietzke E, Manfro GG, Grassi-Oliveira R, Gadelha A, Rohde LA, Miguel EC, Pan PM, Santoro ML, Salum GA, Carvalho CM, Belangero SI. Impact of life adversity and gene expression on psychiatric symptoms in children and adolescents: findings from the Brazilian high risk cohort study. Front Psychiatry 2025; 16:1505421. [PMID: 40018685 PMCID: PMC11866055 DOI: 10.3389/fpsyt.2025.1505421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/13/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction While the influence of both genetic and environmental factors on the development of psychiatric symptoms is well-recognized, the precise nature of their interaction throughout development remains a subject of ongoing debate. This study investigated the association between the expression of 78 candidate genes, previously associated with psychiatric phenotypes, in peripheral blood and both adversity and psychopathology in a sample of 298 young individuals assessed at two time points from the Brazilian High Risk Cohort Study for Mental Conditions (BHRCS). Methods Psychopathology was assessed using the Child Behavior Checklist (CBCL), considering the total CBCL, p-factor (i.e. general factor of psychopathology), and internalizing and externalizing symptoms as clinical variables. The life adversities considered in this study includes four composite variables: child maltreatment, stressful life events, threat and deprivation. Gene expression was measured using next-generation sequencing for target genes and differential gene expression was analyzed with the DESeq2 package. Results Mixed models revealed six genes associated with internalizing symptoms: NR3C1, HSPBP1, SIN3A, SMAD4, and CRLF3 genes exhibited a negative correlation with these symptoms, while FAR1 gene showed a positive correlation. Additionally, we also found a negative association between USP38 gene expression and externalizing symptoms. Finally, DENND11 and PRRC1 genes were negatively associated with deprivation, a latent factor characterized by neglect, parental absence, and measures of material forms of deprivation. No mediation or moderation effect was observed of gene expression on the association between life adversities and psychiatric symptoms, meaning that they might influence distinct pathways. Discussion Among these nine genes, NR3C1, which encodes a glucocorticoid receptor, is by far the most investigated, being associated with depressive symptoms, early life adversity, and stress. While further research is needed to fully understand the complex relationship between gene expression, life adversities, and psychopathology, our findings provide valuable insights into the molecular mechanisms underlying mental disorders.
Collapse
Affiliation(s)
- Vanessa Kiyomi Ota
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Psychiatry and Medical Psychology, UNIFESP, São Paulo, Brazil
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Sao Paulo, Brazil
- Genetics Division, Department of Morphology and Genetics, UNIFESP, São Paulo, Brazil
| | - Adrielle Martins Oliveira
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Psychiatry and Medical Psychology, UNIFESP, São Paulo, Brazil
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Sao Paulo, Brazil
| | - Amanda Victória Gomes Bugiga
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Sao Paulo, Brazil
- Genetics Division, Department of Morphology and Genetics, UNIFESP, São Paulo, Brazil
| | | | | | | | - Julia Luiza Schäfer
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Porto Alegre, Brazil
- Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mauricio Scopel Hoffmann
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Porto Alegre, Brazil
- Department of Neuropsychiatry, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
- Mental Health Epidemiology Group (MHEG), Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
- Graduate Program in Psychiatry and Behavioral Sciences, UFRGS, Porto Alegre, Brazil
- Care Policy and Evaluation Centre, London School of Economics and Political Science, London, United Kingdom
| | - Rodrigo Bressan
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Psychiatry and Medical Psychology, UNIFESP, São Paulo, Brazil
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Sao Paulo, Brazil
| | - Elisa Brietzke
- Department of Psychiatry, Queen’s University School of Medicine, Kingston, ON, Canada
| | - Gisele Gus Manfro
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Porto Alegre, Brazil
- Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Ary Gadelha
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Psychiatry and Medical Psychology, UNIFESP, São Paulo, Brazil
| | - Luis Augusto Rohde
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Porto Alegre, Brazil
- ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Medical Council, Centro Universitário de Jaguariúna (UNIFAJ), Jaguariúna, Brazil
- Medical Council, Centro Universitário Max Planck (UNIMAX), Indaiatuba, Brazil
| | - Euripedes Constantino Miguel
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Sao Paulo, Brazil
- Departamento de Psiquiatria do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Pedro Mario Pan
