1
|
Begemann M, Lengyel A, Pinti E, Kovács ÁF, Fekete G, Stratmann S, Krause J, Elbracht M, Kraft F, Eggermann T. Maternal uniparental disomy of chromosome 7: how chromosome 7-encoded imprinted genes contribute to the Silver-Russell phenotype. Clin Epigenetics 2025; 17:70. [PMID: 40307819 PMCID: PMC12042466 DOI: 10.1186/s13148-025-01867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Silver-Russell syndrome (SRS) is a rare congenital growth disorder which is associated with molecular alterations affecting imprinted regions on chromosome 11p15 and maternal uniparental disomy of chromosome 7 (upd(7)mat). In 11p15, imprinted regions contributing to the SRS phenotype could be identified, whereas on chromosome 7 at least two regions in 7q32 and 7p13 are in discussion as SRS candidate regions. We report on DNA and RNA data from upd(7)mat patients and a monozygotic twin pair with a postnatal SRS phenotype carrying a small intragenic deletion within GRB10 to delineate the contribution of upd(7)mat and imprinted genes on this chromosome to the SRS phenotype. RESULTS Genome sequencing in the monozygotic twins revealed a 18 kb deletion within the paternal allele of the GRB10 gene. Expression of GRB10 in blood of the twins as well as in cells from upd(7)mat and upd(7q)mat patients was not altered, whereas RNAseq indicates noticeable changes of the expression of other genes encoded by chromosomes 7 and other genomic regions. CONCLUSIONS Our data indicate that intrauterine growth restriction as the prenatal phenotype of upd(7)mat is caused by defective paternal alleles of the 7q32 region, as well as by overexpression of the maternal GRB10 allele whereas a defective GRB10 paternal allele does not cause this feature. The altered expression of MEST in 7q32 by upd(7)mat is associated with the complete SRS phenotype, whereas maternalization or deletion of the paternal GRB10 copy and duplication of the chromosomal region 7p12 are associated with a postnatal SRS-like phenotype.
Collapse
Affiliation(s)
- Matthias Begemann
- Medical Faculty, Centre for Human Genetics and Genome Medicine, RWTH University Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Anna Lengyel
- Pediatric Center Tuzolto Street Department, Semmelweis University, Budapest, Hungary
| | - Eva Pinti
- Pediatric Center Tuzolto Street Department, Semmelweis University, Budapest, Hungary
| | - Árpád Ferenc Kovács
- Pediatric Center Tuzolto Street Department, Semmelweis University, Budapest, Hungary
| | - György Fekete
- Pediatric Center Tuzolto Street Department, Semmelweis University, Budapest, Hungary
| | - Svea Stratmann
- Science for Life Laboratory, Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Jeremias Krause
- Medical Faculty, Centre for Human Genetics and Genome Medicine, RWTH University Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Miriam Elbracht
- Medical Faculty, Centre for Human Genetics and Genome Medicine, RWTH University Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Florian Kraft
- Medical Faculty, Centre for Human Genetics and Genome Medicine, RWTH University Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Thomas Eggermann
- Medical Faculty, Centre for Human Genetics and Genome Medicine, RWTH University Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Narusawa H, Ogawa T, Yagasaki H, Nagasaki K, Urakawa T, Saito T, Soneda S, Kinjo S, Sano S, Mamada M, Terashita S, Dateki S, Narumi S, Naiki Y, Horikawa R, Ogata T, Fukami M, Kagami M. Comprehensive Study on Central Precocious Puberty: Molecular and Clinical Analyses in 90 Patients. J Clin Endocrinol Metab 2025; 110:1023-1036. [PMID: 39324648 DOI: 10.1210/clinem/dgae666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/25/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
CONTEXT Defects in MKRN3, DLK1, KISS1, and KISS1R and some disorders, such as Temple syndrome (TS14), cause central precocious puberty (CPP). Recently, pathogenic variants (PVs) in MECP2 have been reported to be associated with CPP. OBJECTIVE We aimed to clarify the contribution of (epi)genetic abnormalities to CPP and clinical and hormonal features in each etiology. METHODS We conducted targeted sequencing for MKRN3, DLK1, MECP2, KISS1, and KISS1R and methylation analysis for screening of imprinting disorders such as TS14 associated with CPP in 90 patients with CPP (no history of brain injuries and negative brain magnetic resonance imaging) and collected their clinical and laboratory data. We measured serum DLK1 levels in 3 patients with TS14 and serum MKRN3 levels in 2 patients with MKRN3 genetic defects, together with some etiology-unknown patients with CPP and controls. RESULTS We detected 8 patients with TS14 (6, epimutation; 1, mosaic maternal uniparental disomy chromosome 14; 1, microdeletion) and 3 patients with MKRN3 genetic defects (1, PV; 1, 13-bp deletion in the 5'-untranslated region [5'-UTR]; 1, microdeletion) with family histories of paternal early puberty. There were no patients with PVs identified in MECP2, KISS1, or KISS1R. We confirmed low serum MKRN3 level in the patient with a deletion in 5'-UTR. The median height at initial evaluation of TS14 patients was lower than that of all patients. Six patients with TS14 were born small for gestational age (SGA). CONCLUSION (Epi)genetic causes were identified in 12.2% of patients with CPP at our center. For patients with CPP born SGA or together with family histories of paternal early puberty, (epi)genetic testing for TS14 and MKRN3 genetic defects should be considered.
