1
|
Alkhammash A. Pharmacology of epitranscriptomic modifications: Decoding the therapeutic potential of RNA modifications in drug resistance. Eur J Pharmacol 2025; 994:177397. [PMID: 39978710 DOI: 10.1016/j.ejphar.2025.177397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
RNA modifications, collectively known as epitranscriptomic modifications, have emerged as critical regulators of gene expression, cellular adaptation, and therapeutic resistance. This review explores the pharmacological potential of targeting RNA modifications, including N6-methyladenosine (m6A) and 5-methylcytosine (m5C), as strategies to overcome drug resistance in cancer. We examine key regulatory enzymes, writers, erasers, and readers-and their roles in modulating RNA stability, translation, and splicing. Advances in combination therapies, integrating RNA modification modulators with conventional chemotherapies and immune checkpoint inhibitors, have shown promising outcomes in reversing multidrug resistance (MDR). Emerging RNA-targeting technologies, such as CRISPR/Cas13 systems and advanced RNA sequencing platforms, further enable precision manipulation of RNA molecules, opening new therapeutic frontiers. However, several challenges persist, including issues related to pharmacokinetics, acquired resistance, and the complexity of epitranscriptomic networks. This review underscores the need for innovative delivery systems, such as lipid nanoparticles and tissue-specific targeting strategies, and highlights the dynamic nature of RNA modifications in response to environmental and therapeutic stress. Ongoing research into non-coding RNA modifications and the interplay between epitranscriptomics and epigenetics offers exciting possibilities for developing novel RNA-targeting therapies. The continued evolution of RNA-based technologies will be crucial in advancing precision medicine, addressing drug resistance, and improving clinical outcomes across multiple diseases.
Collapse
Affiliation(s)
- Abdullah Alkhammash
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
| |
Collapse
|
2
|
Zhang DN, Yang WY, Hu XX, Song XMT, Guo CJ, Peng F, Li YZ, Cao ZX. Xanthohumol as a potential therapeutic strategy for acute myeloid leukemia: Targeting the FLT3/SRPK1 signaling axis. J Food Drug Anal 2025; 33:31-47. [PMID: 40202412 PMCID: PMC12039533 DOI: 10.38212/2224-6614.3534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/04/2024] [Indexed: 04/10/2025] Open
Abstract
Xanthohumol (XN) is an isoprene chalcone found in hops (Humulus lupulus L.), a food ingredient with a wide range of pharmacological activities. The aim of this study was to reveal the therapeutic effect of XN on acute myeloid leukemia (AML) and the potential underlying molecular mechanism. Through network pharmacology analysis, molecular docking, and HTRF determination, XN was shown to inhibit the kinase activities of FLT3 and SRPK1 by targeting their ATP-binding domains, with IC50 values of 1.51 ± 0.44 μM and 0.37 ± 0.15 μM, respectively. By inhibiting AML cell proliferation, promoting apoptosis, regulating autophagy, and inhibiting invasion, XN, which targets the unique FLT3/SRPK1 signaling pathway, exerts anti-AML effects. XN also significantly inhibited FLT3 inhibitor-resistant AML cells and exhibited synergistic interactions with gilteritinib. Moreover, XN at 40 mg/kg effectively inhibited the growth of AML subcutaneous tumors with good tolerance. These results suggest that XN could be a promising therapeutic agent for AML treatment. XN effectively targets the FLT3/SRPK1 signaling axis, demonstrating strong anti-AML effects and offering a potent strategy to address AML.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/physiopathology
- Flavonoids/administration & dosage
- Flavonoids/chemistry
- Flavonoids/pharmacology
- fms-Like Tyrosine Kinase 3/metabolism
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/chemistry
- Propiophenones/administration & dosage
- Propiophenones/chemistry
- Propiophenones/pharmacology
- Humans
- Signal Transduction/drug effects
- Animals
- Mice
- Cell Proliferation/drug effects
- Apoptosis/drug effects
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/chemistry
- Cell Line, Tumor
- Molecular Docking Simulation
- Humulus/chemistry
- Male
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Duan-Na Zhang
- The State Key Laboratory of Southwest Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137,
China
| | - Wen-Ya Yang
- The State Key Laboratory of Southwest Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137,
China
| | - Xiao-Xue Hu
- The State Key Laboratory of Southwest Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137,
China
| | - Xiao-Min-Ting Song
- The State Key Laboratory of Southwest Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137,
China
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137,
China
| | - Chuan-Jie Guo
- The State Key Laboratory of Southwest Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137,
China
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075,
China
| | - Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041,
China
| | - Yu-Zhi Li
- The State Key Laboratory of Southwest Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137,
China
| | - Zhi-Xing Cao
- The State Key Laboratory of Southwest Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137,
China
| |
Collapse
|
3
|
Chen X, Kang W, Wu T, Cao D, Chen Y, Du Z, Yan L, Meng F, Wang X, You Q, Xiong B, Guo X, Jiang Z. Multi-Water Bridges Enable Design of BET BD1-Selective Inhibitors for Pancreatic Cancer Therapy. J Med Chem 2025; 68:5719-5735. [PMID: 40011026 DOI: 10.1021/acs.jmedchem.4c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Rational design of bromodomain (BD)-selective inhibitors could mitigate on-target toxicities associated with pan-BET inhibition but is challenging despite the availability of high-resolution structures. By simultaneously forming water bridges with BD1-specific residues in both the BC ring and the ZA channel, we identified a potent and orally bioavailable BET BD1-selective inhibitor DDO-8958, which exhibited a KD of 5.6 nM for BRD4 BD1 and a 214-fold selectivity for BRD4 BD1 over BD2. The cocrystal structure demonstrated a unique multi-water bridge mechanism involving BD1-specific residues K91- and D145-driven BD1 selectivity. DDO-8958 extensively influenced the oncogene expression and metabolic pathway, including oxidative phosphorylation in MIA PaCa-2. In vivo, DDO-8958 inhibited tumor growth and markedly augmented the therapeutic efficacy of the glycolysis inhibitor 2-DG. These findings illuminate that multi-water bridges enable design of BD1-selective inhibitors and a therapeutic strategy involving combined targeting of BD1-induced epigenetic reprogramming and glycolysis pathways for the management of pancreatic cancer.
Collapse
Affiliation(s)
- Xuetao Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenjing Kang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tingting Wu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Danyan Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yali Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiyan Du
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Leixin Yan
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Fanying Meng
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyue Wang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xiaoke Guo
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Suraweera A, O'Byrne KJ, Richard DJ. Epigenetic drugs in cancer therapy. Cancer Metastasis Rev 2025; 44:37. [PMID: 40011240 PMCID: PMC11865116 DOI: 10.1007/s10555-025-10253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Genetic and epigenetic modifications of DNA are involved in cancer initiation and progression. Epigenetic modifications change chromatin structure and DNA accessibility and thus affect DNA replication, DNA repair and transcription. Epigenetic modifications are reversible and include DNA methylation, histone acetylation and histone methylation. DNA methylation is catalysed by DNA methyltransferases, histone acetylation and deacetylation are catalysed by histone acetylases and deacetylases, while histone methylation is catalysed by histone methyltransferases. Epigenetic modifications are dysregulated in several cancers, making them cancer therapeutic targets. Epigenetic drugs (epi-drugs) which are inhibitors of epigenetic modifications and include DNA methyltransferase inhibitors (DNMTi), histone deacetylase inhibitors (HDACi), histone methyltransferase inhibitors (HMTi) and bromodomain and extra-terminal motif protein inhibitors (BETi), have demonstrated clinical success as anti-cancer agents. Furthermore, the combination of epi-drugs with standard chemotherapeutic agents has demonstrated promising anti-cancer effects in pre-clinical and clinical settings. In this review, we discuss the role of epi-drugs in cancer therapy and explore their current and future use in combination with other anti-cancer agents used in the clinic. We further highlight the side effects and limitations of epi-drugs. We additionally discuss novel delivery methods and novel tumour epigenetic biomarkers for the screening, diagnosis and development of personalised cancer treatments, in order to reduce off-target toxicity and improve the specificity and anti-tumour efficacy of epi-drugs.
Collapse
Affiliation(s)
- Amila Suraweera
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia.
| | - Kenneth J O'Byrne
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Derek J Richard
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
| |
Collapse
|
5
|
Mathavan S, Tam YJ, Mustaffa KMF, Tye GJ. Aptamer based immunotherapy: a potential solid tumor therapeutic. Front Immunol 2025; 16:1536569. [PMID: 40034705 PMCID: PMC11873091 DOI: 10.3389/fimmu.2025.1536569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Aptamer-based immunotherapy can be a new hope for treating solid tumors with personalized and specific approaches toward cancer therapies. Aptamers are small synthetic single-stranded nucleic acids that may bring in a paradigm shift in treating solid tumors. These are highly selective drugs applied in cellular immunotherapy, cytokine modulation, and immune checkpoint suppression. This review provides an overview of the recent advances in aptamer-based technologies with specific key clinical trials involving AON-D21 and AM003. Aptamers are potently active in immune regulation and tumor targeting. However, aptamer stability and bioavailability are seriously compromised by the issues relating to renal clearance and rapid degradation through nucleases. The latter are reviewed here along with novel improvements, some of which involve chemical modifications that greatly enhance stability and prolong the circulation time; exemplary such modifications are PEGylation, cholesterol conjugation, and the synthesis of circular nucleic acids. The regulatory aspect is also crucial. For example, in addition to specific strategies to prevent drug-drug interactions (DDIs) in cancer remediation medications, this paper underscores the need of risk assessment, particularly because of immunogenicity and organ failure. The use of aptamers is expanded by the development of SOMAmers, X-aptamers, and bioinformatics. To make aptamer-based drugs a major part of cancer treatment, future research should concentrate more on resolving existing issues and expanding their beneficial uses.
Collapse
Affiliation(s)
- Sarmilah Mathavan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Minden, Pulau Pinang, Malaysia
- Biogenes Technologies Sdn Bhd, Jalan Maklumat, Universiti Putra Malaysia, Serdang, Malaysia
| | - Yew Joon Tam
- Biogenes Technologies Sdn Bhd, Jalan Maklumat, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Minden, Pulau Pinang, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Gelugor, Pulau Pinang, Malaysia
| |
Collapse
|
6
|
Cai WY, Cai XX, Fei YR, Ye R, Song DM, Hu D, Zhang WW, Xia MF, Yang XX. DNA methylation and immune evasion in triple-negative breast cancer: challenges and therapeutic opportunities. Front Oncol 2025; 15:1534055. [PMID: 39980537 PMCID: PMC11839428 DOI: 10.3389/fonc.2025.1534055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Chemotherapy remains the primary treatment option, yet TNBC frequently develops resistance, leading to relapse and metastasis. Emerging evidence highlights the potential of combining DNA methylation inhibitors with immune checkpoint inhibitors (ICIs). DNA methylation contributes to immune escape by silencing immune-regulatory genes, thereby reducing the tumor's visibility to immune cells. Reversing this epigenetic modification can reinvigorate immune surveillance and enhance the efficacy of immunotherapies. This review discusses the role of DNA methylation in TNBC progression and immune evasion, focusing on recent advances in combination therapies involving DNA methylation inhibitors and ICIs. We discuss the underlying mechanisms that enable these therapeutic synergies, preclinical and clinical evidence supporting the approach, and the challenges posed by tumor heterogeneity, drug resistance, and toxicity. Finally, we explore the potential for personalized treatment strategies incorporating multi-omics data to optimize therapeutic outcomes. The integration of epigenetic therapies and immunotherapy offers a promising avenue for improving survival in TNBC patients.
Collapse
Affiliation(s)
- Wen-yu Cai
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xin-xian Cai
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi-ran Fei
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ding-ming Song
- Department of Urology, Jinzhou Medical University, The First Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Dan Hu
- Department of Clinical Lab, The Cixi Integrated Traditional Chinese and Western Medicine Medical and Health Group Cixi Red Cross Hospital, Cixi, China
| | - Wan-wan Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Ming-fei Xia
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiao-xiao Yang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
7
|
Avci CB, Bagca BG, Shademan B, Takanlou LS, Takanlou MS, Nourazarian A. Precision oncology: Using cancer genomics for targeted therapy advancements. Biochim Biophys Acta Rev Cancer 2025; 1880:189250. [PMID: 39701327 DOI: 10.1016/j.bbcan.2024.189250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Cancer genomics plays a crucial role in oncology by enhancing our understanding of how genes drive cancer and facilitating the development of improved treatments. This field meticulously examines various cancers' genetic makeup through various methodologies, leading to groundbreaking discoveries. Innovative tools such as rapid gene sequencing, single-cell studies, spatial gene mapping, epigenetic analysis, liquid biopsies, and computational modeling have significantly progressed the field. These techniques uncover genetic alterations, tumor heterogeneity, and the evolutionary dynamics of cancers. Genetic abnormalities and molecular markers that initiate and propagate distinct cancer types are classified according to tumor type. The integration of precision medicine with cancer genomics emphasizes the significance of utilizing genetic data in treatment decision-making, enabling personalized care and enhancing patient outcomes. Critical topics in cancer genomics encompass tumor diversity, alterations in non-coding DNA, epigenetic modifications, cancer-specific proteins, metabolic changes, and the impact of inherited genes on cancer risk.