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Psychiatry and Medical Psychology, UNIFESP, São Paulo, Brazil
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Sao Paulo, Brazil
| | - Marcos Leite Santoro
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Sao Paulo, Brazil
- Disciplina de Biologia Molecular, Departamento de Bioquímica, UNIFESP, São Paulo, Brazil
| | - Giovanni Abrahao Salum
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Porto Alegre, Brazil
- Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Global Initiatives, Child Mind Institute, New York, NY, United States
| | - Carolina Muniz Carvalho
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Psychiatry and Medical Psychology, UNIFESP, São Paulo, Brazil
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Sao Paulo, Brazil
| | - Sintia Iole Belangero
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Psychiatry and Medical Psychology, UNIFESP, São Paulo, Brazil
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health (CISM), Sao Paulo, Brazil
- Genetics Division, Department of Morphology and Genetics, UNIFESP, São Paulo, Brazil
| |
Collapse
|
3
|
Wang Y, Jiang M, Niu S, Gao X. easyEWAS: a flexible and user-friendly R package for epigenome-wide association study. BIOINFORMATICS ADVANCES 2025; 5:vbaf026. [PMID: 40041113 PMCID: PMC11878637 DOI: 10.1093/bioadv/vbaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 02/11/2025] [Indexed: 03/06/2025]
Abstract
Motivation Rapid advancements in high-throughput sequencing technologies especially the Illumina DNA methylation Beadchip greatly fuelled the surge in epigenome-wide association study (EWAS), providing crucial insights into intrinsic DNA methylation modifications associated with environmental exposure, diseases, and health traits. However, current tools are complex and less user-friendly to accommodate appropriate EWAS designs and make downstream analyses and result interpretations complicated, especially for clinicians and public health professionals with limited bioinformatic skills. Results We integrated the current state-of-the-art EWAS analysis methods and tools to develop a flexible and user-friendly R package easyEWAS for conducting DNA methylation-based research using Illumina DNA methylation Beadchips. With easyEWAS, we provide a battery of statistical methods to support differential methylation position analysis across various scenarios, as well as differential methylation region analysis based on the DMRcate method. To facilitate result interpretation, we provide comprehensive functional annotation and result visualization functionalities. Additionally, a bootstrap-based internal validation was incorporated into easyEWAS to ensure the robustness of EWAS results. Evaluation in asthma patients as the example demonstrated that easyEWAS could simplify and streamline the conduction of EWAS and corresponding downstream analyses, thus effectively advancing DNA methylation research in public health and clinical settings. Availability and implementation easyEWAS is implemented as an R package and is available at https://github.com/ytwangZero/easyEWAS.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Meijie Jiang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Siyuan Niu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
- Peking University Institute of Environmental Medicine, Beijing, 100191, China
- Center for Healthy Aging, Peking University Health Science Center, Beijing, 100191, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, 541199, China
| |
Collapse
|
4
|
Kelchtermans J, March ME, Hakonarson H, McGrath-Morrow SA. Phenotype wide association study links bronchopulmonary dysplasia with eosinophilia in children. Sci Rep 2024; 14:21391. [PMID: 39271728 PMCID: PMC11399246 DOI: 10.1038/s41598-024-72348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth. Despite this, genetic drivers of BPD are poorly understood. The objective of this study is to better understand the impact of single nucleotide polymorphisms (SNPs) previously associated with BPD by examining associations with other phenotypes. We drew pediatric subjects from the biorepository at the Center for Applied Genomics to identify associations between these SNPs and 2,146 imputed phenotypes. Methylation data, external cohorts, and in silico validation methods were used to corroborate significant associations. We identified 60 SNPs that were previously associated with BPD. We found a significant association between rs3771150 and rs3771171 and mean eosinophil percentage in a European cohort of 6,999 patients and replicated this in external cohorts. Both SNPs were also associated with asthma, COPD and FEV1/FVC ratio. These SNPs displayed associations with methylation probes and were functionally linked to ST2 (IL1RL1) levels in blood and lung tissue. Our findings support a genetic justification for the epidemiological link between BPD and asthma. Given the well-established link between ST2 and type 2 inflammation in asthma, these findings provide a rationale for future studies exploring the role of type 2 inflammation in the pathogenesis of BPD.
Collapse
Affiliation(s)
- Jelte Kelchtermans
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA.
