1
|
Bolla M, Colombo G, Falappa M, Pace M, Baravalle R, Martinez N, Montani F, Tucci V, Cancedda L. NKCC1 inhibition improves sleep quality and EEG information content in a Down syndrome mouse model. iScience 2025; 28:112220. [PMID: 40224007 PMCID: PMC11986984 DOI: 10.1016/j.isci.2025.112220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/10/2024] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
In several brain disorders, the hyperpolarizing/inhibitory effects of GABA signaling through Cl-permeable GABAA receptors are compromised, leading to an imbalance between neuronal excitation and inhibition. For example, the Ts65Dn mouse model of Down syndrome (DS) exhibits increased expression of the Cl- importer NKCC1, leading to depolarizing gamma aminobutyric acid (GABA) signaling in the mature hippocampus and cortex. Inhibiting NKCC1 with the Food and Drug Administration (FDA)-approved diuretic bumetanide rescues inhibitory GABAergic transmission, synaptic plasticity, and cognitive functions in adult Ts65Dn mice. Given that DS individuals and Ts65Dn mice show sleep disturbances, and considering the key role of GABAergic transmission in sleep, we investigated whether NKCC1 upregulation contributes to sleep abnormalities in adult Ts65Dn mice. Chronic oral administration of bumetanide ameliorated the spectral profile of sleep, sleep architecture, and electroencephalogram (EEG) entropy/complexity, accompanied by a lower hyperactivity in trisomic mice. These results offer a potential avenue for addressing common sleep disturbances in DS.
Collapse
Affiliation(s)
- Maria Bolla
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
- Università Degli Studi di Genova, Via Balbi, 5, 16126 Genoa, Italy
| | - Giulia Colombo
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
| | - Matteo Falappa
- Università Degli Studi di Genova, Via Balbi, 5, 16126 Genoa, Italy
- Genetics and Epigenetics of Behavior Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Marta Pace
- Genetics and Epigenetics of Behavior Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Roman Baravalle
- Instituto de Física de La Plata (IFLP), CONICET-UNLP, La Plata, Buenos Aires, Argentina
- State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Nataniel Martinez
- IFIMAR (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata, B7602AYL, Mar Del Plata, Argentina
| | - Fernando Montani
- Instituto de Física de La Plata (IFLP), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Valter Tucci
- Genetics and Epigenetics of Behavior Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
- Dulbecco Telethon Institute, Rome, Italy
| |
Collapse
|
2
|
Mentink LJ, van Osch MJP, Bakker LJ, Olde Rikkert MGM, Beckmann CF, Claassen JAHR, Haak KV. Functional and vascular neuroimaging in maritime pilots with long-term sleep disruption. GeroScience 2025; 47:2351-2364. [PMID: 39531187 PMCID: PMC11978577 DOI: 10.1007/s11357-024-01417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
The mechanism underlying the possible causal association between long-term sleep disruption and Alzheimer's disease remains unclear Musiek et al. 2015. A hypothesised pathway through increased brain amyloid load was not confirmed in previous work in our cohort of maritime pilots with long-term work-related sleep disruption Thomas et al. Alzheimer's Res Ther 2020;12:101. Here, using functional MRI, T2-FLAIR, and arterial spin labeling MRI scans, we explored alternative neuroimaging biomarkers related to both sleep disruption and AD: resting-state network co-activation and between-network connectivity of the default mode network (DMN), salience network (SAL) and frontoparietal network (FPN), vascular damage and cerebral blood flow (CBF). We acquired data of 16 maritime pilots (56 ± 2.3 years old) with work-related long-term sleep disruption (23 ± 4.8 working years) and 16 healthy controls (59 ± 3.3 years old), with normal sleep patterns (Pittsburgh Sleep Quality Index ≤ 5). Maritime pilots did not show altered co-activation in either the DMN, FPN, or SAL and no differences in between-network connectivity. We did not detect increased markers of vascular damage in maritime pilots, and additionally, maritime pilots did not show altered CBF-patterns compared to healthy controls. In summary, maritime pilots with long-term sleep disruption did not show neuroimaging markers indicative of preclinical AD compared to healthy controls. These findings do not resemble those of short-term sleep deprivation studies. This could be due to resiliency to sleep disruption or selection bias, as participants have already been exposed to and were able to deal with sleep disruption for multiple years, or to compensatory mechanisms Mentink et al. PLoS ONE. 2021;15(12):e0237622. This suggests the relationship between sleep disruption and AD is not as strong as previously implied in studies on short-term sleep deprivation, which would be beneficial for all shift workers suffering from work-related sleep disruptions.