Collapse
Affiliation(s)
- Hiromune Narusawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| | - Tomoe Ogawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Hideaki Yagasaki
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| | - Keisuke Nagasaki
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8510, Japan
| | - Tatsuki Urakawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Tomohiro Saito
- Department of Pediatrics, Yamanashi Prefectural Central Hospital, Kofu 400-0027, Japan
| | - Shun Soneda
- Tanaka Growth Clinic, Tokyo 158-0097, Japan
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki 216-0015, Japan
| | - Saori Kinjo
- Department of Pediatrics, Okinawa Chubu Hospital, Uruma 904-2293, Japan
| | - Shinichiro Sano
- Department of Pediatric Endocrinology and Metabolism, Shizuoka Children's Hospital, Shizuoka 420-0953, Japan
| | - Mitsukazu Mamada
- Department of Pediatrics, Japanese Red Cross Wakayama Medical Center, Wakayama 640-8558, Japan
| | - Shintaro Terashita
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Sumito Dateki
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Yasuhiro Naiki
- Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Reiko Horikawa
- Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Tsutomu Ogata
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu 432-8580, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
3
|
Kessler L, Krause J, Kraft F, Amin AK, Fekete G, Lengyel A, Pinti E, Kovacs A, Lischka A, Eggermann K, Kurth I, Knopp C, Elbracht M, Begemann M, Eggermann T. Diagnostic Use of Genome Sequencing in Patients With 11p15.5 Imprinting Disorder Features: A Pilot Study. Clin Genet 2025; 107:278-291. [PMID: 39663844 PMCID: PMC11790513 DOI: 10.1111/cge.14649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
To assess the suitability of genome sequencing (GS) as the second step in the diagnostics of patients with the features of 11p15.5-associated imprinting disorders (ImpDis: Silver-Russell syndrome [SRS], Beckwith-Wiedemann syndrome [BWS]), we performed short-read GS in patients negatively tested for imprinting disturbances. Obtaining a genetic diagnosis for patients with the features of these syndromes is challenging due to the clinical and molecular heterogeneity and overlap, and many patients remain undiagnosed after the currently suggested stepwise diagnostic workup. GS was conducted in 48 patients (SRS features: n = 37 and BWS features: n = 11). The detection rate differed markedly between the ImpDis: although a genetic cause could be identified in 51% of patients referred with SRS features, no pathogenic variants were detected in patients with BWS features. Thus, GS substantially improves the diagnostic yield and broadens the spectrum of overlapping disorders with SRS features. Obtaining a precise molecular diagnosis provides the basis for a personalized clinical management. Our findings support the use of GS as a second-tier diagnostic tool for patients with growth disturbances, as it addresses all currently known variant types and shortens the diagnostic odyssey.
Collapse
Affiliation(s)
- Luise Kessler
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Jeremias Krause
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Florian Kraft
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Asmaa K. Amin
- Department of Human Genetics, Medical Research InstituteAlexandria UniversityAlexandriaEgypt
| | - Gyorgy Fekete
- 2nd Department of PediatricsSemmelweis UniversityBudapestHungary
| | - Anna Lengyel
- 2nd Department of PediatricsSemmelweis UniversityBudapestHungary
| | - Eva Pinti
- 2nd Department of PediatricsSemmelweis UniversityBudapestHungary
| | - Arpad Kovacs
- 2nd Department of PediatricsSemmelweis UniversityBudapestHungary
| | - Annette Lischka
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Katja Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Thomas Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
4
|
Paschal CR, Zalusky MPG, Beck AE, Gillentine MA, Narayanan J, Damaraju N, Goffena J, Storz SHR, Miller DE. Concordance of Whole-Genome Long-Read Sequencing with Standard Clinical Testing for Prader-Willi and Angelman Syndromes. J Mol Diagn 2025; 27:166-176. [PMID: 39756651 PMCID: PMC11881775 DOI: 10.1016/j.jmoldx.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/27/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Current clinical testing approaches for individuals with suspected imprinting disorders are complex, often requiring multiple tests performed in a stepwise manner to make a precise molecular diagnosis. We investigated whether whole-genome long-read sequencing could be used as a single data source to simultaneously evaluate copy number variants, single-nucleotide variants, structural variants, and differences in methylation in a cohort of individuals known to have either Prader-Willi or Angelman syndrome. Twenty-five individuals sequenced to an average depth of coverage of 36× on an Oxford Nanopore Technologies PromethION were evaluated. A custom one-page report was generated that could be used to assess copy number, single-nucleotide variants, and methylation patterns at select CpG sites within the 15q11.2-q13.1 region and prioritize candidate pathogenic variants in UBE3A. After training with three positive controls, three analysts blinded to the known clinical diagnosis arrived at the correct molecular diagnosis for 22 of 22 cases (20 true positive, 2 negative controls). Our findings demonstrate the utility of long-read sequencing as a single, comprehensive data source for complex clinical testing, offering potential benefits, such as reduced testing costs, increased diagnostic yield, and shorter turnaround times, in the clinical laboratory.
Collapse
Affiliation(s)
- Cate R Paschal
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington; Department of Laboratory Medicine and Pathology, University of Washington and Seattle Children's Hospital, Seattle, Washington
| | - Miranda P G Zalusky
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington
| | - Anita E Beck
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington
| | | | - Jaya Narayanan
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington
| | - Nikhita Damaraju
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington; Institute for Public Health Genetics, University of Washington, Seattle, Washington
| | - Joy Goffena
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington
| | - Sophie H R Storz
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington
| | - Danny E Miller
- Department of Laboratory Medicine and Pathology, University of Washington and Seattle Children's Hospital, Seattle, Washington; Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington; Department of Genome Sciences, University of Washington, Seattle, Washington; Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
5
|
Stacey AW, Nakamichi K, Huey J, Stevens J, Waligorski N, Crotty EE, Van Gelder RN, Mustafi D. Prognostic importance of direct assignment of parent of origin via long-read genome and epigenome sequencing in retinoblastoma. JCI Insight 2024; 10:e188216. [PMID: 39724000 PMCID: PMC11949030 DOI: 10.1172/jci.insight.188216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUNDCurrent clinical sequencing methods cannot effectively detect DNA methylation and allele-specific variation to provide parent-of-origin information from the proband alone. Parent-of-origin effects can lead to differential disease, and the inability to assign parent of origin in de novo cases limits prognostication in the majority of affected individuals with retinoblastoma, a hereditary cancer with suspected parent-of-origin effects.METHODSTo directly assign parent of origin in patients with retinoblastoma, we extracted genomic DNA from blood samples for sequencing using a programmable, targeted, single-molecule, long-read DNA genomic and epigenomic approach. This allowed germline variant calling and simultaneous haplotype-resolved CpG methylation in participants with familial (n = 7) and de novo (n = 9) retinoblastoma.RESULTSTargeted long-read sequencing allowed phasing genomic variation with a differentially methylated region in intron 2 of the retinoblastoma gene to confirm parent of origin in known familial samples. This approach allowed us to directly assign parent of origin in simple and complex de novo cases from the proband alone. The ability to assign parent of origin in all retinoblastoma cases showed that harboring disease-causing variants on the paternally inherited allele, whether arising familially or de novo, was associated with more advanced cancer staging at presentation and significantly greater risk of chemotherapy failure (P = 0.002).CONCLUSIONThis study demonstrates the diagnostic potential of multiomic long-read profiling to unveil the parent-of-origin effect in hereditary cancer. The approach in this work will be instrumental in assigning parent of origin to other genetic diseases using local and distant imprinting signals in the genome.FUNDINGNational Eye Institute, NIH; Gerber Foundation; Research to Prevent Blindness; Angie Karalis Johnson Fund; Dawn's Light Foundation; and Mark J. Daily, MD Research Fund.