| | - Michael E March
- The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA
| | - Sharon A McGrath-Morrow
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA
| |
Collapse
|
5
|
Sha Z, Sun KY, Jung B, Barzilay R, Moore TM, Almasy L, Forsyth JK, Prem S, Gandal MJ, Seidlitz J, Glessner JT, Alexander-Bloch AF. The copy number variant architecture of psychopathology and cognitive development in the ABCD ® study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.14.24307376. [PMID: 38798629 PMCID: PMC11118651 DOI: 10.1101/2024.05.14.24307376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Importance Childhood is a crucial developmental phase for mental health and cognitive function, both of which are commonly affected in patients with psychiatric disorders. This neurodevelopmental trajectory is shaped by a complex interplay of genetic and environmental factors. While common genetic variants account for a large proportion of inherited genetic risk, rare genetic variations, particularly copy number variants (CNVs), play a significant role in the genetic architecture of neurodevelopmental disorders. Despite their importance, the relevance of CNVs to child psychopathology and cognitive function in the general population remains underexplored. Objective Investigating CNV associations with dimensions of child psychopathology and cognitive functions. Design Setting and Participants ABCD® study focuses on a cohort of over 11,875 youth aged 9 to 10, recruited from 21 sites in the US, aiming to investigate the role of various factors, including brain, environment, and genetic factors, in the etiology of mental and physical health from middle childhood through early adulthood. Data analysis occurred from April 2023 to April 2024. Main Outcomes and Measures In this study, we utilized PennCNV and QuantiSNP algorithms to identify duplications and deletions larger than 50Kb across a cohort of 11,088 individuals from the Adolescent Brain Cognitive Development® study. CNVs meeting quality control standards were subjected to a genome-wide association scan to identify regions associated with quantitative measures of broad psychiatric symptom domains and cognitive outcomes. Additionally, a CNV risk score, reflecting the aggregated burden of genetic intolerance to inactivation and dosage sensitivity, was calculated to assess its impact on variability in overall and dimensional child psychiatric and cognitive phenotypes. Results In a final sample of 8,564 individuals (mean age=9.9 years, 4,532 males) passing quality control, we identified 4,111 individuals carrying 5,760 autosomal CNVs. Our results revealed significant associations between specific CNVs and our phenotypes of interest, psychopathology and cognitive function. For instance, a duplication at 10q26.3 was associated with overall psychopathology, and somatic complaints in particular. Additionally, deletions at 1q12.1, along with duplications at 14q11.2 and 10q26.3, were linked to overall cognitive function, with particular contributions from fluid intelligence (14q11.2), working memory (10q26.3), and reading ability (14q11.2). Moreover, individuals carrying CNVs previously associated with neurodevelopmental disorders exhibited greater impairment in social functioning and cognitive performance across multiple domains, in particular working memory. Notably, a higher deletion CNV risk score was significantly correlated with increased overall psychopathology (especially in dimensions of social functioning, thought disorder, and attention) as well as cognitive impairment across various domains. Conclusions and Relevance In summary, our findings shed light on the contributions of CNVs to interindividual variability in complex traits related to neurocognitive development and child psychopathology.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Kevin Y. Sun
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Benjamin Jung
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ran Barzilay
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Tyler M. Moore
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Almasy
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Smrithi Prem
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
- Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Michael J. Gandal
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Joseph T. Glessner
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aaron F. Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| |
Collapse
|
6
|
Natoli V, Charras A, Hofmann SR, Northey S, Russ S, Schulze F, McCann L, Abraham S, Hedrich CM. DNA methylation patterns in CD4 + T-cells separate psoriasis patients from healthy controls, and skin psoriasis from psoriatic arthritis. Front Immunol 2023; 14:1245876. [PMID: 37662940 PMCID: PMC10472451 DOI: 10.3389/fimmu.2023.1245876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 09/05/2023] Open
Abstract
Background Psoriasis is an autoimmune/inflammatory disorder primarily affecting the skin. Chronic joint inflammation triggers the diagnosis of psoriatic arthritis (PsA) in approximately one-third of psoriasis patients. Although joint disease typically follows the onset of skin psoriasis, in around 15% of cases it is the initial presentation, which can result in diagnostic delays. The pathophysiological mechanisms underlying psoriasis and PsA are not yet fully understood, but there is evidence pointing towards epigenetic dysregulation involving CD4+ and CD8+ T-cells. Objectives The aim of this study was to investigate disease-associated DNA methylation patterns in CD4+ T-cells from psoriasis and PsA patients that may represent potential diagnostic and/or prognostic biomarkers. Methods PBMCs were collected from 12 patients with chronic plaque psoriasis and 8 PsA patients, and 8 healthy controls. CD4+ T-cells were separated through FACS sorting, and DNA methylation profiling was performed (Illumina EPIC850K arrays). Bioinformatic analyses, including gene ontology (GO) and KEGG pathway analysis, were performed using R. To identify genes under the control of interferon (IFN), the Interferome database was consulted, and DNA Methylation Scores were calculated. Results Numbers and proportions of CD4+ T-cell subsets (naïve, central memory, effector memory, CD45RA re-expressing effector memory cells) did not vary between controls, skin psoriasis and PsA patients. 883 differentially methylated positions (DMPs) affecting 548 genes were identified between controls and "all" psoriasis patients. Principal component and partial least-squares discriminant analysis separated controls from skin psoriasis and PsA patients. GO analysis considering promoter DMPs delivered hypermethylation of genes involved in "regulation of wound healing, spreading of epidermal cells", "negative regulation of cell-substrate junction organization" and "negative regulation of focal adhesion assembly". Comparing controls and "all" psoriasis, a majority of DMPs mapped to IFN-related genes (69.2%). Notably, DNA methylation profiles also distinguished skin psoriasis from PsA patients (2,949 DMPs/1,084 genes) through genes affecting "cAMP-dependent protein kinase inhibitor activity" and "cAMP-dependent protein kinase regulator activity". Treatment with cytokine inhibitors (IL-17/TNF) corrected DNA methylation patterns of IL-17/TNF-associated genes, and methylation scores correlated with skin disease activity scores (PASI). Conclusion DNA methylation profiles in CD4+ T-cells discriminate between skin psoriasis and PsA. DNA methylation signatures may be applied for quantification of disease activity and patient stratification towards individualized treatment.