Collapse
Affiliation(s)
- Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Bakiye Goker Bagca
- Department of Medical Biology, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran.
| |
Collapse
|
8
|
González-Novo R, Armesto M, González-Murillo Á, Dreger M, Hurlstone AFL, Benito A, Samaniego R, Ramírez M, Redondo-Muñoz J. Dual effect of targeting LSD1 on the invasiveness and the mechanical response of acute lymphoblastic leukemia cells. Biomed Pharmacother 2025; 183:117830. [PMID: 39818101 DOI: 10.1016/j.biopha.2025.117830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
Epigenetic alterations are hallmarks of cancer, with histone modifiers playing critical roles in gene transcription, DNA homeostasis, and other nuclear functions. Lysine-specific demethylase 1 (LSD1), a key regulator of H3K4 methylation, has emerged as a promising pharmacological target in cancer treatment, including leukemia. Acute lymphoblastic leukemia (ALL), the most common pediatric cancer, remains a significant therapeutic challenge due to limited understanding of how epigenetic therapy impacts leukemia dissemination. In this study, we demonstrate that targeting LSD1 enhances the invasive capacity of ALL cells, inducing an elongated, invasive phenotype and increasing nuclear deformability. Using a 3D matrix model, LSD1 inhibition promoted ALL cell invasion without significantly affecting the cell cycle progression or apoptosis under the tested conditions. Interestingly, LSD1 targeting reduced ALL cell spreading and tissue colonization in vivo, suggesting differential effects depending on the cellular context. Our findings indicate that LSD1 inhibition impairs chemotactic responses and transendothelial migration, key processes for extravasation and in vivo invasiveness. These results reveal a dual role for LSD1 in leukemia cell migration: promoting invasiveness in 3D environments while reducing extravasation and chemotaxis in vivo. This dual effect underscores the importance of cellular context in determining therapeutic outcomes and the development of strategies targeting specific stages of leukemia dissemination.
Collapse
Affiliation(s)
- Raquel González-Novo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Marina Armesto
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - África González-Murillo
- Oncohematology Unit, Hospital Universitario Niño Jesús, Madrid, Spain; Health Research Institute La Princesa, Madrid, Spain
| | - Marcel Dreger
- Division of Infection Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Adam F L Hurlstone
- Division of Infection Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Lydia Becker Institute of Immunology, The University of Manchester, Manchester, UK
| | - Ana Benito
- Hospital Universitario Niño Jesús, Madrid, Spain
| | - Rafael Samaniego
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Manuel Ramírez
- Oncohematology Unit, Hospital Universitario Niño Jesús, Madrid, Spain; Health Research Institute La Princesa, Madrid, Spain
| | - Javier Redondo-Muñoz
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain.
| |
Collapse
|
9
|
Yang L, Ding R, Tong X, Shen T, Jia S, Yan X, Zhang C, Wu L. Discovery of cloxiquine derivatives as potent HDAC inhibitors for the treatment of melanoma via activating PPARγ. Eur J Med Chem 2025; 281:117029. [PMID: 39522492 DOI: 10.1016/j.ejmech.2024.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The combined treatment with histone deacetylase (HDAC) inhibitors with peroxisome proliferator-activated receptor γ (PPARγ) agonists has displayed significant anticancer efficacy. Based on these results, a series of cloxiquine derivatives were prepared as potent HDAC inhibitors for the treatment of melanoma. Among these compounds, CS4 exhibited excellent inhibitory effects on HDAC1 (IC50 = 38 nM) and HDAC6 (IC50 = 12 nM), and had good antiproliferative effects against A375 and SK-MEL-5 melanoma cells (IC50 values, 1.20 and 0.93 μM, respectively). Mechanism research indicated that CS4 inhibited SK-MEL-5 cell growth by promoting α-tubulin and histone 3 (H3) acetylation. At the metabolic level, treatment with BG11 activated PPARγ and blocked glycolysis in SK-MEL-5 cells, which mediated partial antimelanoma effects of CS4. In addition, CS4 also induced cell cycle arrest at G2, suppressed migration and facilitated apoptosis of SK-MEL-5 cells. More importantly, compound CS4 demonstrated significant in vivo anticancer effect compared with SAHA, and exhibited neglectable toxicity. Consequently, CS4 is the potent HDAC inhibitor, which may be developed as the candidate antimelanoma drug.
Collapse
Affiliation(s)
- Limin Yang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ran Ding
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xiaojie Tong
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tong Shen
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shuting Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Jincheng People's Hospital, Jincheng, 048026, China
| | - Xiqing Yan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Chong Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Liqiang Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
10
|
Amrutkar RD, Amesar MV, Chavan LB, Baviskar NS, Bhamare VG. Precision Targeting of BET Proteins - Navigating Disease Pathways, Inhibitor Insights, and Shaping Therapeutic Frontiers: A Comprehensive Review. Curr Drug Targets 2025; 26:147-166. [PMID: 39385413 DOI: 10.2174/0113894501304747240823111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 10/12/2024]
Abstract
The family of proteins known as Bromodomain and Extra-Terminal (BET) proteins has become a key participant in the control of gene expression, having a significant impact on numerous physiological and pathological mechanisms. This review offers a thorough investigation of the BET protein family, clarifying its various roles in essential cellular processes and its connection to a variety of illnesses, from inflammatory disorders to cancer. The article explores the structural and functional features of BET proteins, emphasizing their special bromodomain modules that control chromatin dynamics by identifying acetylated histones. BET proteins' complex roles in the development of cardiovascular, neurodegenerative, and cancer diseases are carefully investigated, providing insight into possible treatment avenues. In addition, the review carefully examines the history and relevance of BET inhibitors, demonstrating their capacity to modify gene expression profiles and specifically target BET proteins. The encouraging outcomes of preclinical and clinical research highlight BET inhibitors' therapeutic potential across a range of disease contexts. The article summarizes the state of BET inhibitors today and makes predictions about the challenges and future directions of the field. This article provides insights into the changing field of BET protein-targeted interventions by discussing the potential of personalized medicine and combination therapies involving BET inhibitors. This thorough analysis combines many aspects of BET proteins, such as their physiological roles and their roles in pathophysiological conditions. As such, it is an invaluable tool for scientists and medical professionals who are trying to figure out how to treat patients by using this fascinating protein family.
Collapse
Affiliation(s)
- Rakesh D Amrutkar
- Department of Pharmaceutical Chemistry, K. K. Wagh College of Pharmacy, Panchavati Nasik, India
| | - Mehul V Amesar
- Department of Pharmaceutical Chemistry, K. K. Wagh College of Pharmacy, Panchavati Nasik, India
| | - Lokesh B Chavan
- Department of Pharmaceutical Chemistry, K. K. Wagh College of Pharmacy, Panchavati Nasik, India
| | - Nilesh S Baviskar
- Department of Pharmaceutical Chemistry, K. K. Wagh College of Pharmacy, Panchavati Nasik, India
| | - Vaibhav G Bhamare
- Department of Pharmaceutics, K. K. Wagh College of Pharmacy, Panchavati Nasik, India
| |
Collapse
|
11
|
Lee J, You C, Kwon G, Noh J, Lee K, Kim K, Kang K, Kang K. Integration of epigenomic and transcriptomic profiling uncovers EZH2 target genes linked to cysteine metabolism in hepatocellular carcinoma. Cell Death Dis 2024; 15:801. [PMID: 39516467 PMCID: PMC11549485 DOI: 10.1038/s41419-024-07198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Enhancer of zeste homolog 2 (EZH2), a key protein implicated in various cancers including hepatocellular carcinoma (HCC), is recognized for its association with epigenetic dysregulation and pathogenesis. Despite clinical explorations into EZH2-targeting therapies, the mechanisms underlying its role in gene suppression in HCC have remained largely unexplored. Here, we integrate epigenomic and transcriptomic analyses to uncover the transcriptional landscape modulated by selective EZH2 inhibition in HCC. By reanalyzing transcriptomic data of HCC patients, we demonstrate that EZH2 overexpression correlates with poor patient survival. Treatment with the EZH2 inhibitor tazemetostat restored expression of genes involved in cysteine-methionine metabolism and lipid homeostasis, while suppressing angiogenesis and oxidative stress-related genes. Mechanistically, we demonstrate EZH2-mediated H3K27me3 enrichment at cis-regulatory elements of transsulfuration pathway genes, which is reversed upon inhibition, leading to increased chromatin accessibility. Among 16 EZH2-targeted candidate genes, BHMT and CDO1 were notably correlated with poor HCC prognosis. Tazemetostat treatment of HCC cells increased BHMT and CDO1 expression while reducing levels of ferroptosis markers FSP1, NFS1, and SLC7A11. Functionally, EZH2 inhibition dose-dependently reduced cell viability and increased lipid peroxidation in HCC cells. Our findings reveal a novel epigenetic mechanism controlling lipid peroxidation and ferroptosis susceptibility in HCC, providing a rationale for exploring EZH2-targeted therapies in this malignancy.
Collapse
Affiliation(s)
- Jaehyun Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Chaelin You
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Geunho Kwon
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Junho Noh
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Kyubin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Korea.
| | - Kyuho Kang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea.
| |
Collapse
|
12
|
Rossi A, Zacchi F, Reni A, Rota M, Palmerio S, Menis J, Zivi A, Milleri S, Milella M. Progresses and Pitfalls of Epigenetics in Solid Tumors Clinical Trials. Int J Mol Sci 2024; 25:11740. [PMID: 39519290 PMCID: PMC11546921 DOI: 10.3390/ijms252111740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Epigenetic dysregulation has long been recognized as a significant contributor to tumorigenesis and tumor maintenance, impacting all recognized cancer hallmarks. Although some epigenetic drugs have received regulatory approval for certain hematological malignancies, their efficacy in treating solid tumors has so far been largely disappointing. However, recent advancements in developing new compounds and a deeper understanding of cancer biology have led to success in specific solid tumor subtypes through precision medicine approaches. Moreover, epigenetic drugs may play a crucial role in synergizing with other anticancer treatments, enhancing the sensitivity of cancer cells to various anticancer therapies, including chemotherapy, radiation therapy, hormone therapy, targeted therapy, and immunotherapy. In this review, we critically evaluate the evolution of epigenetic drugs, tracing their development from initial use as monotherapies to their current application in combination therapies. We explore the preclinical rationale, completed clinical studies, and ongoing clinical trials. Finally, we discuss trial design strategies and drug scheduling to optimize the development of possible combination therapies.
Collapse
Affiliation(s)
- Alice Rossi
- Section of Innovation Biomedicine-Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy
- Centro Ricerche Cliniche, 37134 Verona, Italy
| | - Francesca Zacchi
- Section of Innovation Biomedicine-Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy
- Centro Ricerche Cliniche, 37134 Verona, Italy
| | - Anna Reni
- Section of Innovation Biomedicine-Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy
| | - Michele Rota
- Section of Innovation Biomedicine-Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy
| | | | - Jessica Menis
- Section of Innovation Biomedicine-Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy
| | - Andrea Zivi
- Section of Innovation Biomedicine-Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy
| | | | - Michele Milella
- Section of Innovation Biomedicine-Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy
| |
Collapse
|
13
|
Chen Q, Zheng X, Cheng W, Li J. Landscape of targeted therapies for lung squamous cell carcinoma. Front Oncol 2024; 14:1467898. [PMID: 39544292 PMCID: PMC11560903 DOI: 10.3389/fonc.2024.1467898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
Lung cancer, a common type of malignant neoplasm, has seen significant advancements in the treatment of lung adenocarcinoma (LUAD). However, the management of lung squamous cell carcinoma (LSCC) continues to pose challenges. Traditional treatment methods for LSCC encompass surgical resection, chemotherapy, and radiotherapy. The introduction of targeted therapy and immunotherapy has greatly benefited LSCC patients, but issues such as limited immune response rates and adverse reactions persist. Therefore, gaining a deeper comprehension of the underlying mechanisms holds immense importance. This review provides an in-depth overview of classical signaling pathways and therapeutic targets, including the PI3K signaling pathway, CDK4/6 pathway, FGFR1 pathway and EGFR pathway. Additionally, we delve into alternative signaling pathways and potential targets that could offer new therapeutic avenues for LSCC. Lastly, we summarize the latest advancements in targeted therapy combined with immune checkpoint blockade (ICB) therapy for LSCC and discuss the prospects and challenges in this field.