Collapse
Affiliation(s)
- Andrew W. Stacey
- Department of Ophthalmology and Roger and Angie Karalis Johnson Retina Center, University of Washington, Seattle, Washington, USA
- Division of Ophthalmology, Seattle Children’s Hospital, Seattle, Washington, USA
- Fred Hutch Cancer Consortium, Seattle, Washington, USA
| | - Kenji Nakamichi
- Department of Ophthalmology and Roger and Angie Karalis Johnson Retina Center, University of Washington, Seattle, Washington, USA
| | - Jennifer Huey
- Department of Ophthalmology and Roger and Angie Karalis Johnson Retina Center, University of Washington, Seattle, Washington, USA
| | | | - Natalie Waligorski
- Division of Genetic Medicine, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Erin E. Crotty
- Fred Hutch Cancer Consortium, Seattle, Washington, USA
- Division of Hematology, Oncology, Bone Marrow Transplant, and Cellular Therapy, Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, Washington, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Russell N. Van Gelder
- Department of Ophthalmology and Roger and Angie Karalis Johnson Retina Center, University of Washington, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology and Biological Structure, University of Washington, Seattle, Washington, USA
| | - Debarshi Mustafi
- Department of Ophthalmology and Roger and Angie Karalis Johnson Retina Center, University of Washington, Seattle, Washington, USA
- Division of Ophthalmology, Seattle Children’s Hospital, Seattle, Washington, USA
- Fred Hutch Cancer Consortium, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| |
Collapse
|
6
|
Hong S, Wei H, Zhuang X, Huang W, Zhang Y. Prenatal diagnosis of a silver-russell syndrome caused by 11p15 duplication and pedigree analysis. Front Genet 2024; 15:1465521. [PMID: 39741906 PMCID: PMC11686225 DOI: 10.3389/fgene.2024.1465521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Silver-Russell syndrome (SRS) is an imprinting disorder characterized by intrauterine and postnatal growth retardation. The pathogenic alterations and phenotypes are heterogeneous. Methods Here, we present a rare pedigree of duplications with different methylation patterns in 11p15.5, which caused SRS or a normal phenotype across three generations. Results Duplications of maternal IC2 (copy number of 3) with enhanced methylation (methylation index of 0.62) resulted in typical SRS. Conclusion The result added to the complexity of the molecular genetics of SRS.
Collapse
Affiliation(s)
- Shurong Hong
- Department of Molecular Genetic Center, Zhangzhou Municipal Hospital Affiliated to Fujian Medical University, Zhangzhou, China
| | - Hua Wei
- Department of Molecular Genetic Center, Zhangzhou Municipal Hospital Affiliated to Fujian Medical University, Zhangzhou, China
| | - Xueyi Zhuang
- Department of Obstetrics, Zhangzhou Municipal Hospital Affiliated to Fujian Medical University, Zhangzhou, China
| | - Weirong Huang
- Department of Molecular Genetic Center, Zhangzhou Municipal Hospital Affiliated to Fujian Medical University, Zhangzhou, China
| | - Yu Zhang
- Department of Obstetrics, Zhangzhou Municipal Hospital Affiliated to Fujian Medical University, Zhangzhou, China
| |
Collapse
|
7
|
Yordanova N, Iotova V, Mackay DJG, Temple IK, Stoyanova S, Hachmeriyan M. Long-term Follow-up of a Late Diagnosed Patient with Temple Syndrome. J Clin Res Pediatr Endocrinol 2024; 16:475-480. [PMID: 36728278 PMCID: PMC11629717 DOI: 10.4274/jcrpe.galenos.2022.2022-9-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/13/2022] [Indexed: 02/03/2023] Open
Abstract
Temple syndrome is a rare imprinting disorder, caused by alterations in the critical imprinted region 14q32 of chromosome 14. It is characterized by pre- and postnatal growth retardation, truncal hypotonia and facial dysmorphism in the neonatal period. We report an 18-year-old girl with a late diagnosis of Temple syndrome presenting with all typical signs and symptoms including small for gestational age at birth, feeding difficulties, muscle hypotonia and delayed developmental milestones, central precocious puberty, truncal obesity and reduced growth. The patient is the second reported in the literature with signs of clinical and biochemical hyperandrogenism and the first treated with Dehydrocortisone®, with a good response. The clinical diagnosis of this patient was made after long-term follow up at a single center for rare endocrine diseases, and a molecular genetics diagnosis of complete hypomethylation of 14q32 chromosome imprinting center (DLK/GTL2) was recently established. Growth hormone treatment was not given and although precocious puberty was treated in line with standard protocols, her final height remained below the target range. Increased awareness of Temple syndrome and timely molecular diagnosis enables improvement of clinical care of these patients as well as prevention of inherent metabolic consequences.