Collapse
Affiliation(s)
- Valentina Natoli
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Università degli Studi di Genova, Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-infantili (DINOGMI), Genoa, Italy
| | - Amandine Charras
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sigrun R. Hofmann
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Sarah Northey
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Susanne Russ
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Felix Schulze
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Liza McCann
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool, United Kingdom
| | - Susanne Abraham
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Christian M. Hedrich
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool, United Kingdom
| |
Collapse
|
7
|
Trangle SS, Rosenberg T, Parnas H, Levy G, Bar E, Marco A, Barak B. In individuals with Williams syndrome, dysregulation of methylation in non-coding regions of neuronal and oligodendrocyte DNA is associated with pathology and cortical development. Mol Psychiatry 2023; 28:1112-1127. [PMID: 36577841 DOI: 10.1038/s41380-022-01921-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Williams syndrome (WS) is a neurodevelopmental disorder caused by a heterozygous micro-deletion in the WS critical region (WSCR) and is characterized by hyper-sociability and neurocognitive abnormalities. Nonetheless, whether and to what extent WSCR deletion leads to epigenetic modifications in the brain and induces pathological outcomes remains largely unknown. By examining DNA methylation in frontal cortex, we revealed genome-wide disruption in the methylome of individuals with WS, as compared to typically developed (TD) controls. Surprisingly, differentially methylated sites were predominantly annotated as introns and intergenic loci and were found to be highly enriched around binding sites for transcription factors that regulate neuronal development, plasticity and cognition. Moreover, by utilizing enhancer-promoter interactome data, we confirmed that most of these loci function as active enhancers in the human brain or as target genes of transcriptional networks associated with myelination, oligodendrocyte (OL) differentiation, cognition and social behavior. Cell type-specific methylation analysis revealed aberrant patterns in the methylation of active enhancers in neurons and OLs, and important neuron-glia interactions that might be impaired in individuals with WS. Finally, comparison of methylation profiles from blood samples of individuals with WS and healthy controls, along with other data collected in this study, identified putative targets of endophenotypes associated with WS, which can be used to define brain-risk loci for WS outside the WSCR locus, as well as for other associated pathologies. In conclusion, our study illuminates the brain methylome landscape of individuals with WS and sheds light on how these aberrations might be involved in social behavior and physiological abnormalities. By extension, these results may lead to better diagnostics and more refined therapeutic targets for WS.
Collapse
Affiliation(s)
- Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tali Rosenberg
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Hadar Parnas
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Gilad Levy
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.,The School of Neurobiology, Biochemistry & Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Boaz Barak
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
8
|
Sun Y, Jia T, Barker ED, Chen D, Zhang Z, Xu J, Chang S, Zhou G, Liu Y, Tay N, Luo Q, Chang X, Banaschewski T, Bokde ALW, Flor H, Grigis A, Garavan H, Heinz A, Martinot JL, Paillère Martinot ML, Artiges E, Nees F, Orfanos DP, Paus T, Poustka L, Hohmann S, Millenet S, Fröhner JH, Smolka MN, Walter H, Whelan R, Lu L, Shi J, Schumann G, Desrivières S. Associations of DNA Methylation With Behavioral Problems, Gray Matter Volumes, and Negative Life Events Across Adolescence: Evidence From the Longitudinal IMAGEN Study. Biol Psychiatry 2023; 93:342-351. [PMID: 36241462 DOI: 10.1016/j.biopsych.2022.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/17/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Negative life events (NLEs) increase the risk for externalizing behaviors (EBs) and internalizing behaviors (IBs) in adolescence and adult psychopathology. DNA methylation associated with behavioral problems may reflect this risk and long-lasting effects of NLEs. METHODS To identify consistent associations between blood DNA methylation and EBs or IBs across adolescence, we conducted longitudinal epigenome-wide association studies (EWASs) using data from the IMAGEN cohort, collected at ages 14 and 19 years (n = 506). Significant findings were validated in a separate subsample (n = 823). Methylation risk scores were generated by 10-fold cross-validation and further tested for their associations with gray matter volumes and NLEs. RESULTS No significant findings were obtained for the IB-EWAS. The EB-EWAS identified a genome-wide significant locus in a gene linked to attention-deficit/hyperactivity disorder (ADHD) (IQSEC1, cg01460382; p = 1.26 × 10-8). Other most significant CpG sites were near ADHD-related genes and enriched for genes regulating tumor necrosis factor and interferon-γ signaling, highlighting the relevance of EB-EWAS findings for ADHD. Analyses with the EB methylation risk scores suggested that it partly reflected comorbidity with IBs in late adolescence. Specific to EBs, EB methylation risk scores correlated with smaller gray matter volumes in medial orbitofrontal and anterior/middle cingulate cortices, brain regions known to associate with ADHD and conduct problems. Longitudinal mediation analyses indicated that EB-related DNA methylation were more likely the outcomes of problematic behaviors accentuated by NLEs, and less likely the epigenetic bases of such behaviors. CONCLUSIONS Our findings suggest that novel epigenetic mechanisms through which NLEs exert short and longer-term effects on behavior may contribute to ADHD.