Collapse
Affiliation(s)
- Qiuxuan Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoshuo Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weiting Cheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jian Li
- Institude of Experimental Immunology, University Clinic of Rheinische Friedrich-Wihelms-University, Bonn, Germany
| |
Collapse
|
14
|
Bahabry R, Hauser RM, Sánchez RG, Jago SS, Ianov L, Stuckey RJ, Parrish RR, Ver Hoef L, Lubin FD. Alterations in DNA 5-hydroxymethylation patterns in the hippocampus of an experimental model of chronic epilepsy. Neurobiol Dis 2024; 200:106638. [PMID: 39142613 DOI: 10.1016/j.nbd.2024.106638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024] Open
Abstract
Temporal lobe epilepsy (TLE) is a type of focal epilepsy characterized by spontaneous recurrent seizures originating from the hippocampus. The epigenetic reprogramming hypothesis of epileptogenesis suggests that the development of TLE is associated with alterations in gene transcription changes resulting in a hyperexcitable network in TLE. DNA 5-methylcytosine (5-mC) is an epigenetic mechanism that has been associated with chronic epilepsy. However, the contribution of 5-hydroxymethylcytosine (5-hmC), a product of 5-mC demethylation by the Ten-Eleven Translocation (TET) family proteins in chronic TLE is poorly understood. 5-hmC is abundant in the brain and acts as a stable epigenetic mark altering gene expression through several mechanisms. Here, we found that the levels of bulk DNA 5-hmC but not 5-mC were significantly reduced in the hippocampus of human TLE patients and in the kainic acid (KA) TLE rat model. Using 5-hmC hMeDIP-sequencing, we characterized 5-hmC distribution across the genome and found bidirectional regulation of 5-hmC at intergenic regions within gene bodies. We found that hypohydroxymethylated 5-hmC intergenic regions were associated with several epilepsy-related genes, including Gal, SV2, and Kcnj11 and hyperdroxymethylation 5-hmC intergenic regions were associated with Gad65, TLR4, and Bdnf gene expression. Mechanistically, Tet1 knockdown in the hippocampus was sufficient to decrease 5-hmC levels and increase seizure susceptibility following KA administration. In contrast, Tet1 overexpression in the hippocampus resulted in increased 5-hmC levels associated with improved seizure resiliency in response to KA. These findings suggest an important role for 5-hmC as an epigenetic regulator of epilepsy that can be manipulated to influence seizure outcomes.
Collapse
Affiliation(s)
- Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Rebecca M Hauser
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Richard G Sánchez
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Silvienne Sint Jago
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Lara Ianov
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Remy J Stuckey
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - R Ryley Parrish
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, United States of America.
| | - Lawrence Ver Hoef
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
15
|
Purja S, Nguyen DT, Kim E. Breast cancer epigenetics: current and evolving treatment. Breast Cancer 2024; 31:869-885. [PMID: 38861041 DOI: 10.1007/s12282-024-01601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Breast cancer (BC) presents persistent challenges due to subtype-specific limited efficacy and potential resistance to standard therapy, influenced by the dynamic reversible nature of epigenetic plasticity. This study aims to comprehensively explore the evolving BC epigenetic landscape, analyzing trends and evaluating the therapeutic potential of epigenetic drugs (epi-drugs) for BC treatment. METHODS We conducted a cross-sectional study of BC epigenetic trials using ClinicalTrials.gov until July 18, 2023. Additionally, results from randomized controlled trials were retrieved from the registry or PubMed using trial registration numbers. RESULTS In total, 22 epi-drugs were investigated in 100 trials, with 11 currently being studied in 38 ongoing trials for BC. Over the years, epigenetic clinical trials for BC have notably increased, with histone deacetylase inhibitors constituting 45.45% of the candidate agents in the development pipeline. All ongoing trials are enrolling human epidermal growth factor receptor2 (HER2)-negative BC patients. Epi-drugs are commonly explored in combination with multiple anti-cancer therapies, such as aromatase or microtubule inhibitors, using an intermittent sequential administration approach. Emerging strategies include new-generation epi-drugs and combination involving immunotherapy or targeted therapy. Among candidate drugs, tucidinostat and entinostat, in combination with exemestane, demonstrated significant improvements in progression-free survival in phase III trials for hormone receptor-positive, HER2-negative BC patients. CONCLUSION This study highlights the growing interest in BC epigenetics, suggesting a potential shift from a one-size-fits-all approach to precision medicine, and emphasizes the necessity for robust evidence on their efficacy and safety to support continuous development and approval, addressing the unmet needs in BC treatment.
Collapse
Affiliation(s)
- Sujata Purja
- Central Research Center of Epigenome Based Platform and Its Application for Drug Development, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
- Data Science, Evidence-Based and Clinical Research Laboratory, Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dung Thuy Nguyen
- The Graduate School for Pharmaceutical Industry Management, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eunyoung Kim
- Central Research Center of Epigenome Based Platform and Its Application for Drug Development, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
- Data Science, Evidence-Based and Clinical Research Laboratory, Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
- The Graduate School for Pharmaceutical Industry Management, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
- Regulatory Science Policy, Pharmaceutical Regulatory Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
16
|
Mrunalini B, Dev A, Kushwaha AC, Sardoiwala MN, Karmakar S. Encapsulation of 4-oxo- N-(4-hydroxyphenyl) retinamide in human serum albumin nanoparticles promotes EZH2 degradation in preclinical neuroblastoma models. NANOSCALE 2024; 16:16075-16088. [PMID: 39087878 DOI: 10.1039/d4nr00642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Neuroblastoma is the most prevalent and aggressive solid tumor that develops extracranially in children between the ages of 0-14 years, which accounts for 8-10% of all childhood malignancies and ∼15% of pediatric cancer-related mortality. The polycomb repressive complex 2 (PRC2) protein, EZH2, is overexpressed in neuroblastoma and mediates histone H3 methylation at lysine 27 (K27) positions through its methyl transferase activity and is a potential epigenetic silencer of many tumor suppressor genes in cancer. Phosphorylation of EZH2 decreases its stability and leads to proteasomal degradation. The 4-oxo-N-(4-hydroxyphenyl) retinamide (4O4HPR) promotes EZH2 degradation via activation of PKC-δ, but its limited solubility and physiological instability limit its application. In the current study, the encapsulation of 4O4HPR in Human Serum Albumin Nanoparticles (HSANPs) enhanced the solubility and physiological stability of the nanoformulation, leading to improved therapeutic efficacy through G2-M cell cycle arrest, depolarization of mitochondrial membrane potential, generation of reactive oxygen species and caspase 3 mediated apoptosis activation. The molecular mechanistic approach of 4O4HPR loaded HSANPs has activated caspase 3, which further cleaves PKC-δ into two fragments wherein the cleaved fragment of PKC-δ possesses the kinase activity that phosphorylates EZH2 and decreases the protein stability leading to its further ubiquitination in SH-SY5Y cells. Co-immunoprecipitation experiments revealed the direct interaction between PKC-δ and EZH2 phosphorylation, followed by ubiquitination. Moreover, 4O4HPR loaded HSANPs demonstrated improved in vivo biodistribution, greater dispersibility, and biocompatibility and exhibited enhanced protein instability and degradation of EZH2 in the neuroblastoma xenograft mouse model.
Collapse
Affiliation(s)
- Boddu Mrunalini
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
| | - Atul Dev
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
| | | | | | - Surajit Karmakar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
| |
Collapse
|
17
|
Cristalli C, Scotlandi K. Targeting DNA Methylation Machinery in Pediatric Solid Tumors. Cells 2024; 13:1209. [PMID: 39056791 PMCID: PMC11275080 DOI: 10.3390/cells13141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
DNA methylation is a key epigenetic regulatory mechanism that plays a critical role in a variety of cellular processes, including the regulation of cell fate during development, maintenance of cell identity, and genome stability. DNA methylation is tightly regulated by enzymatic reactions and its deregulation plays an important role in the development of cancer. Specific DNA methylation alterations have been found in pediatric solid tumors, providing new insights into the development of these tumors. In addition, DNA methylation profiles have greatly contributed to tune the diagnosis of pediatric solid tumors and to define subgroups of patients with different risks of progression, leading to the reduction in unwanted toxicity and the improvement of treatment efficacy. This review highlights the dysregulated DNA methylome in pediatric solid tumors and how this information provides promising targets for epigenetic therapies, particularly inhibitors of DNMT enzymes (DNMTis). Opportunities and limitations are considered, including the ability of DNMTis to induce viral mimicry and immune signaling by tumors. Besides intrinsic action against cancer cells, DNMTis have the potential to sensitize immune-cold tumors to immunotherapies and may represent a remarkable option to improve the treatment of challenging pediatric solid tumors.
Collapse
Affiliation(s)
- Camilla Cristalli
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| |
Collapse
|
18
|
Shi K, Chen Y, Liu R, Fu X, Guo H, Gao T, Wang S, Dou L, Wang J, Wu Y, Yu J, Yu H. NFIC mediates m6A mRNA methylation to orchestrate transcriptional and post-transcriptional regulation to represses malignant phenotype of non-small cell lung cancer cells. Cancer Cell Int 2024; 24:223. [PMID: 38943137 PMCID: PMC11212411 DOI: 10.1186/s12935-024-03414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Multiple genetic and epigenetic regulatory mechanisms are crucial in the development and tumorigenesis process. Transcriptional regulation often involves intricate relationships and networks with post-transcriptional regulatory molecules, impacting the spatial and temporal expression of genes. However, the synergistic relationship between transcription factors and N6-methyladenosine (m6A) modification in regulating gene expression, as well as their influence on the mechanisms underlying the occurrence and progression of non-small cell lung cancer (NSCLC), requires further investigation. The present study aimed to investigate the synergistic relationship between transcription factors and m6A modification on NSCLC. METHODS The transcription factor NFIC and its potential genes was screened by analyzing publicly available datasets (ATAC-seq, DNase-seq, and RNA-seq). The association of NFIC and its potential target genes were validated through ChIP-qPCR and dual-luciferase reporter assays. Additionally, the roles of NFIC and its potential genes in NSCLC were detected in vitro and in vivo through silencing and overexpression assays. RESULTS Based on multi-omics data, the transcription factor NFIC was identified as a potential tumor suppressor of NSCLC. NFIC was significantly downregulated in both NSCLC tissues and cells, and when NFIC was overexpressed, the malignant phenotype and total m6A content of NSCLC cells was suppressed, while the PI3K/AKT pathway was inactivated. Additionally, we discovered that NFIC inhibits the expression of METTL3 by directly binding to its promoter region, and METTL3 regulates the expression of KAT2A, a histone acetyltransferase, by methylating the m6A site in the 3'UTR of KAT2A mRNA in NSCLC cells. Intriguingly, NFIC was also found to negatively regulate the expression of KAT2A by directly binding to its promoter region. CONCLUSIONS Our findings demonstrated that NFIC suppresses the malignant phenotype of NSCLC cells by regulating gene expression at both the transcriptional and post-transcriptional levels. A deeper comprehension of the genetic and epigenetic regulatory mechanisms in tumorigenesis would be beneficial for the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Kesong Shi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Yani Chen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Ruihua Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Xinyao Fu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Hua Guo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Tian Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Shu Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Le Dou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Jiemin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Yuan Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Jiale Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China.
| |
Collapse
|
19
|
Quan S, Huang H. Epigenetic contribution to cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:1-25. [PMID: 39179345 DOI: 10.1016/bs.ircmb.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Epigenetics has transformed our understanding of cancer by revealing how changes in gene activity, which do not alter the DNA itself, can initiate and progress the disease. These changes include adjustments in DNA methylation, histone configuration, and non-coding RNA activity. For instance, DNA methylation can inactivate genes that typically protect against cancer, leading to broader genomic instability. Histone modifications can alter how tightly DNA is wound, influencing which genes are active or silenced; while non-coding RNAs can interfere with the messages that direct protein production, impacting cancer-related processes. Unlike genetic mutations, which are permanent and irreversible, epigenetic changes provide a malleable target for therapeutic intervention, allowing potentially reversible adjustments to gene expression patterns. This flexibility is essential in the complex landscape of cancer where static genetic solutions may be insufficient. Additionally, epigenetics bridges the gap between genetic predispositions and environmental influences on cancer, offering a comprehensive framework for understanding how lifestyle factors and external exposures impact cancer risk and progression. The integration of epigenetics into cancer research not only enhances our understanding of the disease but also opens innovative avenues for intervention that were previously unexplored in traditional genetic-focused studies. Technologies like advanced sequencing and precise epigenetic modification are paving the way for early cancer detection and more personalized treatment approaches, highlighting the critical role of epigenetics in modern cancer care.