Collapse
Affiliation(s)
| | - Violeta Iotova
- Medical University-Varna, Department of Pediatrics, Varna, Bulgaria
| | - Deborah J. G. Mackay
- Wessex Regional Genetics Laboratory, Salisbury Foundation NHS Trust, Salisbury, United Kingdom
- University of Southampton Faculty of Medicine, Department of Medical Genetics, Southampton, United Kingdom
| | - I. Karen Temple
- University of Southampton Faculty of Medicine, Department of Medical Genetics, Southampton, United Kingdom
| | - Sara Stoyanova
- Medical University-Varna, Department of Pediatrics, Varna, Bulgaria
| | - Mari Hachmeriyan
- Medical University, Department of Medical Genetics, Varna, Bulgaria
| |
Collapse
|
8
|
Urakawa T, Soejima H, Yamoto K, Hara-Isono K, Nakamura A, Kawashima S, Narusawa H, Kosaki R, Nishimura Y, Yamazawa K, Hattori T, Muramatsu Y, Inoue T, Matsubara K, Fukami M, Saitoh S, Ogata T, Kagami M. Comprehensive molecular and clinical findings in 29 patients with multi-locus imprinting disturbance. Clin Epigenetics 2024; 16:138. [PMID: 39369220 PMCID: PMC11452994 DOI: 10.1186/s13148-024-01744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Multi-locus imprinting disturbance (MLID) with methylation defects in various differentially methylated regions (DMRs) has recently been identified in approximately 150 cases with imprinting disorders (IDs), and deleterious variants have been found in genes related to methylation maintenance of DMRs, such as those encoding proteins constructing the subcortical maternal complex (SCMC), in a small fraction of patients and/or their mothers. However, integrated methylation analysis for DMRs and sequence analysis for MLID-causative genes in MLID cases and their mothers have been performed only in a single study focusing on Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) phenotypes. RESULTS Of 783 patients with various IDs we have identified to date, we examined a total of 386 patients with confirmed epimutation and 71 patients with epimutation or uniparental disomy. Consequently, we identified MLID in 29 patients with epimutation confirmed by methylation analysis for multiple ID-associated DMRs using pyrosequencing and/or methylation-specific multiple ligation-dependent probe amplification. MLID was detected in approximately 12% of patients with BWS phenotype and approximately 5% of patients with SRS phenotype, but not in patients with Kagami-Ogata syndrome, Prader-Willi syndrome, or Angelman syndrome phenotypes. We next conducted array-based methylation analysis for 78 DMRs and whole-exome sequencing in the 29 patients, revealing hypomethylation-dominant aberrant methylation patterns in various DMRs of all the patients, eight probably deleterious variants in genes for SCMC in the mothers of patients, and one homozygous deleterious variant in ZNF445 in one patient. These variants did not show gene-specific methylation disturbance patterns. Clinically, neurodevelopmental delay and/or intellectual developmental disorder (ND/IDD) was observed in about half of the MLID patients, with no association with the identified methylation disturbance patterns and genetic variants. Notably, seven patients with BWS phenotype were conceived by assisted reproductive technology (ART). CONCLUSIONS The frequency of MLID was 7.5% (29/386) in IDs caused by confirmed epimutation. Furthermore, we revealed diverse patterns of hypomethylation-dominant methylation defects, nine deleterious variants, ND/IDD complications in about half of the MLID patients, and a high frequency of MLID in ART-conceived patients.
Collapse
Affiliation(s)
- Tatsuki Urakawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8102, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-0937, Japan
| | - Kaori Yamoto
- Department of Biochemistry, Hamamatsu University School of Medicine, 1‑20‑1 Handayama, Higashi‑ku, Hamamatsu, 431‑3192, Japan
| | - Kaori Hara-Isono
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Sayaka Kawashima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Hiromune Narusawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Rika Kosaki
- Department of Medical Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Yutaka Nishimura
- Department of Neonatology, Hiroshima City Hiroshima Citizens Hospital, 7-33 Motomachi, Naka-Ku, Hiroshima, 730-8518, Japan
| | - Kazuki Yamazawa
- Medical Genetics Center, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan
| | - Tetsuo Hattori
- Department of Pediatrics, Anjo Kosei Hospital, 28 Higashihirokute, Anjo, 446-8602, Japan
| | - Yukako Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Shouwa‑ku, Nagoya, 466‑8560, Japan
| | - Takanobu Inoue
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
- Center for Medical Genetics, Chiba Children's Hospital, 579-1 Heta, Midori-Ku, Chiba, 266-0007, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Tsutomu Ogata
- Department of Biochemistry, Hamamatsu University School of Medicine, 1‑20‑1 Handayama, Higashi‑ku, Hamamatsu, 431‑3192, Japan
- Department of Pediatrics, Hamamatsu Medical Center, 328 Tomizuka-Cho, Chuo-Ku, Hamamatsu, 432-8580, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan.
| |
Collapse
|
9
|
Mackay DJG, Gazdagh G, Monk D, Brioude F, Giabicani E, Krzyzewska IM, Kalish JM, Maas SM, Kagami M, Beygo J, Kahre T, Tenorio-Castano J, Ambrozaitytė L, Burnytė B, Cerrato F, Davies JH, Ferrero GB, Fjodorova O, Manero-Azua A, Pereda A, Russo S, Tannorella P, Temple KI, Õunap K, Riccio A, de Nanclares GP, Maher ER, Lapunzina P, Netchine I, Eggermann T, Bliek J, Tümer Z. Multi-locus imprinting disturbance (MLID): interim joint statement for clinical and molecular diagnosis. Clin Epigenetics 2024; 16:99. [PMID: 39090763 PMCID: PMC11295890 DOI: 10.1186/s13148-024-01713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Imprinting disorders are rare diseases resulting from altered expression of imprinted genes, which exhibit parent-of-origin-specific expression patterns regulated through differential DNA methylation. A subgroup of patients with imprinting disorders have DNA methylation changes at multiple imprinted loci, a condition referred to as multi-locus imprinting disturbance (MLID). MLID is recognised in most but not all imprinting disorders and is also found in individuals with atypical clinical features; the presence of MLID often alters the management or prognosis of the affected person. Some cases of MLID are caused by trans-acting genetic variants, frequently not in the patients but their mothers, which have counselling implications. There is currently no consensus on the definition of MLID, clinical indications prompting testing, molecular procedures and methods for epigenetic and genetic diagnosis, recommendations for laboratory reporting, considerations for counselling, and implications for prognosis and management. The purpose of this study is thus to cover this unmet need. METHODS A comprehensive literature search was conducted resulting in identification of more than 100 articles which formed the basis of discussions by two working groups focusing on clinical diagnosis (n = 12 members) and molecular testing (n = 19 members). Following eight months of preparations and regular online discussions, the experts from 11 countries compiled the preliminary documentation and determined the questions to be addressed during a face-to-face meeting which was held with the attendance of the experts together with four representatives of patient advocacy organisations. RESULTS In light of available evidence and expert consensus, we formulated 16 propositions and 8 recommendations as interim guidance for the clinical and molecular diagnosis of MLID. CONCLUSIONS MLID is a molecular designation, and for patients with MLID and atypical phenotypes, we propose the alternative term multi-locus imprinting syndrome. Due to the intrinsic variability of MLID, the guidelines underscore the importance of involving experts from various fields to ensure a confident approach to diagnosis, counselling, and care. The authors advocate for global, collaborative efforts in both basic and translational research to tackle numerous crucial questions that currently lack answers, and suggest reconvening within the next 3-5 years to evaluate the research advancements and update this guidance as needed.