Collapse
Affiliation(s)
- Yan Sun
- National Institute on Drug Dependence, Peking University Hospital, Beijing, China; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and Research and Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Edward D Barker
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Developmental Psychopathology Laboratory, Department of Psychology, King's College London, London, United Kingdom
| | - Di Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and Research and Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
| | - Zuo Zhang
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Jiayuan Xu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No.2018RU006), Beijing, China
| | - Guangdong Zhou
- Faculty of Psychology, Tianjin Normal University, Tianjin, China; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Yun Liu
- Department of Biochemistry and Molecular Biology, Ministry of Education-Singapore Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nicole Tay
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Qiang Luo
- Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and Research and Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Xiao Chang
- Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and Research and Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin-Commissariat à L'énergie Atomique et Aux Energies Alternatives, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales en psychiatrie," Université Paris-Saclay, École Normale supérieure Paris-Saclay, Centre National de la Recherche Scientifique, Centre Borelli, Paris, France; Assistance Publique-Hôpitaux de Paris, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales en psychiatrie," Université Paris-Saclay, École Normale supérieure Paris-Saclay, Centre National de la Recherche Scientifique, Centre Borelli, Paris, France; Department of Psychiatry 91G16, Orsay Hospital, Orsay, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging and Psychiatry", University Paris Sud, University Paris Descartes, Sorbonne Paris Cité, Orsay, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Dimitri Papadopoulos Orfanos
- NeuroSpin-Commissariat à L'énergie Atomique et Aux Energies Alternatives, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Tomáš Paus
- Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- Global Brain Health Institute and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Lin Lu
- National Institute on Drug Dependence, Peking University Hospital, Beijing, China; Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No.2018RU006), Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University Hospital, Beijing, China
| | - Gunter Schumann
- Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and Research and Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China; PONS Centre, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; PONS Research Group, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Berlin, Germany
| | - Sylvane Desrivières
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
9
|
Methylation patterns within 5′-UTR of DAT1 gene as a function of allelic 3′-UTR variants and their maternal or paternal origin: May these affect the psychopathological phenotypes in children? An explorative study. Neurosci Lett 2022; 791:136916. [DOI: 10.1016/j.neulet.2022.136916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
|
10
|
Campagna MP, Xavier A, Lechner-Scott J, Maltby V, Scott RJ, Butzkueven H, Jokubaitis VG, Lea RA. Epigenome-wide association studies: current knowledge, strategies and recommendations. Clin Epigenetics 2021; 13:214. [PMID: 34863305 PMCID: PMC8645110 DOI: 10.1186/s13148-021-01200-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023] Open
Abstract
The aetiology and pathophysiology of complex diseases are driven by the interaction between genetic and environmental factors. The variability in risk and outcomes in these diseases are incompletely explained by genetics or environmental risk factors individually. Therefore, researchers are now exploring the epigenome, a biological interface at which genetics and the environment can interact. There is a growing body of evidence supporting the role of epigenetic mechanisms in complex disease pathophysiology. Epigenome-wide association studies (EWASes) investigate the association between a phenotype and epigenetic variants, most commonly DNA methylation. The decreasing cost of measuring epigenome-wide methylation and the increasing accessibility of bioinformatic pipelines have contributed to the rise in EWASes published in recent years. Here, we review the current literature on these EWASes and provide further recommendations and strategies for successfully conducting them. We have constrained our review to studies using methylation data as this is the most studied epigenetic mechanism; microarray-based data as whole-genome bisulphite sequencing remains prohibitively expensive for most laboratories; and blood-based studies due to the non-invasiveness of peripheral blood collection and availability of archived DNA, as well as the accessibility of publicly available blood-cell-based methylation data. Further, we address multiple novel areas of EWAS analysis that have not been covered in previous reviews: (1) longitudinal study designs, (2) the chip analysis methylation pipeline (ChAMP), (3) differentially methylated region (DMR) identification paradigms, (4) methylation quantitative trait loci (methQTL) analysis, (5) methylation age analysis and (6) identifying cell-specific differential methylation from mixed cell data using statistical deconvolution.