Collapse
Affiliation(s)
- Songhua Quan
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hao Huang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
20
|
Zhou L, Yu CW. Epigenetic modulations in triple-negative breast cancer: Therapeutic implications for tumor microenvironment. Pharmacol Res 2024; 204:107205. [PMID: 38719195 DOI: 10.1016/j.phrs.2024.107205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype lacking estrogen receptors, progesterone receptors and lacks HER2 overexpression. This absence of critical molecular targets poses significant challenges for conventional therapies. Immunotherapy, remarkably immune checkpoint blockade, offers promise for TNBC treatment, but its efficacy remains limited. Epigenetic dysregulation, including altered DNA methylation, histone modifications, and imbalances in regulators such as BET proteins, plays a crucial role in TNBC development and resistance to treatment. Hypermethylation of tumor suppressor gene promoters and the imbalance of histone methyltransferases such as EZH2 and histone deacetylases (HDACs) profoundly influence tumor cell proliferation, survival, and metastasis. In addition, epigenetic alterations critically shape the tumor microenvironment (TME), including immune cell composition, cytokine signaling, and immune checkpoint expression, ultimately contributing to immune evasion. Targeting these epigenetic mechanisms with specific inhibitors such as EZH2 and HDAC inhibitors in combination with immunotherapy represents a compelling strategy to remodel the TME, potentially overcoming immune evasion and enhancing therapeutic outcomes in TNBC. This review aims to comprehensively elucidate the current understanding of epigenetic modulation in TNBC, its influence on the TME, and the potential of combining epigenetic therapies with immunotherapy to overcome the challenges posed by this aggressive breast cancer subtype.
Collapse
Affiliation(s)
- Linlin Zhou
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China; School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chen-Wei Yu
- Department of Statistics and Information Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
21
|
Zohourian N, Brown JAL. Current trends in clinical trials and the development of small molecule epigenetic inhibitors as cancer therapeutics. Epigenomics 2024; 16:671-680. [PMID: 38639711 PMCID: PMC11233149 DOI: 10.2217/epi-2023-0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Epigenetic mechanisms control and regulate normal chromatin structure and gene expression patterns, with epigenetic dysregulation observed in many different cancer types. Importantly, epigenetic modifications are reversible, offering the potential to silence oncogenes and reactivate tumor suppressors. Small molecule drugs manipulating these epigenetic mechanisms are at the leading edge of new therapeutic options for cancer treatment. The clinical use of histone deacetyltransferases inhibitors (HDACi) demonstrates the effectiveness of targeting epigenetic mechanisms for cancer treatment. Notably, the development of new classes of inhibitors, including lysine acetyltransferase inhibitors (KATi), are the future of epigenetic-based therapeutics. We outline the progress of current classes of small molecule epigenetic drugs for use against cancer (preclinical and clinical) and highlight the potential market growth in epigenetic-based therapeutics.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, Limerick, V94 T9PX, Ireland
| | - James AL Brown
- Department of Biological Science, University of Limerick, Limerick, V94 T9PX, Ireland
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
22
|
Baek M, Kim M, Choi HI, Binas B, Cha J, Jung KH, Choi S, Chai YG. Identification of differentially expressed mRNA/lncRNA modules in acutely regorafenib-treated sorafenib-resistant Huh7 hepatocellular carcinoma cells. PLoS One 2024; 19:e0301663. [PMID: 38603701 PMCID: PMC11008899 DOI: 10.1371/journal.pone.0301663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
The multikinase inhibitor sorafenib is the standard first-line treatment for advanced hepatocellular carcinoma (HCC), but many patients become sorafenib-resistant (SR). This study investigated the efficacy of another kinase inhibitor, regorafenib (Rego), as a second-line treatment. We produced SR HCC cells, wherein the PI3K-Akt, TNF, cAMP, and TGF-beta signaling pathways were affected. Acute Rego treatment of these cells reversed the expression of genes involved in TGF-beta signaling but further increased the expression of genes involved in PI3K-Akt signaling. Additionally, Rego reversed the expression of genes involved in nucleosome assembly and epigenetic gene expression. Weighted gene co-expression network analysis (WGCNA) revealed four differentially expressed long non-coding RNA (DElncRNA) modules that were associated with the effectiveness of Rego on SR cells. Eleven putative DElncRNAs with distinct expression patterns were identified. We associated each module with DEmRNAs of the same pattern, thus obtaining DElncRNA/DEmRNA co-expression modules. We discuss the potential significance of each module. These findings provide insights and resources for further investigation into the potential mechanisms underlying the response of SR HCC cells to Rego.
Collapse
Affiliation(s)
- Mina Baek
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Minjae Kim
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Hae In Choi
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Bert Binas
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Junho Cha
- Department of Applied Artificial Intelligence, Hanyang University, Ansan, Republic of Korea
| | - Kyoung Hwa Jung
- Department of Biopharmaceutical System, Gwangmyeong Convergence Technology Campus of Korea Polytechnic II, Incheon, Republic of Korea
| | - Sungkyoung Choi
- Department of Applied Artificial Intelligence, Hanyang University, Ansan, Republic of Korea
- Department of Mathematical Data Science, Hanyang University, Ansan, Republic of Korea
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
23
|
Hu J, You Y, Zhu L, Zhang J, Song Y, Lu J, Xu X, Wu X, Huang X, Xu X, Du Y. Sialic Acid-Functionalized Pyroptosis Nanotuner for Epigenetic Regulation and Enhanced Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306905. [PMID: 37880861 DOI: 10.1002/smll.202306905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/10/2023] [Indexed: 10/27/2023]
Abstract
The efficacy of immune checkpoint blockade (ICB) in promoting an immune response against tumors still encounters challenges such as low response rates and off-target effects. Pyroptosis, an immunogenic cell death (ICD) mechanism, holds the potential to overcome the limitations of ICB by activating and recruiting immune cells. However, the expression of the pyroptosis-related protein Gasdermin-E(GSDME) in some tumors is limited due to mRNA methylation. To overcome this obstacle, sialic acid-functionalized liposomes coloaded with decitabine, a demethylation drug, and triclabendazole, a pyroptosis-inducing drug are developed. This nanosystem primarily accumulates at tumor sites via sialic acid and the Siglec receptor, elevating liposome accumulation in tumors up to 3.84-fold at 24 h and leading to the upregulation of pyroptosis-related proteins and caspase-3/GSDME-dependent pyroptosis. Consequently, it facilitates the infiltration of CD8+ T cells into the tumor microenvironment and enhances the efficacy of ICB therapy. The tumor inhibition rate of the treatment group is 89.1% at 21 days. This study highlights the potential of sialic acid-functionalized pyroptosis nanotuners as a promising approach for improving the efficacy of ICB therapy in tumors with low GSDME expression through epigenetic alteration and ICD.
Collapse
Affiliation(s)
- Jiahao Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Yuchan You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Luwen Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Jucong Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Yanling Song
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Jingyi Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Xinyi Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Xiaochuan Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Xiajie Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| |
Collapse
|
24
|
sanei M, Amirheidari B, Satarzadeh N. Mutuality of epigenetic and nanoparticles: two sides of a coin. Heliyon 2024; 10:e23679. [PMID: 38187314 PMCID: PMC10767507 DOI: 10.1016/j.heliyon.2023.e23679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/26/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Nowadays nanoparticles (NPs) due to their multidimensional applications in enormous different fields, has become an exciting research topic. In particular, they could attract a noticeable interest as drug deliver with increased bioavailability, therapeutic efficacy and drug specificity. Epigenetic can be considered as a complex network of molecular mechanism which are engaged in gene expression and have a vital role in regulation of environmental effects on ethology of different disorders like neurological disorders, cancers and cardiovascular diseases. For many of them epigenetic therapy was proposed although its application accompanied with limitations, due to drug toxicity. In this review we evaluate two aspects to epigenetic in the field of NPs: firstly, the role of epigenetic in regulation of nanotoxicity and secondly application of NPs as potential carriers for epidrugs.
Collapse
Affiliation(s)
- Maryam sanei
- Islamic Azad University, Faculty of Medicine, Mashhad branch, Mashhad, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Naghmeh Satarzadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
25
|
Eslami M, Memarsadeghi O, Davarpanah A, Arti A, Nayernia K, Behnam B. Overcoming Chemotherapy Resistance in Metastatic Cancer: A Comprehensive Review. Biomedicines 2024; 12:183. [PMID: 38255288 PMCID: PMC10812960 DOI: 10.3390/biomedicines12010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/17/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The management of metastatic cancer is complicated by chemotherapy resistance. This manuscript provides a comprehensive academic review of strategies to overcome chemotherapy resistance in metastatic cancer. The manuscript presents background information on chemotherapy resistance in metastatic cancer cells, highlighting its clinical significance and the current challenges associated with using chemotherapy to treat metastatic cancer. The manuscript delves into the molecular mechanisms underlying chemotherapy resistance in subsequent sections. It discusses the genetic alterations, mutations, and epigenetic modifications that contribute to the development of resistance. Additionally, the role of altered drug metabolism and efflux mechanisms, as well as the activation of survival pathways and evasion of cell death, are explored in detail. The strategies to overcome chemotherapy resistance are thoroughly examined, covering various approaches that have shown promise. These include combination therapy approaches, targeted therapies, immunotherapeutic strategies, and the repurposing of existing drugs. Each strategy is discussed in terms of its rationale and potential effectiveness. Strategies for early detection and monitoring of chemotherapy drug resistance, rational drug design vis-a-vis personalized medicine approaches, the role of predictive biomarkers in guiding treatment decisions, and the importance of lifestyle modifications and supportive therapies in improving treatment outcomes are discussed. Lastly, the manuscript outlines the clinical implications of the discussed strategies. It provides insights into ongoing clinical trials and emerging therapies that address chemotherapy resistance in metastatic cancer cells. The manuscript also explores the challenges and opportunities in translating laboratory findings into clinical practice and identifies potential future directions and novel therapeutic avenues. This comprehensive review provides a detailed analysis of strategies to overcome chemotherapy resistance in metastatic cancer. It emphasizes the importance of understanding the molecular mechanisms underlying resistance and presents a range of approaches for addressing this critical issue in treating metastatic cancer.
Collapse
Affiliation(s)
- Maryam Eslami
- Applied Biotechnology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 1949635881, Iran; (M.E.); (O.M.); (A.D.)
- International Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran 1949635881, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1949635881, Iran
| | - Omid Memarsadeghi
- Applied Biotechnology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 1949635881, Iran; (M.E.); (O.M.); (A.D.)
- International Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran 1949635881, Iran
| | - Ali Davarpanah
- Applied Biotechnology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 1949635881, Iran; (M.E.); (O.M.); (A.D.)
- International Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran 1949635881, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1949635881, Iran
| | - Afshin Arti
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 1469669191, Iran;
| | - Karim Nayernia
- International Center for Personalized Medicine (P7Medicine), 40235 Dusseldorf, Germany
| | - Babak Behnam
- Department of Regulatory Affairs, Amarex Clinical Research, NSF International, Germantown, MD 20874, USA
| |
Collapse
|
26
|
Tao Y, Li G, Yang Y, Wang Z, Wang S, Li X, Yu T, Fu X. Epigenomics in aortic dissection: From mechanism to therapeutics. Life Sci 2023; 335:122249. [PMID: 37940070 DOI: 10.1016/j.lfs.2023.122249] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Aortic dissection (AD) has an unfavorable prognosis. It requires early diagnosis, appropriate treatment strategies, and suspicion to recognize symptoms; thus, it is commonly described as an acute aortic emergency. The clinical manifestations of painless AD are complex and variable. However, there is no effective treatment to prevent the progression of AD. Therefore, study of the molecular targets and mechanisms of AD to enable prevention or early intervention is particularly important. Although multiple gene mutations have been proposed as linked to AD development, evidence that multiple epigenetic elements are strongly associated is steadily increasing. These epigenetic processes include DNA methylation, N6-methyladenosine, histone modification, non-histone posttranslational modification, and non-coding RNAs (ncRNAs). Among these processes, resveratrol targeting Sirtuin 1 (SIRT1), 5-azacytidine (5azaC) targeting DNA methyltransferase (DNMT), and vitamin C targeting ten-eleven translocation 2 (Tet2) showed unique advantages in improving AD and vascular dysfunction. Finally, we explored potential epigenetic drugs and diagnostic methods for AD, which might provide options for the future.