Collapse
Affiliation(s)
| | - Gabriella Gazdagh
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Trust, Southampton, UK
| | - David Monk
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Frederic Brioude
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Eloise Giabicani
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Izabela M Krzyzewska
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Departments of Pediatrics and Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Saskia M Maas
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Jasmin Beygo
- Institut Für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Tiina Kahre
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Jair Tenorio-Castano
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
| | - Laima Ambrozaitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Birutė Burnytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Justin H Davies
- Faculty of Medicine, University of Southampton, Southampton, UK
- Regional Centre for Paediatric Endocrinology, Faculty of Medicine, Southampton Children's Hospital, University of Southampton, Southampton, UK
| | - Giovanni Battista Ferrero
- Department of Clinical and Biological Science, School of Medicine, Centre for Hemoglobinopathies, AOU San Luigi Gonzaga, University of Turin, Turin, Italy
| | - Olga Fjodorova
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Africa Manero-Azua
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Arrate Pereda
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Silvia Russo
- IRCCS Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - Pierpaola Tannorella
- IRCCS Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - Karen I Temple
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Trust, Southampton, UK
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
- Institute of Genetics and Biophysics (IGB),"Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Eamonn R Maher
- Aston Medical School, Aston University, Birmingham, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
| | - Irène Netchine
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Thomas Eggermann
- Institute for Human Genetics and Genome Medicine. Faculty of Medicine, RWTH University Aachen, Aachen, Germany
| | - Jet Bliek
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Zeynep Tümer
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Olivucci G, Iovino E, Innella G, Turchetti D, Pippucci T, Magini P. Long read sequencing on its way to the routine diagnostics of genetic diseases. Front Genet 2024; 15:1374860. [PMID: 38510277 PMCID: PMC10951082 DOI: 10.3389/fgene.2024.1374860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The clinical application of technological progress in the identification of DNA alterations has always led to improvements of diagnostic yields in genetic medicine. At chromosome side, from cytogenetic techniques evaluating number and gross structural defects to genomic microarrays detecting cryptic copy number variants, and at molecular level, from Sanger method studying the nucleotide sequence of single genes to the high-throughput next-generation sequencing (NGS) technologies, resolution and sensitivity progressively increased expanding considerably the range of detectable DNA anomalies and alongside of Mendelian disorders with known genetic causes. However, particular genomic regions (i.e., repetitive and GC-rich sequences) are inefficiently analyzed by standard genetic tests, still relying on laborious, time-consuming and low-sensitive approaches (i.e., southern-blot for repeat expansion or long-PCR for genes with highly homologous pseudogenes), accounting for at least part of the patients with undiagnosed genetic disorders. Third generation sequencing, generating long reads with improved mappability, is more suitable for the detection of structural alterations and defects in hardly accessible genomic regions. Although recently implemented and not yet clinically available, long read sequencing (LRS) technologies have already shown their potential in genetic medicine research that might greatly impact on diagnostic yield and reporting times, through their translation to clinical settings. The main investigated LRS application concerns the identification of structural variants and repeat expansions, probably because techniques for their detection have not evolved as rapidly as those dedicated to single nucleotide variants (SNV) identification: gold standard analyses are karyotyping and microarrays for balanced and unbalanced chromosome rearrangements, respectively, and southern blot and repeat-primed PCR for the amplification and sizing of expanded alleles, impaired by limited resolution and sensitivity that have not been significantly improved by the advent of NGS. Nevertheless, more recently, with the increased accuracy provided by the latest product releases, LRS has been tested also for SNV detection, especially in genes with highly homologous pseudogenes and for haplotype reconstruction to assess the parental origin of alleles with de novo pathogenic variants. We provide a review of relevant recent scientific papers exploring LRS potential in the diagnosis of genetic diseases and its potential future applications in routine genetic testing.
Collapse
Affiliation(s)
- Giulia Olivucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - Emanuela Iovino
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Innella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pamela Magini
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
11
|
Martins JMES, Braga BL, Sampaio KNF, de Souza Garcia T, Van de Sande Lee J, Cechinel E, Simoni G, Nascimento ML, da Silva PCA, Fragoso MCV, Bachega TAAS, Nishi MY, Mendonca BB. Beckwith-Wiedemann syndrome mimicking the classical form of congenital adrenal hyperplasia in newborn screening. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e220395. [PMID: 38427811 PMCID: PMC10948032 DOI: 10.20945/2359-4292-2022-0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/24/2023] [Indexed: 03/03/2024]
Abstract
Beckwith-Wiedemann syndrome (BWS) is a common genetic congenital disease characterized by somatic overgrowth and its broad clinical spectrum includes pre- and post-natal macrosomia, macroglossia, visceromegaly, increased risk of neonatal hypoglycemia, and development of embryonic tumors. BWS occurs due to genetic/epigenetic changes involving growth-regulating genes, located on region 11p15, with an important genotype-phenotype correlation. Congenital adrenal hyperplasia (CAH) comprises a spectrum of autosomal recessive diseases presenting a variety of clinical manifestations due to a deficiency in one of the enzymes involved in cortisol secretion. Early diagnosis based on newborn screening prevents the adrenal crisis and early infant death. However, high 17-hydroxyprogesterone (17-OHP) levels can occur in newborns or premature infants without CAH, in situations of stress due to maternal or neonatal factors. Here, we report new cases of false-positive diagnosis of 21-hydroxylase deficiency during newborn screening - two girls and one boy with BWS. Methylation-specific multiplex ligation-dependent probe amplification revealed a gain of methylation in the H19 differentially methylated region. Notably, all three cases showed a complete normalization of biochemical changes, highlighting the transient nature of these hormonal findings that imitate the classical form of CAH. This report sheds light on a new cause of false-positive 21-hydroxylase deficiency diagnosis during newborn screening: Beckwith-Wiedemann syndrome.
Collapse
Affiliation(s)
| | - Barbara Leitao Braga
- Departamento de Endocrinologia do Desenvolvimento, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil,
| | - Klevia Nunes Feitosa Sampaio
- Departamento de Endocrinologia do Desenvolvimento, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | | - Edson Cechinel
- Hospital Infantil Joana de Gusmão, Florianópolis, SC, Brasil
| | - Genoir Simoni
- Hospital Infantil Joana de Gusmão, Florianópolis, SC, Brasil
| | | | | | - Maria C V Fragoso
- Departamento de Endocrinologia do Desenvolvimento, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Tania A A S Bachega
- Departamento de Endocrinologia do Desenvolvimento, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Mirian Y Nishi
- Departamento de Endocrinologia do Desenvolvimento, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Berenice B Mendonca
- Departamento de Endocrinologia do Desenvolvimento, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
12
|
Alhendi ASN, Gazdagh G, Lim D, McMullan D, Wright M, Temple IK, Davies JH, Mackay DJG. A case of mosaic deletion of paternally-inherited PLAGL1 and two cases of upd(6)mat add to evidence for PLAGL1 under-expression as a cause of growth restriction. Am J Med Genet A 2024; 194:383-388. [PMID: 37850521 DOI: 10.1002/ajmg.a.63448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023]
Abstract
PLAGL1 is one of a group of imprinted genes, whose altered expression causes imprinting disorders impacting growth, development, metabolism, and behavior. PLAGL1 over-expression causes transient neonatal diabetes mellitus (TNDM type 1) and, based on murine models, under-expression would be expected to cause growth restriction. However, only some reported individuals with upd(6)mat have growth restriction, giving rise to uncertainty about the role of PLAGL1 in human growth. Here we report three individuals investigated for growth restriction, two with upd(6)mat and one with a mosaic deletion of the paternally-inherited allele of PLAGL1. These cases add to evidence of its involvement in pre- and early post-natal human growth.