Collapse
Affiliation(s)
- Maria Pia Campagna
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexandre Xavier
- Centre for Information Based Medicine, Hunter Medical Research Institute, Newcastle, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Jeannette Lechner-Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Department of Neurology, Division of Medicine, John Hunter Hospital, Newcastle, Australia
| | - Vicky Maltby
- Centre for Information Based Medicine, Hunter Medical Research Institute, Newcastle, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Rodney J Scott
- Centre for Information Based Medicine, Hunter Medical Research Institute, Newcastle, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Division of Molecular Medicine, New South Wales Health Pathology North, Newcastle, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Neurology, Alfred Health, Melbourne, Australia
| | - Vilija G Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Neurology, Alfred Health, Melbourne, Australia
| | - Rodney A Lea
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
11
|
Charras A, Garau J, Hofmann SR, Carlsson E, Cereda C, Russ S, Abraham S, Hedrich CM. DNA Methylation Patterns in CD8 + T Cells Discern Psoriasis From Psoriatic Arthritis and Correlate With Cutaneous Disease Activity. Front Cell Dev Biol 2021; 9:746145. [PMID: 34746142 PMCID: PMC8567019 DOI: 10.3389/fcell.2021.746145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Psoriasis is a T cell-mediated chronic autoimmune/inflammatory disease. While some patients experience disease limited to the skin (skin psoriasis), others develop joint involvement (psoriatic arthritis; PsA). In the absence of disease- and/or outcome-specific biomarkers, and as arthritis can precede skin manifestations, diagnostic and therapeutic delays are common and contribute to disease burden and damage accrual. Objective: Altered epigenetic marks, including DNA methylation, contribute to effector T cell phenotypes and altered cytokine expression in autoimmune/inflammatory diseases. This project aimed at the identification of disease-/outcome-specific DNA methylation signatures in CD8+ T cells from patients with psoriasis and PsA as compared to healthy controls. Method: Peripheral blood CD8+ T cells from nine healthy controls, 10 psoriasis, and seven PsA patients were collected to analyze DNA methylation marks using Illumina Human Methylation EPIC BeadChips (>850,000 CpGs per sample). Bioinformatic analysis was performed using R (minfi, limma, ChAMP, and DMRcate packages). Results: DNA methylation profiles in CD8+ T cells differentiate healthy controls from psoriasis patients [397 Differentially Methylated Positions (DMPs); 9 Differentially Methylated Regions (DMRs) when ≥CpGs per DMR were considered; 2 DMRs for ≥10 CpGs]. Furthermore, patients with skin psoriasis can be discriminated from PsA patients [1,861 DMPs, 20 DMRs (≥5 CpGs per region), 4 DMRs (≥10 CpGs per region)]. Gene ontology (GO) analyses considering genes with ≥1 DMP in their promoter delivered methylation defects in skin psoriasis and PsA primarily affecting the BMP signaling pathway and endopeptidase regulator activity, respectively. GO analysis of genes associated with DMRs between skin psoriasis and PsA demonstrated an enrichment of GABAergic neuron and cortex neuron development pathways. Treatment with cytokine blockers associated with DNA methylation changes [2,372 DMPs; 1,907 DMPs within promoters, 7 DMRs (≥5 CpG per regions)] affecting transforming growth factor beta receptor and transmembrane receptor protein serine/threonine kinase signaling pathways. Lastly, a methylation score including TNF and IL-17 pathway associated DMPs inverse correlates with skin disease activity scores (PASI). Conclusion: Patients with skin psoriasis exhibit DNA methylation patterns in CD8+ T cells that allow differentiation from PsA patients and healthy individuals, and reflect clinical activity of skin disease. Thus, DNA methylation profiling promises potential as diagnostic and prognostic tool to be used for molecular patient stratification toward individualized treatment.
Collapse
Affiliation(s)
- Amandine Charras
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jessica Garau
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Sigrun R Hofmann
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Emil Carlsson
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Cristina Cereda
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Susanne Russ
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Susanne Abraham
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.,Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom
| |
Collapse
|
12
|
Koh EJ, Yu SY, Kim SH, Lee JS, Hwang SY. Prenatal Exposure to Heavy Metals Affects Gestational Age by Altering DNA Methylation Patterns. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2871. [PMID: 34835636 PMCID: PMC8618483 DOI: 10.3390/nano11112871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022]
Abstract
Environmental exposure is known to have toxic effects. Maternal environmental exposure not only affects mothers but also their fetuses in utero, which may interrupt their early development. Preterm birth, one of the outcomes of prenatal exposure, is a significant factor in lifelong health risks. To understand the effects of prenatal exposome on preterm birth, we studied the association between maternal and prenatal heavy metal exposure and gestational age, using resources from the MOthers' and Children's Environmental Health (MOCEH) study in South Korea. Additionally, a methylation assay was performed to analyze epigenetic mediation using genomic DNA derived from the cord blood of 384 participants in the MOCEH study. The results suggest that maternal cadmium exposure is associated with a decrease in gestational age through an alteration in DNA methylation at a specific CpG site, cg21010642. The CpG site was annotated to a gene involved in early embryonic development. Therefore, irregular methylation patterns at this site may contribute to premature birth by mediating irregular biological mechanisms.
Collapse
Affiliation(s)
- Eun Jung Koh
- Department of Bio-Nanotechnology, Hanyang University, Sangnok-gu, Ansan 15588, Korea; (E.J.K.); (S.H.K.)
| | - So Yeon Yu
- Department of Molecular & Life Science, Hanyang University, Sangnok-gu, Ansan 15588, Korea; (S.Y.Y.); (J.S.L.)
| | - Seung Hwan Kim
- Department of Bio-Nanotechnology, Hanyang University, Sangnok-gu, Ansan 15588, Korea; (E.J.K.); (S.H.K.)
| | - Ji Su Lee
- Department of Molecular & Life Science, Hanyang University, Sangnok-gu, Ansan 15588, Korea; (S.Y.Y.); (J.S.L.)
| | - Seung Yong Hwang
- Department of Molecular & Life Science, Hanyang University, Sangnok-gu, Ansan 15588, Korea; (S.Y.Y.); (J.S.L.)