Collapse
Affiliation(s)
- Yan Tao
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong 250021, China; Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324 Jingwu Road, Jinan, Shandong 250021, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Shizhong Wang
- The department of Cardiology surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China.
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China.
| |
Collapse
|
27
|
Marchant V, Trionfetti F, Tejedor-Santamaria L, Rayego-Mateos S, Rotili D, Bontempi G, Domenici A, Menè P, Mai A, Martín-Cleary C, Ortiz A, Ramos AM, Strippoli R, Ruiz-Ortega M. BET Protein Inhibitor JQ1 Ameliorates Experimental Peritoneal Damage by Inhibition of Inflammation and Oxidative Stress. Antioxidants (Basel) 2023; 12:2055. [PMID: 38136175 PMCID: PMC10740563 DOI: 10.3390/antiox12122055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Peritoneal dialysis (PD) is a current replacement therapy for end-stage kidney diseases (ESKDs). However, long-term exposure to PD fluids may lead to damage of the peritoneal membrane (PM) through mechanisms involving the activation of the inflammatory response and mesothelial-to-mesenchymal transition (MMT), leading to filtration failure. Peritoneal damage depends on a complex interaction among external stimuli, intrinsic properties of the PM, and subsequent activities of the local innate-adaptive immune system. Epigenetic drugs targeting bromodomain and extra-terminal domain (BET) proteins have shown beneficial effects on different experimental preclinical diseases, mainly by inhibiting proliferative and inflammatory responses. However the effect of BET inhibition on peritoneal damage has not been studied. To this aim, we have evaluated the effects of treatment with the BET inhibitor JQ1 in a mouse model of peritoneal damage induced by chlorhexidine gluconate (CHX). We found that JQ1 ameliorated the CHX-induced PM thickness and inflammatory cell infiltration. Moreover, JQ1 decreased gene overexpression of proinflammatory and profibrotic markers, together with an inhibition of the nuclear factor-κB (NF-κB) pathway. Additionally, JQ1 blocked the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and restored changes in the mRNA expression levels of NADPH oxidases (NOX1 and NOX4) and NRF2/target antioxidant response genes. To corroborate the in vivo findings, we evaluated the effects of the BET inhibitor JQ1 on PD patients' effluent-derived primary mesothelial cells and on the MeT-5A cell line. JQ1 inhibited tumor necrosis factor-α (TNF-α)-induced proinflammatory gene upregulation and restored MMT phenotype changes, together with the downmodulation of oxidative stress. Taken together, these results suggest that BET inhibitors may be a potential therapeutic option to ameliorate peritoneal damage.
Collapse
Affiliation(s)
- Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Flavia Trionfetti
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Lucia Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Giulio Bontempi
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandro Domenici
- Renal Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (A.D.); (P.M.)
| | - Paolo Menè
- Renal Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (A.D.); (P.M.)
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Catalina Martín-Cleary
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Alberto Ortiz
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Adrian M. Ramos
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Raffaele Strippoli
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| |
Collapse
|
28
|
Herranz JM, López-Pascual A, Clavería-Cabello A, Uriarte I, Latasa MU, Irigaray-Miramon A, Adán-Villaescusa E, Castelló-Uribe B, Sangro B, Arechederra M, Berasain C, Avila MA, Fernández-Barrena MG. Comprehensive analysis of epigenetic and epitranscriptomic genes' expression in human NAFLD. J Physiol Biochem 2023; 79:901-924. [PMID: 37620598 PMCID: PMC10636027 DOI: 10.1007/s13105-023-00976-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial condition with a complex etiology. Its incidence is increasing globally in parallel with the obesity epidemic, and it is now considered the most common liver disease in Western countries. The precise mechanisms underlying the development and progression of NAFLD are complex and still poorly understood. The dysregulation of epigenetic and epitranscriptomic mechanisms is increasingly recognized to play pathogenic roles in multiple conditions, including chronic liver diseases. Here, we have performed a comprehensive analysis of the expression of epigenetic and epitranscriptomic genes in a total of 903 liver tissue samples corresponding to patients with normal liver, obese patients, and patients with non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH), advancing stages in NAFLD progression. We integrated ten transcriptomic datasets in an unbiased manner, enabling their robust analysis and comparison. We describe the complete landscape of epigenetic and epitranscriptomic genes' expression along the course of the disease. We identify signatures of genes significantly dysregulated in association with disease progression, particularly with liver fibrosis development. Most of these epigenetic and epitranscriptomic effectors have not been previously described in human NAFLD, and their altered expression may have pathogenic implications. We also performed a comprehensive analysis of the expression of enzymes involved in the metabolism of the substrates and cofactors of epigenetic and epitranscriptomic effectors. This study provides novel information on NAFLD pathogenesis and may also guide the identification of drug targets to treat this condition and its progression towards hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jose M Herranz
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Amaya López-Pascual
- Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Alex Clavería-Cabello
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - M Ujúe Latasa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Ainara Irigaray-Miramon
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Elena Adán-Villaescusa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Borja Castelló-Uribe
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Bruno Sangro
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - María Arechederra
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Matías A Avila
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Maite G Fernández-Barrena
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain.
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| |
Collapse
|
29
|
Zhao C, Zhang Y, Zhang J, Li S, Liu M, Geng Y, Liu F, Chai Q, Meng H, Li M, Li J, Zheng Y, Zhang Y. Discovery of Novel Fedratinib-Based HDAC/JAK/BRD4 Triple Inhibitors with Remarkable Antitumor Activity against Triple Negative Breast Cancer. J Med Chem 2023; 66:14150-14174. [PMID: 37796543 DOI: 10.1021/acs.jmedchem.3c01242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Multitarget HDAC inhibitors capable of simultaneously blocking the BRD4-LIFR-JAK1-STAT3 signaling pathway hold great potential for the treatment of TNBC and other solid tumors. Herein, novel Fedratinib-based multitarget HDAC inhibitors were rationally designed, synthesized, and biologically evaluated, among which compound 25ap stood out as a potent HDAC/JAK/BRD4 triple inhibitor. Satisfyingly, compound 25ap led to concurrent inhibition of HDACs and the BRD4-LIFR-JAK1-STAT3 signaling pathway, which was validated by hyper-acetylation of histone and α-tubulin, hypo-phosphorylation of STAT3, downregulation of LIFR, MCL-1, and c-Myc in MDA-MB-231 cells. The multitarget effects of 25ap contributed to its robust antitumor response, including potent antiproliferative activity, remarkable apoptosis-inducing activity, and inhibition of colony formation. Notably, 25ap possessed an acceptable therapeutic window between normal and cancerous cells, desirable in vitro metabolic stability in mouse microsome, and sufficient in vivo exposure via intraperitoneal administration. Additionally, the in vivo antitumor potency of 25ap was demonstrated in an MDA-MB-231 xenograft model.
Collapse
Affiliation(s)
- Chunlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Yu Zhang
- Key Lab of Advanced Drug Preparation Technologies (Ministry of Education), State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jin'ge Zhang
- Key Lab of Advanced Drug Preparation Technologies (Ministry of Education), State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Shunda Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Mengyang Liu
- Key Lab of Advanced Drug Preparation Technologies (Ministry of Education), State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yinping Geng
- Key Lab of Advanced Drug Preparation Technologies (Ministry of Education), State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Fengling Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Qipeng Chai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Hongwei Meng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Mengzhe Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Jintao Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Yichao Zheng
- Key Lab of Advanced Drug Preparation Technologies (Ministry of Education), State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yingjie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, P.R. China
| |
Collapse
|
30
|
Bahabry R, Hauser RM, Sánchez RG, Jago SS, Ianov L, Stuckey RJ, Parrish RR, Hoef LV, Lubin FD. Alterations in DNA 5-hydroxymethylation Patterns in the Hippocampus of an Experimental Model of Refractory Epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560698. [PMID: 37873276 PMCID: PMC10592907 DOI: 10.1101/2023.10.03.560698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Temporal lobe epilepsy (TLE) is a type of focal epilepsy characterized by spontaneous recurrent seizures originating from the hippocampus. The epigenetic reprogramming hypothesis of epileptogenesis suggests that the development of TLE is associated with alterations in gene transcription changes resulting in a hyperexcitable network in TLE. DNA 5-methylcytosine (5-mC) is an epigenetic mechanism that has been associated with chronic epilepsy. However, the contribution of 5-hydroxymethylcytosine (5-hmC), a product of 5-mC demethylation by the Ten-Eleven Translocation (TET) family proteins in chronic TLE is poorly understood. 5-hmC is abundant in the brain and acts as a stable epigenetic mark altering gene expression through several mechanisms. Here, we found that the levels of bulk DNA 5-hmC but not 5-mC were significantly reduced in the hippocampus of human TLE patients and in the kainic acid (KA) TLE rat model. Using 5-hmC hMeDIP-sequencing, we characterized 5-hmC distribution across the genome and found bidirectional regulation of 5-hmC at intergenic regions within gene bodies. We found that hypohydroxymethylated 5-hmC intergenic regions were associated with several epilepsy-related genes, including Gal , SV2, and Kcnj11 and hyperdroxymethylation 5-hmC intergenic regions were associated with Gad65 , TLR4 , and Bdnf gene expression. Mechanistically, Tet1 knockdown in the hippocampus was sufficient to decrease 5-hmC levels and increase seizure susceptibility following KA administration. In contrast, Tet1 overexpression in the hippocampus resulted in increased 5-hmC levels associated with improved seizure resiliency in response to KA. These findings suggest an important role for 5-hmC as an epigenetic regulator of epilepsy that can be manipulated to influence seizure outcomes.
Collapse
|
31
|
Budagaga Y, Sabet Z, Zhang Y, Novotná E, Hanke I, Rozkoš T, Hofman J. Tazemetostat synergistically combats multidrug resistance by the unique triple inhibition of ABCB1, ABCC1, and ABCG2 efflux transporters in vitro and ex vivo. Biochem Pharmacol 2023; 216:115769. [PMID: 37634597 DOI: 10.1016/j.bcp.2023.115769] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
ATP-binding cassette (ABC) drug efflux transporters and drug metabolizing enzymes play crucial roles in pharmacokinetic drug-drug interactions and multidrug tumor resistance (MDR). Tazemetostat (EPZ-6438, Tazverik) is a novel epigenetic drug that has been recently approved for the therapy of advanced epithelioid sarcoma and follicular lymphoma. Additionally, this medication is currently being clinically tested to treat several other cancers such as non-small cell lung cancer (NSCLC). This study aimed to investigate the inhibitory effects of tazemetostat on selected ABC transporters/cytochrome P450 3A4 (CYP3A4) enzyme to comprehensively explore its role in MDR. First, our accumulation and molecular docking studies showed that tazemetostat is a unique triple inhibitor of ABCB1, ABCC1, and ABCG2 transporters. In contrast, tazemetostat exhibited only low level of interaction with the CYP3A4 isozyme. Drug combination assays confirmed that tazemetostat is a multipotent MDR modulator able to synergize with various conventional chemotherapeutics in vitro. Subsequent caspase activity assays and microscopic staining of apoptotic nuclei proved that the effective induction of apoptosis is behind the observed synergies. Notably, a potent MDR-modulatory capacity of tazemetostat was recorded in primary ex vivo NSCLC explants generated from patients' biopsies. On the contrary, its possible position of pharmacokinetic MDR's victim was excluded in comparative proliferation assays. Finally, tested drug has not been identified as an inducer of resistant phenotype in NSCLC cell lines. In conclusion, we demonstrated that tazemetostat is a unique multispecific chemosensitizer, which has strong potential to overcome limitations seen in the era of traditional MDR modulators.