Collapse
Affiliation(s)
- Lara J Mentink
- Department of Geriatrics, Radboudumc Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Cognitive Science and Artificial Intelligence, School of Humanity and Digital Sciences, Tilburg University, Tilburg, The Netherlands.
| | | | - Leanne J Bakker
- Department of Geriatrics, Radboudumc Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel G M Olde Rikkert
- Department of Geriatrics, Radboudumc Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jurgen A H R Claassen
- Department of Geriatrics, Radboudumc Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Koen V Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cognitive Science and Artificial Intelligence, School of Humanity and Digital Sciences, Tilburg University, Tilburg, The Netherlands
| |
Collapse
|
3
|
Fjell AM, Walhovd KB. Sleep Patterns and Human Brain Health. Neuroscientist 2025:10738584241309850. [PMID: 39881658 DOI: 10.1177/10738584241309850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
It is a widely held opinion that sleep is important for human brain health. Here we examine the evidence for this view, focusing on normal variations in sleep patterns. We discuss the functions of sleep and highlight the paradoxical implications of theories seeing sleep as an adaptive capacity versus the theory that sleep benefits clearance of metabolic waste from the brain. We also evaluate the proposition that sleep plays an active role in consolidation of memories. Finally, we review research on possible effects of chronic sleep deprivation on brain health. We find that the evidence for a causal role of sleep in human brain health is surprisingly weak relative to the amount of attention to sleep in science and society. While there are well-established associations between sleep parameters and aspects of brain health, results are generally not consistent across studies and measures, and it is not clear to what extent alterations in sleep patterns represent symptoms or causes. Especially, the proposition that long sleep (>8 hours) in general is beneficial for long-term brain health in humans seems to lack empirical support. We suggest directions for future research to establish a solid foundation of knowledge about a role of sleep in brain health based on longitudinal studies with frequent sampling, attention to individual differences, and more ecologically valid intervention studies.
Collapse
Affiliation(s)
- Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
McDonald MJ, Marsh ML, Fears SD, Shariffi B, Kanaley JA, Limberg JK. Impact of acute sleep restriction on cerebrovascular reactivity and neurovascular coupling in young men and women. J Appl Physiol (1985) 2025; 138:282-288. [PMID: 39661323 DOI: 10.1152/japplphysiol.00648.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024] Open
Abstract
Chronic exposure to shortened sleep is associated with an increased risk of Alzheimer's disease and dementia. Previous studies show insufficient (e.g., poor or fragmented) sleep impairs cerebrovascular reactivity to metabolic stress and may have a detrimental effect on the link between cerebral blood flow (CBF) and neural activity (i.e., neurovascular coupling, NVC). The purpose of this study was to examine the effect of acute sleep restriction on CBF in response to a metabolic (carbon dioxide, CO2) and a cognitive stressor. We hypothesized sleep restriction (4-h time in bed) would attenuate CBF and NVC. Sixteen young adults (8 M/8 F, 28 ± 8 yr, 25 ± 3 kg/m2) completed two morning visits following a night of normal (7.38 ± 0.82 h) or restricted (4.27 ± 0.93 h, P < 0.001) sleep duration. Middle cerebral artery velocity (MCAv, transcranial Doppler ultrasound) was measured at rest and during 1) 5 min of carbogen air-breathing and 2) five trials consisting of a period of eyes closed (30 s), followed by eyes open (40 s) while being challenged with a validated visual paradigm (Where's Waldo). Baseline MCAv was unaffected by acute sleep restriction (control: 64 ± 14 cm/s; restricted 61 ± 13 cm/s; P = 0.412). MCAv increased with CO2; however, there was no effect of restricted sleep (P = 0.488). MCAv increased in response to visual stimulation; the peak NVC response was reduced from control following restricted sleep (control: 16 ± 12%; restricted: 9 ± 7%; P = 0.008). Despite no effect of acute sleep restriction on resting CBF or the response to CO2 in young men and women, NVC was attenuated following a night of shortened sleep. These data support an important role for sleep in NVC and may have implications for the development of neurodegenerative disease states, such as Alzheimer's and dementia.NEW & NOTEWORTHY Chronic exposure to shortened sleep is associated with an increased risk of Alzheimer's disease and dementia. We examined the effect of acute sleep restriction (4-h time in bed) on cerebral blood flow in response to a metabolic (carbon dioxide) and a cognitive stimulus. Despite no effect of acute sleep restriction on resting cerebral blood flow or the response to carbon dioxide in young men and women, neurovascular coupling was attenuated following a night of shortened sleep.