- Department of Applied Artificial Intelligence, Hanyang University, Sangnok-gu, Ansan 15588, Korea
| |
Collapse
|
13
|
Aging biological markers in a cohort of antipsychotic-naïve first-episode psychosis patients. Psychoneuroendocrinology 2021; 132:105350. [PMID: 34271521 DOI: 10.1016/j.psyneuen.2021.105350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022]
Abstract
Schizophrenia is a severe and multifactorial disorder with an unknown causative pathophysiology. Abnormalities in neurodevelopmental and aging processes have been reported. Relative telomere length (RTL) and DNA methylation age (DMA), well-known biomarkers for estimating biological age, are both commonly altered in patients with schizophrenia compared to healthy controls. However, few studies investigated these aging biomarkers in first-episode psychosis (FEP) and in antipsychotic-naïve patients. To cover the existing gap regarding DMA and RTL in FEP and antipsychotic treatment, we aimed to verify whether those aging markers could be associated with psychosis and treatment response. Thus, we evaluated these measures in the blood of FEP antipsychotic-naïve patients and healthy controls (HC), as well as the response to antipsychotics after 10 weeks of treatment with risperidone. RTL was measured in 392 subjects, being 80 FEP and 312 HC using qPCR, while DMA was analyzed in a subset of 60 HC, 60 FEP patients (antipsychotic-naïve) and 59 FEP-10W (after treatment) using the "Multi-tissue Predictor"and the Infinium HumanMethylation450 BeadChip Kit. We observed diminished DMA and longer RTL in FEP patients before treatment compared to healthy controls, indicating a decelerated aging process in those patients. We found no statistical difference between responder and non-responder patients at baseline for both markers. An increased DMA was observed in patients after 10 weeks of treatment, however, after adjusting for blood cell composition, no significant association remained. Our findings indicate a decelerated aging process in the early phases of the disease.
Collapse
|
14
|
Rijlaarsdam J, Barker ED, Caserini C, Koopman-Verhoeff ME, Mulder RH, Felix JF, Cecil CA. Genome-wide DNA methylation patterns associated with general psychopathology in children. J Psychiatr Res 2021; 140:214-220. [PMID: 34118639 PMCID: PMC8578013 DOI: 10.1016/j.jpsychires.2021.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/22/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022]
Abstract
Psychiatric symptoms are interrelated and found to be largely captured by a general psychopathology factor (GPF). Although epigenetic mechanisms, such as DNA methylation (DNAm), have been linked to individual psychiatric outcomes, associations with GPF remain unclear. Using data from 440 children aged 10 years participating in the Generation R Study, we examined the associations of DNAm with both general and specific (internalizing, externalizing) factors of psychopathology. Genome-wide DNAm levels, measured in peripheral blood using the Illumina 450K array, were clustered into wider co-methylation networks ('modules') using a weighted gene co-expression network analysis. One co-methylated module associated with GPF after multiple testing correction, while none associated with the specific factors. This module comprised of 218 CpG probes, of which 198 mapped onto different genes. The CpG most strongly driving the association with GPF was annotated to FZD1, a gene that has been implicated in schizophrenia and wider neurological processes. Associations between the probes contained in the co-methylated module and GPF were supported in an independent sample of children from the Avon Longitudinal Study of Parents and Children (ALSPAC), as evidenced by significant correlations in effect sizes. These findings might contribute to improving our understanding of dynamic molecular processes underlying complex psychiatric phenotypes.
Collapse
Affiliation(s)
- Jolien Rijlaarsdam
- Department of Child and Adolescent Psychiatry/ Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Edward D. Barker
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Chiara Caserini
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - M. Elisabeth Koopman-Verhoeff
- Department of Child and Adolescent Psychiatry/ Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands,The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rosa H. Mulder
- Department of Child and Adolescent Psychiatry/ Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands,The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands,Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Janine F. Felix
- Department of Child and Adolescent Psychiatry/ Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands,The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Charlotte A.M. Cecil
- Department of Child and Adolescent Psychiatry/ Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands,Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands,Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
15
|
The role of epigenetics in psychological resilience. Lancet Psychiatry 2021; 8:620-629. [PMID: 33915083 PMCID: PMC9561637 DOI: 10.1016/s2215-0366(20)30515-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022]
Abstract
There is substantial variation in people's responses to adversity, with a considerable proportion of individuals displaying psychological resilience. Epigenetic mechanisms are hypothesised to be one molecular pathway of how adverse and traumatic events can become biologically embedded and contribute to individual differences in resilience. However, not much is known regarding the role of epigenetics in the development of psychological resilience. In this Review, we propose a new conceptual model for the different functions of epigenetic mechanisms in psychological resilience. The model considers the initial establishment of the epigenome, epigenetic modification due to adverse and protective environments, the role of protective factors in counteracting adverse influences, and genetic moderation of environmentally induced epigenetic modifications. After reviewing empirical evidence for the various components of the model, we identify research that should be prioritised and discuss practical implications of the proposed model for epigenetic research on resilience.