Collapse
Affiliation(s)
- Youssif Budagaga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Králové, Czech Republic
| | - Ziba Sabet
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Králové, Czech Republic
| | - Yu Zhang
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Králové, Czech Republic
| | - Eva Novotná
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Králové, Czech Republic
| | - Ivo Hanke
- Department of Cardiac Surgery, Faculty of Medicine, Charles University in Hradec Králové and University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - Tomáš Rozkoš
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine and University Hospital in Hradec Králové, Czech Republic, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - Jakub Hofman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
32
|
Shi K, Sa R, Dou L, Wu Y, Dong Z, Fu X, Yu H. METTL3 exerts synergistic effects on m6A methylation and histone modification to regulate the function of VGF in lung adenocarcinoma. Clin Epigenetics 2023; 15:153. [PMID: 37742030 PMCID: PMC10517543 DOI: 10.1186/s13148-023-01568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Multiple genetic and epigenetic regulatory mechanisms play a vital role in tumorigenesis and development. Understanding the interplay between different epigenetic modifications and its contribution to transcriptional regulation in cancer is essential for precision medicine. Here, we aimed to investigate the interplay between N6-methyladenosine (m6A) modifications and histone modifications in lung adenocarcinoma (LUAD). RESULTS Based on the data from public databases, including chromatin property data (ATAC-seq, DNase-seq), methylated RNA immunoprecipitation sequencing (MeRIP-seq), and gene expression data (RNA-seq), a m6A-related differentially expressed gene nerve growth factor inducible (VGF) was identified between LUAD tissues and normal lung tissues. VGF was significantly highly expressed in LUAD tissues and cells, and was associated with a worse prognosis for LUAD, silencing of VGF inhibited the malignant phenotype of LUAD cells by inactivating the PI3K/AKT/mTOR pathway. Through the weighted correlation network analysis (WGCNA) and integration of TCGA-LUAD RNA-seq and m6A methyltransferase METTL3-knockdown RNA-seq data, a significant positive correlation between METTL3 and VGF was observed. By using the MeRIP-qPCR and dual-luciferase reporter assays, we demonstrated that METTL3 knockdown decreased m6A modification level of VGF coding sequences in LUAD cells, the colorimetric m6A quantification assay also showed that METTL3 knockdown significantly decreased global m6A modification level in LUAD cells. Interestingly, we found that METTL3 knockdown also reduced VGF expression by increasing H3K36me3 modification at the VGF promoter. Further research revealed that METTL3 knockdown upregulated the expression of histone methylase SETD2, the major H3K36me3 methyltransferase, by methylating the m6A site in the 3'UTR of SETD2 mRNA in LUAD cells. CONCLUSIONS Overall, our results reveal that the expression of VGF in LUAD cells is regulated spatio-temporally by METTL3 through both transcriptional (via histone modifications) and post-transcriptional (via m6A modifications) mechanisms. The synergistic effect of these multiple epigenetic mechanisms provides new opportunities for the diagnosis and precision treatment of tumors.
Collapse
Affiliation(s)
- Kesong Shi
- State Key Laboratory of Reproductive Regulation a Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Rula Sa
- State Key Laboratory of Reproductive Regulation a Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Le Dou
- State Key Laboratory of Reproductive Regulation a Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Yuan Wu
- State Key Laboratory of Reproductive Regulation a Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Zhiqiang Dong
- State Key Laboratory of Reproductive Regulation a Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Xinyao Fu
- State Key Laboratory of Reproductive Regulation a Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation a Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China.
| |
Collapse
|
33
|
Okuno K, Pratama MY, Li J, Tokunaga M, Wang X, Kinugasa Y, Goel A. Ginseng mediates its anticancer activity by inhibiting the expression of DNMTs and reactivating methylation-silenced genes in colorectal cancer. Carcinogenesis 2023; 44:394-403. [PMID: 37137336 PMCID: PMC10414140 DOI: 10.1093/carcin/bgad025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/26/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023] Open
Abstract
Developing safe and effective therapeutic modalities remains a critical challenge for improving the prognosis of patients with colorectal cancer (CRC). In this regard, targeting epigenetic regulation in cancers has recently emerged as a promising therapeutic approach. Since several natural compounds have recently been shown to be important epigenetic modulators, we hypothesized that Ginseng might exert its anticancer activity by regulating DNA methylation alterations in CRC. In this study, a series of cell culture studies were conducted, followed by their interrogation in patient-derived 3D organoid models to evaluate Ginseng's anticancer activity in CRC. Genome-wide methylation alterations were interrogated by undertaking MethylationEpic BeadChip microarrays. First, 50% inhibitory concentrations (IC50) were determined by cell viability assays, and subsequent Ginseng treatment demonstrated a significant anticancer effect on clonogenicity and cellular migration in CRC cells. Treatment with Ginseng potentiated cellular apoptosis through regulation of apoptosis-related genes in CRC cells. Furthermore, Ginseng treatment downregulated the expression of DNA methyltransferases (DNMTs) and decreased the global DNA methylation levels in CRC cells. The genome-wide methylation profiling identified Ginseng-induced hypomethylation of transcriptionally silenced tumor suppressor genes. Finally, cell culture-based findings were successfully validated in patient-derived 3D organoids. In conclusion, we demonstrate that Ginseng exerts its antitumorigenic potential by regulating cellular apoptosis via the downregulation of DNMTs and reversing the methylation status of transcriptionally silenced genes in CRC.
Collapse
Affiliation(s)
- Keisuke Okuno
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Muhammad Yogi Pratama
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
| | - Jiang Li
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR, 518057, China
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR, 518057, China
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
34
|
Hong L, Williams NL, Jaffe M, Shields CE, Haynes KA. Synthetic Reader-Actuators Targeted to Polycomb-Silenced Genes Block Triple-Negative Breast Cancer Proliferation and Invasion. GEN BIOTECHNOLOGY 2023; 2:301-316. [PMID: 37928406 PMCID: PMC10623628 DOI: 10.1089/genbio.2023.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/06/2023] [Indexed: 11/07/2023]
Abstract
Scientists have used pharmacological inhibitors of polycomb proteins to restore the expression of tumor suppressor genes and stop cancer proliferation and invasion. A major limitation of this approach is that key transcriptional activators, such as TP53 and BAF SWI/SNF, are often mutated in cancer. Poor clinical results for polycomb-targeting therapies in solid cancers, including triple-negative breast cancer (TNBC), could discourage the further development of epigenetic monotherapies. Here, we performed epigenome actuation with a synthetic reader-actuator (SRA) that binds trimethylated histone H3 lysine 27 in polycomb chromatin and modulates core transcriptional activators. In SRA-expressing TNBC BT-549 cells, 122 genes become upregulated ≥2-fold, including the genes involved in cell death, cell cycle arrest, and migration inhibition. The SRA-expressing spheroids showed reduced size in Matrigel and loss of invasion. Therefore, targeting Mediator-recruiting regulators to silenced chromatin can activate tumor suppressors and stimulate anti-cancer phenotypes, and further development of robust gene regulators might benefit TNBC patients.
Collapse
Affiliation(s)
- Lauren Hong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; and Emory University, Atlanta, Georgia, USA
| | - Natecia L. Williams
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, Georgia, USA
| | - Maya Jaffe
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; and Emory University, Atlanta, Georgia, USA
| | - Cara E. Shields
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, Georgia, USA
| | - Karmella A. Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; and Emory University, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
35
|
Abdelaziz N, Therachiyil L, Sadida HQ, Ali AM, Khan OS, Singh M, Khan AQ, Akil ASAS, Bhat AA, Uddin S. Epigenetic inhibitors and their role in cancer therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:211-251. [PMID: 37657859 DOI: 10.1016/bs.ircmb.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Epigenetic modifications to DNA are crucial for normal cellular and biological functioning. DNA methylation, histone modifications, and chromatin remodeling are the most common epigenetic mechanisms. These changes are heritable but still reversible. The aberrant epigenetic alterations, such as DNA methylation, histone modification, and non-coding RNA (ncRNA)-mediated gene regulation, play an essential role in developing various human diseases, including cancer. Recent studies show that synthetic and dietary epigenetic inhibitors attenuate the abnormal epigenetic modifications in cancer cells and therefore have strong potential for cancer treatment. In this chapter, we have highlighted various types of epigenetic modifications, their mechanism, and as drug targets for epigenetic therapy.
Collapse
Affiliation(s)
- Nouha Abdelaziz
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | | | - Omar S Khan
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Mayank Singh
- Department of Medical Oncology (Lab), BRAIRCH All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
36
|
Farani MR, Sarlak M, Gholami A, Azaraian M, Binabaj MM, Kakavandi S, Tambuwala MM, Taheriazam A, Hashemi M, Ghasemi S. Epigenetic drugs as new emerging therapeutics: What is the scale's orientation of application and challenges? Pathol Res Pract 2023; 248:154688. [PMID: 37494800 DOI: 10.1016/j.prp.2023.154688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Epigenetics is the study of heritable changes in gene expression or function without altering the DNA sequence. Important factors are part of epigenetic events, such as methylation, DNA histone rearrangements, nucleosome transposition, and non-coding RNAs. Dysregulated epigenetic mechanics are associated with various cancers' initiation, development, and metastasis. It is known that the occurrence and development of cancer can be controlled by regulating unexpected epigenetic events. Epi-drugs are used singly or in combination with chemotherapy and enhance antitumor activity, reduce drug resistance, and stimulate the host immune response. Despite these benefits, epigenetic therapy as a single therapy or in combination with other drugs leads to adverse effects. This review article introduces and compares the advantages, disadvantages, and side effects of using these drugs for the first time since their introduction. Also, this article describes the mechanism of action of various epigenetic drugs. Recommendations for future use of epigenetic drugs as cancer therapeutics are suggested as an overall conclusion.
Collapse
Affiliation(s)
- Marzieh Ramezani Farani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Maryam Sarlak
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Amir Gholami
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Azaraian
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany; Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Maryam Moradi Binabaj
- Clinical Biochemistry, Department of Biochemistry and Nutrition, School of Medicine, Sabzevar University of Medical Science, Sabzevar, Iran; Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, 0United Kingdom
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
37
|
Yang Y, Chen S, Wang Q, Niu MM, Qu Y, Zhou Y. Identification of novel and potent dual-targeting HDAC1/SPOP inhibitors using structure-based virtual screening, molecular dynamics simulation and evaluation of in vitro and in vivo antitumor activity. Front Pharmacol 2023; 14:1208740. [PMID: 37492092 PMCID: PMC10363607 DOI: 10.3389/fphar.2023.1208740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023] Open
Abstract
Cancer is one of the important factors threatening human health. Hence, it is essential to create novel potent drugs to treat it. Due to the strong correlation among histone deacetylase1 (HDAC1), speckle-type POZ protein (SPOP) and cancers, dual inhibition of HDAC1 and SPOP may be a promising strategy for cancer treatment. In this study, we successfully identified four potential dual-targeting HDAC1/SPOP candidate compounds with structure-based virtual screening. In vitro inhibition experiments confirmed that the four compounds had dual inhibitory effects on HDAC1 and SPOP. Among them, compound HS-2 had a stronger inhibitory effect on HDAC1 and SPOP than the positive controls. Further molecular dynamics simulations indicated that HS-2 could stably bind to HDAC1 and SPOP. In addition, MTT assay indicated that HS-2 inhibited the growth of tumor cells in the micromolar range. In vivo evaluation showed that HS-2 could obviously inhibit the growth of tumor in nude mice without obvious toxicity. These findings suggest that HS-2 is a novel and potent dual-targeting HDAC1/SPOP inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Yingxue Yang
- Department of Gastroenterology, The First People’s Hospital of Kunshan, Suzhou, China
| | - Shutong Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Qinghua Wang
- Department of Gastroenterology, The First People’s Hospital of Kunshan, Suzhou, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Yuanqian Qu
- Department of Pathology, Department of Gastrointestinal Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Yang Zhou
- Department of Pathology, Department of Gastrointestinal Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
38
|
Kelly R, Aviles D, Krisulevicz C, Hunter K, Krill L, Warshal D, Ostrovsky O. The Effects of Natural Epigenetic Therapies in 3D Ovarian Cancer and Patient-Derived Tumor Explants: New Avenues in Regulating the Cancer Secretome. Biomolecules 2023; 13:1066. [PMID: 37509102 PMCID: PMC10377145 DOI: 10.3390/biom13071066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
High mortality rates in ovarian cancer have been linked to recurrence, metastasis, and chemoresistant disease, which are known to involve not only genetic changes but also epigenetic aberrations. In ovarian cancer, adipose-derived stem cells from the omentum (O-ASCs) play a crucial role in supporting the tumor and its tumorigenic microenvironment, further propagating epigenetic abnormalities and dissemination of the disease. Epigallocatechin gallate (EGCG), a DNA methyltransferase inhibitor derived from green tea, and Indole-3-carbinol (I3C), a histone deacetylase inhibitor from cruciferous vegetables, carry promising effects in reprograming aberrant epigenetic modifications in cancer. Therefore, we demonstrate the action of these diet-derived compounds in suppressing the growth of 3D ovarian cancer spheroids or organoids as well as post-treatment cancer recovery through proliferation, migration, invasion, and colony formation assays when compared to the synthetic epigenetic compound Panobinostat with or without standard chemotherapy. Finally, given the regulatory role of the secretome in growth, metastasis, chemoresistance, and relapse of disease, we demonstrate that natural epigenetic compounds can regulate the secretion of protumorigenic growth factors, cytokines, extracellular matrix components, and immunoregulatory markers in human ovarian cancer specimens. While further studies are needed, our results suggest that these treatments could be considered in the future as adjuncts to standard chemotherapy, improving efficiency and patient outcomes.