Collapse
Affiliation(s)
| | - Gabriella Gazdagh
- Faculty of Medicine, University of Southampton, UK
- University Hospital Southampton, UK
| | - Derek Lim
- Birmingham Women's and Children's Foundation Trust, UK
| | | | | | - I Karen Temple
- Faculty of Medicine, University of Southampton, UK
- University Hospital Southampton, UK
| | - Justin H Davies
- Faculty of Medicine, University of Southampton, UK
- University Hospital Southampton, UK
| | | |
Collapse
|
13
|
Eggermann T. Human Reproduction and Disturbed Genomic Imprinting. Genes (Basel) 2024; 15:163. [PMID: 38397153 PMCID: PMC10888310 DOI: 10.3390/genes15020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Genomic imprinting is a specific mode of gene regulation which particularly accounts for the factors involved in development. Its disturbance affects the fetus, the course of pregnancy and even the health of the mother. In children, aberrant imprinting signatures are associated with imprinting disorders (ImpDis). These alterations also affect the function of the placenta, which has consequences for the course of the pregnancy. The molecular causes of ImpDis comprise changes at the DNA level and methylation disturbances (imprinting defects/ImpDefs), and there is an increasing number of reports of both pathogenic fetal and maternal DNA variants causing ImpDefs. These ImpDefs can be inherited, but prediction of the pregnancy complications caused is difficult, as they can cause miscarriages, aneuploidies, health issues for the mother and ImpDis in the child. Due to the complexity of imprinting regulation, each pregnancy or patient with suspected altered genomic imprinting requires a specific workup to identify the precise molecular cause and also careful clinical documentation. This review will cover the current knowledge on the molecular causes of aberrant imprinting signatures and illustrate the need to identify this basis as the prerequisite for personalized genetic and reproductive counselling of families.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH University Aachen, Pauwelsstr. 3, D-52074 Aachen, Germany
| |
Collapse
|
14
|
Jiang Y, Xiao YX, Xiong JJ, Zhang VW, Dong C, Xu L, Liu F. Maternal uniparental disomy for chromosome 6 in 2 prenatal cases with IUGR: case report and literature review. Mol Cytogenet 2024; 17:1. [PMID: 38173004 PMCID: PMC10765649 DOI: 10.1186/s13039-023-00670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Uniparental disomy (UPD) is a rare genetic condition leading to potential disease risks. Maternal UPD of chromosome 6 upd(6)mat is exceptionally rare, with limited cases reported. This study reported two new cases of upd(6)mat and reviewed the literature of previous cases. CASE PRESENTATION Both cases exhibited intrauterine growth restriction (IUGR), and genetic analysis confirmed upd(6)mat in each case. The literature review identified a total of 19 cases. IUGR and preterm labor were the most common two symptoms observed, and additional anomalies and genetic variations were also reported in some cases. CONCLUSION upd(6)mat is potentially associatied with IUGR, but the precise genotype-phenotype relationship remains unclear. The cases with upd(6)mat may present clinical features due to imprinting disorders.
Collapse
Affiliation(s)
- Yan Jiang
- Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Xue Xiao
- Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiao Jiao Xiong
- Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | | | | | - Lei Xu
- AmCare Genomics Lab, Guangzhou, China
| | - Fang Liu
- Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Schlaich E, Hubens WHG, Eggermann T. First-time application of droplet digital PCR for methylation testing of the 11p15.5 imprinting regions. Mol Genet Genomic Med 2023; 11:e2264. [PMID: 37519217 PMCID: PMC10724498 DOI: 10.1002/mgg3.2264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Beckwith-Wiedemann syndrome and Silver-Russel syndrome are two imprinting disorders caused by opposite molecular alterations in 11p15.5. With the current diagnostic tests, their molecular diagnosis is challenging due to molecular heterogeneity and mosaic occurrence of the most frequent alterations. As the determination of precise (epi)genotype of patients is relevant as the basis for a personalized treatment, different approaches are needed to increase the sensitivity of diagnostic testing of imprinting disorders. METHODS We established methylation-specific droplet digital PCR approaches (MS-ddPCR) for the two imprinting centers in 11p15.5, and analyzed patients with paternal uniparental disomy of chromosome 11p15.5 (upd(11)pat) and other imprinting defects in the region. The results were compared to those from MS-MLPA (multiplex ligation-dependent probe amplification) and MS-pyrosequencing. RESULTS MS-ddPCR confirmed the molecular alterations in all patients and the results matched well with MS-MLPA. The results of MS-pyrosequencing varied between different runs, whereas MS-ddPCR results were reproducible. CONCLUSION We show for the first time that MS-ddPCR is a reliable and easy applicable method for determination of MS-associated changes in imprinting disorders. It is therefore an additional tool for multimethod diagnostics of imprinting disorders suitable to improve the diagnostic yield.
Collapse
Affiliation(s)
- Elia Schlaich
- Institute for Human Genetics and Genome Medicine, Medical Faculty, RWTH Aachen UniversityAachenGermany
| | - Wouter H. G. Hubens
- Institute for Stem Cell Biology, Medical Faculty, RWTH Aachen UniversityAachenGermany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen UniversityAachenGermany
| | - Thomas Eggermann
- Institute for Human Genetics and Genome Medicine, Medical Faculty, RWTH Aachen UniversityAachenGermany
| |
Collapse
|
16
|
Manero-Azua A, Pereda A, Llano-Rivas I, Garin I, Perez de Nanclares G. Incidental finding at methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA): how to proceed? Front Genet 2023; 14:1274056. [PMID: 37854056 PMCID: PMC10580081 DOI: 10.3389/fgene.2023.1274056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction: Since the advent of new generation sequencing, professionals are aware of the possibility of obtaining findings unrelated to the pathology under study. However, this possibility is usually forgotten in the case of studies aimed at a single gene or region. We report a case of a 16-month-old girl with clinical suspicion of Silver-Russell syndrome (SRS). Methods: Following the international SRS consensus, methylation alterations and copy number variations (CNVs) at 11p15 region and maternal uniparental disomy of chromosome 7 were analysed and discarded by MS-MLPA. Results: Unexpectedly, the 11p15 region MS-MLPA showed a decrease in the signal of a copy number reference probe. Deletions affecting a single probe are inconclusive. So, we faced the ethical dilemma of whether it was appropriate to confirm this alteration with independent techniques and to offer a diagnostic possibility that was in no way related to clinical suspicion. Fortunately, in this particular case, the informed consent had not been specific to a particular pathology but to any disorder associated with growth failure. Performed alternative studies allowed the final diagnosis of 22q deletion syndrome. Conclusion: We demonstrate the importance of informing patients about the possibility of obtaining incidental findings in genetic techniques (not only in next generation sequencing) during pre-test genetic counselling consultations. In addition, we highlight the relevance of including in the informed consent the option of knowing these unexpected incidental findings as in some cases, this will help to elucidate the definitive diagnosis and provide the correct follow-up and treatment.