Collapse
Affiliation(s)
- Matthew J McDonald
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Megan L Marsh
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Sharon D Fears
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Brian Shariffi
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Jill A Kanaley
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
5
|
Carlson EJ, Wilckens KA, Wheeler ME. The Interactive Role of Sleep and Circadian Rhythms in Episodic Memory in Older Adults. J Gerontol A Biol Sci Med Sci 2023; 78:1844-1852. [PMID: 37167439 PMCID: PMC10562893 DOI: 10.1093/gerona/glad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 05/13/2023] Open
Abstract
Adequate sleep is essential for healthy physical, emotional, and cognitive functioning, including memory. However, sleep ability worsens with increasing age. Older adults on average have shorter sleep durations and more disrupted sleep compared with younger adults. Age-related sleep changes are thought to contribute to age-related deficits in episodic memory. Nonetheless, the nature of the relationship between sleep and episodic memory deficits in older adults is still unclear. Further complicating this relationship are age-related changes in circadian rhythms such as the shift in chronotype toward morningness and decreased circadian stability, which may influence memory abilities as well. Most sleep and cognitive aging studies do not account for circadian factors, making it unclear whether age-related and sleep-related episodic memory deficits are partly driven by interactions with circadian rhythms. This review will focus on age-related changes in sleep and circadian rhythms and evidence that these factors interact to affect episodic memory, specifically encoding and retrieval. Open questions, methodological considerations, and clinical implications for diagnosis and monitoring of age-related memory impairments are discussed.
Collapse
Affiliation(s)
- Elyse J Carlson
- School of Psychology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kristine A Wilckens
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mark E Wheeler
- School of Psychology, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Ling Y, Yuan S, Huang X, Tan S, Huang T, Xu A, Lyu J. The association of night shift work with the risk of all-cause dementia and Alzheimer's disease: a longitudinal study of 245,570 UK Biobank participants. J Neurol 2023; 270:3499-3510. [PMID: 37022480 DOI: 10.1007/s00415-023-11672-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND The purpose of this research was to investigate a possible link between night shift work and the development of all-cause dementia and Alzheimer's disease (AD), as well as determine the contribution of night shift work, genetic susceptibility to AD. METHODS This study was conducted using the UK Biobank database. 245,570 participants with a mean follow-up length of 13.1 years were included. A Cox proportional hazards model was used to investigate the link between night shift work and the development of all-cause dementia or AD. RESULTS We counted a total of 1248 participants with all-cause dementia. In the final multivariable adjusted model, the risk of dementia was highest in always night shift workers (HR 1.465, 95% CI 1.058-2.028, P = 0.022), followed by irregular shift workers (HR 1.197, 95% CI 1.026-1.396, P = 0.023). AD events were recorded in 474 participants during the follow-up period. After final multivariate adjustment of model, always night shift workers remained at the highest risk (HR 2.031, 95% CI 1.269-3.250, P = 0.003). Moreover, always night shift workers were associated with a higher risk of AD in both low, intermediate and high AD-GRS groups. CONCLUSIONS Always night shift work had a higher risk of developing all-cause dementia and AD. Irregular shift workers had a higher risk of developing all-cause dementia than no shift workers. Always night shift work had a higher AD risk, regardless of whether they had a high, intermediate or low AD-GRS.