Collapse
Affiliation(s)
- Rebeca Kelly
- Department of Gynecologic Oncology, MD Anderson Cancer Center at Cooper University Hospital, Camden, NJ 08103, USA
| | - Diego Aviles
- Department of Gynecologic Oncology, MD Anderson Cancer Center at Cooper University Hospital, Camden, NJ 08103, USA
| | | | - Krystal Hunter
- Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- Cooper Research Institute, Cooper University Healthcare, Camden, NJ 08103, USA
| | - Lauren Krill
- Department of Gynecologic Oncology, MD Anderson Cancer Center at Cooper University Hospital, Camden, NJ 08103, USA
| | - David Warshal
- Department of Gynecologic Oncology, MD Anderson Cancer Center at Cooper University Hospital, Camden, NJ 08103, USA
| | - Olga Ostrovsky
- Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- Cooper Research Institute, Cooper University Healthcare, Camden, NJ 08103, USA
| |
Collapse
|
39
|
Powell CL, Saddoughi SA, Wigle DA. Progress in genome-inspired treatment decisions for multifocal lung adenocarcinoma. Expert Rev Respir Med 2023; 17:1009-1021. [PMID: 37982734 DOI: 10.1080/17476348.2023.2286277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/17/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Multifocal lung adenocarcinoma (MFLA) is becoming increasingly recognized as a distinct subset of lung cancer, with unique biology, disease course, and treatment outcomes. While definitions remain controversial, MFLA is characterized by the development and concurrent presence of multiple independent (non-metastatic) lesions on the lung adenocarcinoma spectrum. Disease progression typically follows an indolent course measured in years, with a lower propensity for nodal and distant metastases than other more common forms of non-small cell lung cancer. AREAS COVERED Traditional imaging and histopathological analyses of tumor biopsies are frequently unable to fully characterize the disease, prompting interest in molecular diagnosis. We highlight some of the key questions in the field, including accurate definitions to identify and stage MLFA, molecular tests to stratify patients and treatment decisions, and the lack of clinical trial data to delineate best management for this poorly understood subset of lung cancer patients. We review the existing literature and progress toward a genomic diagnosis for this unique disease entity. EXPERT OPINION Multifocal lung adenocarcinoma behaves differently than other forms of non-small cell lung cancer. Progress in molecular diagnosis may enhance potential for accurate definition, diagnosis, and optimizing treatment approach.
Collapse
Affiliation(s)
- Chelsea L Powell
- Division of Thoracic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Sahar A Saddoughi
- Division of Thoracic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Dennis A Wigle
- Division of Thoracic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
40
|
Guo R, Li J, Hu J, Fu Q, Yan Y, Xu S, Wang X, Jiao F. Combination of epidrugs with immune checkpoint inhibitors in cancer immunotherapy: From theory to therapy. Int Immunopharmacol 2023; 120:110417. [PMID: 37276826 DOI: 10.1016/j.intimp.2023.110417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Immunotherapy based on immune checkpoint inhibitors (ICIs) has revolutionized treatment strategies in multiple types of cancer. However, the resistance and relapse as associated with the extreme complexity of cancer-immunity interactions remain a major challenge to be resolved. Owing to the epigenome plasticity of cancer and immune cells, a growing body of evidence has been presented indicating that epigenetic treatments have the potential to overcome current limitations of immunotherapy, thus providing a rationalefor the combination of ICIs with epigenetic agents (epidrugs). In this review, we first make an overview about the epigenetic regulations in tumor biology and immunodevelopment. Subsequently, a diverse array of inhibitory agents under investigations targeted epigenetic modulators (Azacitidine, Decitabine, Vorinostat, Romidepsin, Belinostat, Panobinostat, Tazemetostat, Enasidenib and Ivosidenib, etc.) and immune checkpoints (Atezolizmab, Avelumab, Cemiplimab, Durvalumb, Ipilimumab, Nivolumab and Pembrolizmab, etc.) to increase anticancer responses were described and the potential mechanisms were further discussed. Finally, we summarize the findings of clinical trials and provide a perspective for future clinical studies directed at investigating the combination of epidrugs with ICIs as a treatment for cancer.
Collapse
Affiliation(s)
- Ruoyu Guo
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Jixia Li
- Department of Clinical Laboratory Medicine, Yantaishan Hospital, Yantai 264003, PR China
| | - Jinxia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Qiang Fu
- School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Yunfei Yan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Sen Xu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Xin Wang
- Department of Clinical Laboratory & Health Service Training, 970 Hospital of the PLA Joint Logistic Support Force, Yantai 264002, PR China.
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China.
| |
Collapse
|
41
|
Young D, Guha C, Sidoli S. The role of histone H3 lysine demethylases in glioblastoma. Cancer Metastasis Rev 2023; 42:445-454. [PMID: 37286866 DOI: 10.1007/s10555-023-10114-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults with an average survival of 15-18 months. Part of its malignancy derives from epigenetic regulation that occurs as the tumor develops and after therapeutic treatment. Specifically, enzymes involved in removing methylations from histone proteins on chromatin, i.e., lysine demethylases (KDMs), have a significant impact on GBM biology and reoccurrence. This knowledge has paved the way to considering KDMs as potential targets for GBM treatment. For example, increases in trimethylation of histone H3 on the lysine 9 residue (H3K9me3) via inhibition of KDM4C and KDM7A has been shown to lead to cell death in Glioblastoma initiating cells. KDM6 has been shown to drive Glioma resistance to receptor tyrosine kinase inhibitors and its inhibition decreases tumor resistance. In addition, increased expression of the histone methyltransferase MLL4 and UTX histone demethylase are associated with prolonged survival in a subset of GBM patients, potentially by regulating histone methylation on the promoter of the mgmt gene. Thus, the complexity of how histone modifiers contribute to glioblastoma pathology and disease progression is yet to be fully understood. To date, most of the current work on histone modifying enzymes in GBM are centered upon histone H3 demethylase enzymes. In this mini-review, we summarize the current knowledge on the role of histone H3 demethylase enzymes in Glioblastoma tumor biology and therapy resistance. The objective of this work is to highlight the current and future potential areas of research for GBM epigenetics therapy.
Collapse
Affiliation(s)
- Dejauwne Young
- Department of Biochemistry, Albert Einstein College of Medicine, The Bronx, New York City, NY, 10461, USA
- Department of Radiation Oncology, Department of Pathology, Department of Urology, Albert Einstein College of Medicine, The Bronx, New York City, NY, 10461, USA
| | - Chandan Guha
- Department of Radiation Oncology, Department of Pathology, Department of Urology, Albert Einstein College of Medicine, The Bronx, New York City, NY, 10461, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, The Bronx, New York City, NY, 10461, USA.
| |
Collapse
|
42
|
Luo G, Liu B, Fu T, Liu Y, Li B, Li N, Geng Q. The Role of Histone Deacetylases in Acute Lung Injury-Friend or Foe. Int J Mol Sci 2023; 24:ijms24097876. [PMID: 37175583 PMCID: PMC10178380 DOI: 10.3390/ijms24097876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Acute lung injury (ALI), caused by intrapulmonary or extrapulmonary factors such as pneumonia, shock, and sepsis, eventually disrupts the alveolar-capillary barrier, resulting in diffuse pulmonary oedema and microatasis, manifested by refractory hypoxemia, and respiratory distress. Not only is ALI highly lethal, but even if a patient survives, there are also multiple sequelae. Currently, there is no better treatment than supportive care, and we urgently need to find new targets to improve ALI. Histone deacetylases (HDACs) are epigenetically important enzymes that, together with histone acetylases (HATs), regulate the acetylation levels of histones and non-histones. While HDAC inhibitors (HDACis) play a therapeutic role in cancer, inflammatory, and neurodegenerative diseases, there is also a large body of evidence suggesting the potential of HDACs as therapeutic targets in ALI. This review explores the unique mechanisms of HDACs in different cell types of ALI, including macrophages, pulmonary vascular endothelial cells (VECs), alveolar epithelial cells (AECs), and neutrophils.
Collapse
Affiliation(s)
- Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Boyang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
43
|
Sahafnejad Z, Ramazi S, Allahverdi A. An Update of Epigenetic Drugs for the Treatment of Cancers and Brain Diseases: A Comprehensive Review. Genes (Basel) 2023; 14:genes14040873. [PMID: 37107631 PMCID: PMC10137918 DOI: 10.3390/genes14040873] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/28/2022] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Epigenetics has long been recognized as a significant field in biology and is defined as the investigation of any alteration in gene expression patterns that is not attributed to changes in the DNA sequences. Epigenetic marks, including histone modifications, non-coding RNAs, and DNA methylation, play crucial roles in gene regulation. Numerous studies in humans have been carried out on single-nucleotide resolution of DNA methylation, the CpG island, new histone modifications, and genome-wide nucleosome positioning. These studies indicate that epigenetic mutations and aberrant placement of these epigenetic marks play a critical role in causing the disease. Consequently, significant development has occurred in biomedical research in identifying epigenetic mechanisms, their interactions, and changes in health and disease conditions. The purpose of this review article is to provide comprehensive information about the different types of diseases caused by alterations in epigenetic factors such as DNA methylation and histone acetylation or methylation. Recent studies reported that epigenetics could influence the evolution of human cancer via aberrant methylation of gene promoter regions, which is associated with reduced gene function. Furthermore, DNA methyltransferases (DNMTs) in the DNA methylation process as well as histone acetyltransferases (HATs)/histone deacetylases (HDACs) and histone methyltransferases (HMTs)/demethylases (HDMs) in histone modifications play important roles both in the catalysis and inhibition of target gene transcription and in many other DNA processes such as repair, replication, and recombination. Dysfunction in these enzymes leads to epigenetic disorders and, as a result, various diseases such as cancers and brain diseases. Consequently, the knowledge of how to modify aberrant DNA methylation as well as aberrant histone acetylation or methylation via inhibitors by using epigenetic drugs can be a suitable therapeutic approach for a number of diseases. Using the synergistic effects of DNA methylation and histone modification inhibitors, it is hoped that many epigenetic defects will be treated in the future. Numerous studies have demonstrated a link between epigenetic marks and their effects on brain and cancer diseases. Designing appropriate drugs could provide novel strategies for the management of these diseases in the near future.
Collapse
Affiliation(s)
- Zahra Sahafnejad
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| | - Shahin Ramazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| |
Collapse
|
44
|
Singh VK, Kainat KM, Sharma PK. Crosstalk between epigenetics and tumor promoting androgen signaling in prostate cancer. VITAMINS AND HORMONES 2023; 122:253-282. [PMID: 36863797 DOI: 10.1016/bs.vh.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PCa) is one of the major health burdens among all cancer types in men globally. Early diagnosis and efficacious treatment options are highly warranted as far as the incidence of PCa is concerned. Androgen-dependent transcriptional activation of androgen receptor (AR) is central to the prostate tumorigenesis and therefore hormonal ablation therapy remains the first line of treatment for PCa in the clinics. However, the molecular signaling engaged in AR-dependent PCa initiation and progression is infrequent and diverse. Moreover, apart from the genomic changes, non-genomic changes such as epigenetic modifications have also been suggested as critical regulator of PCa development. Among the non-genomic mechanisms, various epigenetic changes such as histones modifications, chromatin methylation and noncoding RNAs regulations etc. play decisive role in the prostate tumorigenesis. Given that epigenetic modifications are reversible using pharmacological modifiers, various promising therapeutic approaches have been designed for the better management of PCa. In this chapter, we discuss the epigenetic control of tumor promoting AR signaling that underlies the mechanism of prostate tumorigenesis and progression. In addition, we have discussed the approaches and opportunities to develop novel epigenetic modifications based therapeutic strategies for targeting PCa including castrate resistant prostate cancer (CRPC).