Collapse
Affiliation(s)
- Africa Manero-Azua
- Rare Diseases Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Arrate Pereda
- Rare Diseases Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Isabel Llano-Rivas
- Service of Genetics, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain
| | - Intza Garin
- Service of Genetics, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| |
Collapse
|
17
|
Cheng L, Guo Z, Lin Y, Wei X, Zhao K, Yang Z. Bovine Serum Albumin Molecularly Imprinted Electrochemical Sensors Modified by Carboxylated Multi-Walled Carbon Nanotubes/CaAlg Hydrogels. Gels 2023; 9:673. [PMID: 37623128 PMCID: PMC10454541 DOI: 10.3390/gels9080673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
In this paper, sodium alginate (NaAlg) was used as functional monomers, bovine serum albumin (BSA) was used as template molecules, and calcium chloride (CaCl2) aqueous solution was used as a cross-linking agent to prepare BSA molecularly imprinted carboxylated multi-wall carbon nanotubes (CMWCNT)/CaAlg hydrogel films (MIPs) and non-imprinted hydrogel films (NIPs). The adsorption capacity of the MIP film for BSA was 27.23 mg/g and the imprinting efficiency was 2.73. The MIP and NIP hydrogel film were loaded on the surface of the printed electrode, and electrochemical performance tests were carried out by electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) using the electrochemical workstation. The loaded MIP film and NIP film effectively improved the electrochemical signal of the bare carbon electrode. When the pH value of the Tris HCl elution solution was 7.4, the elution time was 15 min and the adsorption time was 15 min, and the peak currents of MIP-modified electrodes and NIP-modified electrodes reached their maximum values. There was a specific interaction between MIP-modified electrodes and BSA, exhibiting specific recognition for BSA. In addition, the MIP-modified electrodes had good anti-interference, reusability, stability, and reproducibility. The detection limit (LOD) was 5.6 × 10-6 mg mL-1.
Collapse
Affiliation(s)
- Letian Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; (L.C.); (Z.G.); (Y.L.); (X.W.)
| | - Zhilong Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; (L.C.); (Z.G.); (Y.L.); (X.W.)
| | - Yuansheng Lin
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; (L.C.); (Z.G.); (Y.L.); (X.W.)
| | - Xiujuan Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; (L.C.); (Z.G.); (Y.L.); (X.W.)
| | - Kongyin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; (L.C.); (Z.G.); (Y.L.); (X.W.)
| | - Zhengchun Yang
- Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China;
| |
Collapse
|
18
|
Kim HY, Shin CH, Shin CH, Ko JM. Uncovering the phenotypic consequences of multi-locus imprinting disturbances using genome-wide methylation analysis in genomic imprinting disorders. PLoS One 2023; 18:e0290450. [PMID: 37594968 PMCID: PMC10437897 DOI: 10.1371/journal.pone.0290450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
Imprinted genes are regulated by DNA methylation of imprinted differentially methylated regions (iDMRs). An increasing number of patients with congenital imprinting disorders (IDs) exhibit aberrant methylation at multiple imprinted loci, multi-locus imprinting disturbance (MLID). We examined MLID and its possible impact on clinical features in patients with IDs. Genome-wide DNA methylation analysis (GWMA) using blood leukocyte DNA was performed on 13 patients with Beckwith-Wiedemann syndrome (BWS), two patients with Silver-Russell syndrome (SRS), and four controls. HumanMethylation850 BeadChip analysis for 77 iDMRs (809 CpG sites) identified three patients with BWS and one patient with SRS showing additional hypomethylation, other than the disease-related iDMRs, suggestive of MLID. Two regions were aberrantly methylated in at least two patients with BWS showing MLID: PPIEL locus (chromosome 1: 39559298 to 39559744), and FAM50B locus (chromosome 6: 3849096 to 3849469). All patients with BWS- and SRS-MLID did not show any other clinical characteristics associated with additional involved iDMRs. Exome analysis in three patients with BWS who exhibited multiple hypomethylation did not identify any causative variant related to MLID. This study indicates that a genome-wide approach can unravel MLID in patients with an apparently isolated ID. Patients with MLID showed only clinical features related to the original IDs. Long-term follow-up studies in larger cohorts are warranted to evaluate any possible phenotypic consequences of other disturbed imprinted loci.