Collapse
|
16
|
Kim BJ, Kim Y, Youn DH, Park JJ, Rhim JK, Kim HC, Kang K, Jeon JP. Genome-wide blood DNA methylation analysis in patients with delayed cerebral ischemia after subarachnoid hemorrhage. Sci Rep 2020; 10:11419. [PMID: 32651463 PMCID: PMC7351711 DOI: 10.1038/s41598-020-68325-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/23/2020] [Indexed: 11/24/2022] Open
Abstract
Little is known about the epigenetic changes associated with delayed cerebral ischemia (DCI) pathogenesis after subarachnoid hemorrhage (SAH). Here, we investigated genome-wide DNA methylation profiles specifically associated with DCI, which is a major contributor to poor clinical outcomes. An epigenome-wide association study (EWAS) and quantitative real-time PCR (qRT-PCR) were conducted in 40 SAH patients (DCI, n = 13; non-DCI, n = 27). A replication study using bisulfite modification and methylation-specific PCR was further performed in 36 patients (DCI, n = 12; non-DCI, n = 24). The relative degree of methylation was described as the median and 25th–75th percentile. No significant differences in clinical characteristics between DCI and non-DCI groups were observed. Among the top 10 differentially methylated genes analyzed via EWAS, two aberrantly methylated CpG sites of cg00441765 (INSR gene) and cg11464053 (CDHR5 gene) were associated with decreased mRNA expression (2−ΔCt). They include INSR [0.00020 (0.00012–0.00030) in DCI vs. 0.00050 (0.00030–0.00068) in non-DCI] and CDHR5 [0.114 (0.053–0.143) in DCI vs. 0.170 (0.110–0.212) in non-DCI]. Compared with non-DCI cases, patients with DCI exhibited an increased degree of methylation in the replication study: INSR, 0.855 (0.779–0.913) in DCI vs. 0.582 (0.565–0.689) in non-DCI; CDHR5, 0.786 (0.708–0.904) in DCI vs. 0.632 (0.610–0.679) in non-DCI. Hypermethylation of two novel genes, INSR and CDHR5 may serve as a biomarker for early detection of DCI following SAH.
Collapse
Affiliation(s)
- Bong Jun Kim
- Institute of New Frontier Stroke Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Youngmi Kim
- Institute of New Frontier Stroke Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Stroke Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul, Korea
| | - Jong Kook Rhim
- Department of Neurosurgery, Jeju National University College of Medicine, Jeju, Korea
| | - Heung Cheol Kim
- Department of Radioilogy, Hallym University College of Medicine, Chuncheon, Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Korea.
| | - Jin Pyeong Jeon
- Institute of New Frontier Stroke Research, Hallym University College of Medicine, Chuncheon, Korea. .,Department of Neurosurgery, Hallym University College of Medicine, 77 Sakju-ro, Chuncheon, 24253, Korea. .,Genetic and Research Inc., Chuncheon, Korea.
| |
Collapse
|
17
|
Gene expression changes associated with trajectories of psychopathology in a longitudinal cohort of children and adolescents. Transl Psychiatry 2020; 10:99. [PMID: 32184383 PMCID: PMC7078305 DOI: 10.1038/s41398-020-0772-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 12/02/2022] Open
Abstract
We aimed to identify blood gene expression patterns associated to psychopathological trajectories retrieved from a large community, focusing on the emergence and remission of general psychiatric symptoms. Hundred and three individuals from the Brazilian High-Risk Cohort Study (BHRCS) for mental disorders were classified in four groups according to Child Behavior Checklist (CBCL) total score at the baseline (w0) and after 3 years (w1): low-high (L-H) (N = 27), high-low (H-L) (N = 12), high-high (H-H) (N = 34) and low-low (L-L) groups (N = 30). Blood gene expression profile was measured using Illumina HT-12 Beadchips, and paired analyses comparing w0 and w1 were performed for each group. Results: 98 transcripts were differentially expressed comparing w0 and w1 in the L-H, 33 in the H-L, 177 in the H-H and 273 in the L-L. Of these, 66 transcripts were differentially expressed exclusively in the L-H; and 6 only in the H-L. Cross-Lagged Panel Models analyses revealed that RPRD2 gene expression at w1 might be influenced by the CBCL score at w0. Moreover, COX5B, SEC62, and NDUFA2 were validated with another technique and were also differentially regulated in postmortem brain of subjects with mental disorders, indicating that they might be important not only to specific disorders, but also to general psychopathology and symptoms trajectories. Whereas genes related to metabolic pathways seem to be associated with the emergence of psychiatric symptoms, mitochondrial inner membrane genes might be important over the course of normal development. These results suggest that changes in gene expression can be detected in blood in different psychopathological trajectories.
Collapse
|