Collapse
Affiliation(s)
- Vipendra Kumar Singh
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - K M Kainat
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
45
|
Blake MK, O’Connell P, Aldhamen YA. Fundamentals to therapeutics: Epigenetic modulation of CD8 + T Cell exhaustion in the tumor microenvironment. Front Cell Dev Biol 2023; 10:1082195. [PMID: 36684449 PMCID: PMC9846628 DOI: 10.3389/fcell.2022.1082195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
In the setting of chronic antigen exposure in the tumor microenvironment (TME), cytotoxic CD8+ T cells (CTLs) lose their immune surveillance capabilities and ability to clear tumor cells as a result of their differentiation into terminally exhausted CD8+ T cells. Immune checkpoint blockade (ICB) therapies reinvigorate exhausted CD8+ T cells by targeting specific inhibitory receptors, thus promoting their cytolytic activity towards tumor cells. Despite exciting results with ICB therapies, many patients with solid tumors still fail to respond to such therapies and patients who initially respond can develop resistance. Recently, through new sequencing technologies such as the assay for transposase-accessible chromatin with sequencing (ATAC-seq), epigenetics has been appreciated as a contributing factor that enforces T cell differentiation toward exhaustion in the TME. Importantly, specific epigenetic alterations and epigenetic factors have been found to control CD8+ T cell exhaustion phenotypes. In this review, we will explain the background of T cell differentiation and various exhaustion states and discuss how epigenetics play an important role in these processes. Then we will outline specific epigenetic changes and certain epigenetic and transcription factors that are known to contribute to CD8+ T cell exhaustion. We will also discuss the most recent methodologies that are used to study and discover such epigenetic modulations. Finally, we will explain how epigenetic reprogramming is a promising approach that might facilitate the development of novel exhausted T cell-targeting immunotherapies.
Collapse
Affiliation(s)
| | | | - Yasser A. Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
46
|
Guo S, Zhu X, Huang Z, Wei C, Yu J, Zhang L, Feng J, Li M, Li Z. Genomic instability drives tumorigenesis and metastasis and its implications for cancer therapy. Biomed Pharmacother 2023; 157:114036. [PMID: 36436493 DOI: 10.1016/j.biopha.2022.114036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022] Open
Abstract
Genetic instability can be caused by external factors and may also be associated with intracellular damage. At the same time, there is a large body of research investigating the mechanisms by which genetic instability occurs and demonstrating the relationship between genomic stability and tumors. Nowadays, tumorigenesis development is one of the hottest research areas. It is a vital factor affecting tumor treatment. Mechanisms of genomic stability and tumorigenesis development are relatively complex. Researchers have been working on these aspects of research. To explore the research progress of genomic stability and tumorigenesis, development, and treatment, the authors searched PubMed with the keywords "genome instability" "chromosome instability" "DNA damage" "tumor spread" and "cancer treatment". This extracts the information relevant to this study. Results: This review introduces genomic stability, drivers of tumor development, tumor cell characteristics, tumor metastasis, and tumor treatment. Among them, immunotherapy is more important in tumor treatment, which can effectively inhibit tumor metastasis and kill tumor cells. Breakthroughs in tumorigenesis development studies and discoveries in tumor metastasis will provide new therapeutic techniques. New tumor treatment methods can effectively prevent tumor metastasis and improve the cure rate of tumors.
Collapse
Affiliation(s)
- Shihui Guo
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Xiao Zhu
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Ziyuan Huang
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Chuzhong Wei
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Jiaao Yu
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Lin Zhang
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Jinghua Feng
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Mingdong Li
- Department of Gastroenterology, Zibo Central Hospital, Zibo 255000, China.
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| |
Collapse
|
47
|
Li XP, Qu J, Teng XQ, Zhuang HH, Dai YH, Yang Z, Qu Q. The Emerging Role of Super-enhancers as Therapeutic Targets in The Digestive System Tumors. Int J Biol Sci 2023; 19:1036-1048. [PMID: 36923930 PMCID: PMC10008685 DOI: 10.7150/ijbs.78535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/09/2022] [Indexed: 02/05/2023] Open
Abstract
Digestive system tumors include malignancies of the stomach, pancreas, colon, rectum, and the esophagus, and are associated with high morbidity and mortality. Aberrant epigenetic modifications play a vital role in the progression of digestive system tumors. The aberrant transcription of key oncogenes is driven by super-enhancers (SEs), which are characterized by large clusters of enhancers with significantly high density of transcription factors, cofactors, and epigenetic modulatory proteins. The SEs consist of critical epigenetic regulatory elements, which modulate the biological characteristics of digestive system tumors including tumor cell identity and differentiation, tumorigenesis, environmental response, immune response, and chemotherapeutic resistance. The core transcription regulatory loop of the digestive system tumors is complex and a high density of transcription regulatory complexes in the SEs and the crosstalk between SEs and the noncoding RNAs. In this review, we summarized the known characteristics and functions of the SEs in the digestive system tumors. Furthermore, we discuss the oncogenic roles and regulatory mechanisms of SEs in the digestive system tumors. We highlight the role of SE-driven genes, enhancer RNAs (eRNAs), lncRNAs, and miRNAs in the digestive system tumor growth and progression. Finally, we discuss clinical significance of the CRISPR-Cas9 gene editing system and inhibitors of SE-related proteins such as BET and CDK7 as potential cancer therapeutics.
Collapse
Affiliation(s)
- Xiang-Ping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410007, PR China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410007, PR China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha 410011, PR China.,Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, PR China
| | - Xin-Qi Teng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha 410011, PR China
| | - Hai-Hui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha 410011, PR China
| | - Ying-Huan Dai
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Zhi Yang
- Department of Colorectal and Anal Surgery, Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha 410007, PR China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410007, PR China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410007, PR China.,Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, PR China
| |
Collapse
|
48
|
Hymel E, Fisher KW, Farazi PA. Differential methylation patterns in lean and obese non-alcoholic steatohepatitis-associated hepatocellular carcinoma. BMC Cancer 2022; 22:1276. [PMID: 36474183 PMCID: PMC9727966 DOI: 10.1186/s12885-022-10389-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease affects about 24% of the world's population and may progress to nonalcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). While more common in those that are obese, NASH-HCC can develop in lean individuals. The mechanisms by which HCC develops and the role of epigenetic changes in the context of obesity and normal weight are not well understood. METHODS In this study, we used previously generated mouse models of lean and obese HCC using a choline deficient/high trans-fat/fructose/cholesterol diet and a choline supplemented/high trans-fat/fructose/cholesterol diet, respectively, to evaluate methylation differences in HCC progression in lean versus obese mice. Differentially methylated regions were determined using reduced representation bisulfite sequencing. RESULTS A larger number of differentially methylated regions (DMRs) were seen in NASH-HCC progression in the obese mice compared to the non-obese mice. No overlap existed in the DMRs with the largest methylation differences between the two models. In lean NASH-HCC, methylation differences were seen in genes involved with cancer progression and prognosis (including HCC), such as CHCHD2, FSCN1, and ZDHHC12, and lipid metabolism, including PNPLA6 and LDLRAP1. In obese NASH- HCC, methylation differences were seen in genes known to be associated with HCC, including RNF217, GJA8, PTPRE, PSAPL1, and LRRC8D. Genes involved in Wnt-signaling pathways were enriched in hypomethylated DMRs in the obese NASH-HCC. CONCLUSIONS These data suggest that differential methylation may play a role in hepatocarcinogenesis in lean versus obese NASH. Hypomethylation of Wnt signaling pathway-related genes in obese mice may drive progression of HCC, while progression of HCC in lean mice may be driven through other signaling pathways, including lipid metabolism.
Collapse
Affiliation(s)
- Emma Hymel
- grid.266813.80000 0001 0666 4105Department of Epidemiology, University of Nebraska Medical Center, 984395 Nebraska Medical Center, Omaha, NE 68198-4395 USA
| | - Kurt W. Fisher
- grid.266813.80000 0001 0666 4105Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE USA
| | - Paraskevi A. Farazi
- grid.266813.80000 0001 0666 4105Department of Epidemiology, University of Nebraska Medical Center, 984395 Nebraska Medical Center, Omaha, NE 68198-4395 USA
| |
Collapse
|
49
|
Elrakaybi A, Ruess DA, Lübbert M, Quante M, Becker H. Epigenetics in Pancreatic Ductal Adenocarcinoma: Impact on Biology and Utilization in Diagnostics and Treatment. Cancers (Basel) 2022; 14:cancers14235926. [PMID: 36497404 PMCID: PMC9738647 DOI: 10.3390/cancers14235926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with high potential of metastases and therapeutic resistance. Although genetic mutations drive PDAC initiation, they alone do not explain its aggressive nature. Epigenetic mechanisms, including aberrant DNA methylation and histone modifications, significantly contribute to inter- and intratumoral heterogeneity, disease progression and metastasis. Thus, increased understanding of the epigenetic landscape in PDAC could offer new potential biomarkers and tailored therapeutic approaches. In this review, we shed light on the role of epigenetic modifications in PDAC biology and on the potential clinical applications of epigenetic biomarkers in liquid biopsy. In addition, we provide an overview of clinical trials assessing epigenetically targeted treatments alone or in combination with other anticancer therapies to improve outcomes of patients with PDAC.
Collapse
Affiliation(s)
- Asmaa Elrakaybi
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Clinical Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Dietrich A. Ruess
- Department of General and Visceral Surgery, Center of Surgery, Medical Center University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Michael Quante
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
- Department of Gastroenterology and Hepatology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Heiko Becker
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-270-36000
| |
Collapse
|
50
|
Zhang X, Lu M, Zhu J, Zhang C, Wang M. Altered genome‑wide hydroxymethylation analysis for neoadjuvant chemoradiotherapy followed by surgery in esophageal cancer. Exp Ther Med 2022; 25:29. [PMID: 36561617 PMCID: PMC9748644 DOI: 10.3892/etm.2022.11728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
Esophageal cancer has high incidence rate in China. Neoadjuvant chemoradiotherapy (nCRT) has become the standard treatment for esophageal squamous cell carcinoma (ESCC). However, there are few reliable epigenetic parameters for patients with ESCC undergoing neoadjuvant therapy. Genomic extract from tumor tissue was amplified and sequenced using the Illumina HiSeq4000 to quantify genes associated methylation or hydromethylation in 12 patients with ESCC undergoing nCRT. The genome-wide hydroxymethylation were analyzed by methylated and hydroxymethylated DNA immunoprecipitation sequencing by MACS2 software and UCSC RefSeq database. Abnormal DNA methylation was statistically different between nCRT-well (showed a pathological complete response to nCRT) and nCRT-poor (showed incomplete pathological response to nCRT) patients. Levels of ten-eleven translocation 1, 2 and 3 mRNA and protein were higher in tumor tissue in nCRT-well group patients than in nCRT-poor group patients. Illumina HiSeq 4000 sequencing identified 2925 hypo-differentially hydroxymethylated region (DhMRs) and 292 hyper-DhMRs in promoter between nCRT-well and nCRT-poor patients. Biological processes associated with hyper-DhMRs included 'snRNA processing', 'hormone-mediated signaling pathway' and 'cellular response'. Metabolic processes were associated with hypo-DhMRs. These data may explain the functional response to nCRT in patients with abnormal promoter of methylation gene-associated mRNA expression. The present results implied that hyper-DhMRs and hypo-DhMRs affect molecular pathways, such as hippo and Notch signaling pathways, highlighting epigenetic modifications associated with clinical response to nCRT in patients with esophageal cancer.
Collapse
Affiliation(s)
- Xianjing Zhang
- The Second Clinical Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Mingzhu Lu
- Department of Pathology, Changzhou Cancer Hospital, Soochow University, Changzhou, Jiangsu 213032, P.R. China
| | - Jing Zhu
- Department of Laboratory Medicine, Suzhou Science and Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Changsong Zhang
- Department of Laboratory Medicine, Suzhou Science and Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China,Correspondence to: Dr Changsong Zhang, Department of Laboratory Medicine, Suzhou Science and Technology Town Hospital, Gusu School, Nanjing Medical University, 1 Lijiang Road, Suzhou, Jiangsu 215153, P.R. China
| | - Meihua Wang
- Department of Pathology, Changzhou Cancer Hospital, Soochow University, Changzhou, Jiangsu 213032, P.R. China,Correspondence to: Dr Changsong Zhang, Department of Laboratory Medicine, Suzhou Science and Technology Town Hospital, Gusu School, Nanjing Medical University, 1 Lijiang Road, Suzhou, Jiangsu 215153, P.R. China
| |
Collapse
|