Collapse
Affiliation(s)
- Hwa Young Kim
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Choong Ho Shin
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Ho Shin
- Department of Orthopaedics, Division of Pediatric Orthopedics, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Division of Clinical Genetics, Seoul National University College of Medicine, Seoul, Korea
- Rare Disease Center, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
19
|
Eggermann T, Monk D, de Nanclares GP, Kagami M, Giabicani E, Riccio A, Tümer Z, Kalish JM, Tauber M, Duis J, Weksberg R, Maher ER, Begemann M, Elbracht M. Imprinting disorders. Nat Rev Dis Primers 2023; 9:33. [PMID: 37386011 DOI: 10.1038/s41572-023-00443-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 07/01/2023]
Abstract
Imprinting disorders (ImpDis) are congenital conditions that are characterized by disturbances of genomic imprinting. The most common individual ImpDis are Prader-Willi syndrome, Angelman syndrome and Beckwith-Wiedemann syndrome. Individual ImpDis have similar clinical features, such as growth disturbances and developmental delay, but the disorders are heterogeneous and the key clinical manifestations are often non-specific, rendering diagnosis difficult. Four types of genomic and imprinting defect (ImpDef) affecting differentially methylated regions (DMRs) can cause ImpDis. These defects affect the monoallelic and parent-of-origin-specific expression of imprinted genes. The regulation within DMRs as well as their functional consequences are mainly unknown, but functional cross-talk between imprinted genes and functional pathways has been identified, giving insight into the pathophysiology of ImpDefs. Treatment of ImpDis is symptomatic. Targeted therapies are lacking owing to the rarity of these disorders; however, personalized treatments are in development. Understanding the underlying mechanisms of ImpDis, and improving diagnosis and treatment of these disorders, requires a multidisciplinary approach with input from patient representatives.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - David Monk
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Research Health Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Eloïse Giabicani
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Armand Trousseau, Endocrinologie Moléculaire et Pathologies d'Empreinte, Paris, France
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università della Campania Luigi Vanvitelli, Caserta, Italy
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Departments of Pediatrics and Genetics at the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maithé Tauber
- Centre de Référence Maladies Rares PRADORT (syndrome de PRADer-Willi et autres Obésités Rares avec Troubles du comportement alimentaire), Hôpital des Enfants, CHU Toulouse, Toulouse, France
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France
| | - Jessica Duis
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, Department of Paediatrics and Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
20
|
Cecere F, Pignata L, Hay Mele B, Saadat A, D'Angelo E, Palumbo O, Palumbo P, Carella M, Scarano G, Rossi GB, Angelini C, Sparago A, Cerrato F, Riccio A. Co-Occurrence of Beckwith-Wiedemann Syndrome and Early-Onset Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15071944. [PMID: 37046605 PMCID: PMC10093120 DOI: 10.3390/cancers15071944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
CRC is an adult-onset carcinoma representing the third most common cancer and the second leading cause of cancer-related deaths in the world. EO-CRC (<45 years of age) accounts for 5% of the CRC cases and is associated with cancer-predisposing genetic factors in half of them. Here, we describe the case of a woman affected by BWSp who developed EO-CRC at age 27. To look for a possible molecular link between BWSp and EO-CRC, we analysed her whole-genome genetic and epigenetic profiles in blood, and peri-neoplastic and neoplastic colon tissues. The results revealed a general instability of the tumor genome, including copy number and methylation changes affecting genes of the WNT signaling pathway, CRC biomarkers and imprinted loci. At the germline level, two missense mutations predicted to be likely pathogenic were found in compound heterozygosity affecting the Cystic Fibrosis (CF) gene CFTR that has been recently classified as a tumor suppressor gene, whose dysregulation represents a severe risk factor for developing CRC. We also detected constitutional loss of methylation of the KCNQ1OT1:TSS-DMR that leads to bi-allelic expression of the lncRNA KCNQ1OT1 and BWSp. Our results support the hypothesis that the inherited CFTR mutations, together with constitutional loss of methylation of the KCNQ1OT1:TSS-DMR, initiate the tumorigenesis process. Further somatic genetic and epigenetic changes enhancing the activation of the WNT/beta-catenin pathway likely contributed to increase the growth advantage of cancer cells. Although this study does not provide any conclusive cause-effect relationship between BWSp and CRC, it is tempting to speculate that the imprinting defect of BWSp might accelerate tumorigenesis in adult cancer in the presence of predisposing genetic variants.
Collapse
Affiliation(s)
- Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Bruno Hay Mele
- Department of Biology, Università degli Studi di Napoli "Federico II", 80126 Napoli, Italy
| | - Abu Saadat
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Emilia D'Angelo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Pietro Palumbo
- Division of Medical Genetics, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Gioacchino Scarano
- Medical Genetics Unit, Azienda Ospedaliera "San Pio" P."Gaetano Rummo", 82100 Benevento, Italy
| | | | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo (IAC) "Mauro Picone", Consiglio Nazionale delle Ricerche (CNR), 80131 Napoli, Italy
| | - Angela Sparago
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
- Institute of Genetics and e Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), 80131 Napoli, Italy
| |
Collapse
|
21
|
Bilo L, Ochoa E, Lee S, Dey D, Kurth I, Kraft F, Rodger F, Docquier F, Toribio A, Bottolo L, Binder G, Fekete G, Elbracht M, Maher ER, Begemann M, Eggermann T. Molecular characterisation of 36 multilocus imprinting disturbance (MLID) patients: a comprehensive approach. Clin Epigenetics 2023; 15:35. [PMID: 36859312 PMCID: PMC9979536 DOI: 10.1186/s13148-023-01453-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Imprinting disorders (ImpDis) comprise diseases which are caused by aberrant regulation of monoallelically and parent-of-origin-dependent expressed genes. A characteristic molecular change in ImpDis patients is aberrant methylation signatures at disease-specific loci, without an obvious DNA change at the specific differentially methylated region (DMR). However, there is a growing number of reports on multilocus imprinting disturbances (MLIDs), i.e. aberrant methylation at different DMRs in the same patient. These MLIDs account for a significant number of patients with specific ImpDis, and several reports indicate a central role of pathogenic maternal effect variants in their aetiology by affecting the maturation of the oocyte and the early embryo. Though several studies on the prevalence and the molecular causes of MLID have been conducted, homogeneous datasets comprising both genomic and methylation data are still lacking. RESULTS Based on a cohort of 36 MLID patients, we here present both methylation data obtained from next-generation sequencing (NGS, ImprintSeq) approaches and whole-exome sequencing (WES). The compilation of methylation data did not reveal a disease-specific MLID episignature, and a predisposition for the phenotypic modification was not obvious as well. In fact, this lack of epigenotype-phenotype correlation might be related to the mosaic distribution of imprinting defects and their functional relevance in specific tissues. CONCLUSIONS Due to the higher sensitivity of NGS-based approaches, we suggest that ImprintSeq might be offered at reference centres in case of ImpDis patients with unusual phenotypes but MLID negative by conventional tests. By WES, additional MLID causes than the already known maternal effect variants could not be identified, neither in the patients nor in the maternal exomes. In cases with negative WES results, it is currently unclear to what extent either environmental factors or undetected genetic variants contribute to MLID.
Collapse
Affiliation(s)
- Larissa Bilo
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Eguzkine Ochoa
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Sunwoo Lee
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Daniela Dey
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Ingo Kurth
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Florian Kraft
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Fay Rodger
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - France Docquier
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Ana Toribio
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Leonardo Bottolo
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - Gerhard Binder
- Pediatric Endocrinology, University Children's Hospital, Universiy of Tuebingen, Tuebingen, Germany
| | - György Fekete
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Miriam Elbracht
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Matthias Begemann
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Thomas Eggermann
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|