Collapse
Affiliation(s)
- Yitong Ling
- Department of Neurology, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Shiqi Yuan
- Department of Neurology, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Xiaxuan Huang
- Department of Neurology, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Shanyuan Tan
- Department of Neurology, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Tao Huang
- Department of Clinical Research, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Anding Xu
- Department of Neurology, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China.
| | - Jun Lyu
- Department of Clinical Research, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Hirsch S, Gaultney J. Sleep disturbances in individuals with down syndrome: An overview. JOURNAL OF INTELLECTUAL DISABILITIES : JOID 2023:17446295231173011. [PMID: 37105757 DOI: 10.1177/17446295231173011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Down Syndrome, or Trisomy 21, is one of the most common birth defects, with 6,000 babies born annually with Down Syndrome in the U.S. One of many health risk factors individuals with Down Syndrome experience is sleep issues, ranging from poor sleep quality to high prevalence of obstructive sleep apnea. This literature review aims to review these sleep challenges in this population and explore consequences and treatment options.
Collapse
Affiliation(s)
- Sophie Hirsch
- Department of Psychological Science and Health Psychology PhD Program, University of North Carolina at Charlotte, USA
| | - Jane Gaultney
- Department of Psychological Science and Health Psychology PhD Program, University of North Carolina at Charlotte, USA
| |
Collapse
|
8
|
Sangalli L, Boggero IA. The impact of sleep components, quality and patterns on glymphatic system functioning in healthy adults: A systematic review. Sleep Med 2023; 101:322-349. [PMID: 36481512 DOI: 10.1016/j.sleep.2022.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/04/2022] [Accepted: 11/13/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The glymphatic system is thought to be responsible for waste clearance in the brain. As it is primarily active during sleep, different components of sleep, subjective sleep quality, and sleep patterns may contribute to glymphatic functioning. This systematic review aimed at exploring the effect of sleep components, sleep quality, and sleep patterns on outcomes associated with the glymphatic system in healthy adults. METHODS PubMed®, Scopus, and Web of Science were searched for studies published in English until December 2021. Articles subjectively or objectively investigating sleep components (total sleep time, time in bed, sleep efficiency, sleep onset latency, wake-up after sleep onset, sleep stage, awakenings), sleep quality, or sleep pattern in healthy individuals, on outcomes associated with glymphatic system (levels of amyloid-β, tau, α-synuclein; cerebrospinal fluid, perivascular spaces; apolipoprotein E) were selected. RESULTS Out of 8359 records screened, 51 studies were included. Overall, contradictory findings were observed according to different sleep assessment method. The most frequently assessed sleep parameters were total sleep time, sleep quality, and sleep efficiency. No association was found between sleep efficiency and amyloid-β, and between slow-wave activity and tau. Most of the studies did not find any correlation between total sleep time and amyloid-β nor tau level. Opposing results correlated sleep quality with amyloid-β and tau. CONCLUSIONS This review highlighted inconsistent results across the studies; as such, the specific association between the glymphatic system and sleep parameters in healthy adults remains poorly understood. Due to the heterogeneity of sleep assessment methods and the self-reported data representing the majority of the observations, future studies with universal study design and sleep methodology in healthy individuals are advocated.
Collapse
Affiliation(s)
- L Sangalli
- Department of Oral Health Science, Division of Orofacial Pain, University of Kentucky, College of Dentistry, Lexington, Kentucky, USA; College of Dental Medicine - Illinois, Downers Grove, Illinois, USA.
| | - I A Boggero
- Department of Oral Health Science, Division of Orofacial Pain, University of Kentucky, College of Dentistry, Lexington, Kentucky, USA; Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
9
|
Gan J, Wang XD, Shi Z, Yuan J, Zhang M, Liu S, Wang F, You Y, Jia P, Feng L, Xu J, Zhang J, Hu W, Chen Z, Ji Y. The Impact of Rotating Night Shift Work and Daytime Recharge on Cognitive Performance Among Retired Nurses. Front Aging Neurosci 2022; 13:827772. [PMID: 35145395 PMCID: PMC8821912 DOI: 10.3389/fnagi.2021.827772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
IntroductionThe exact relationship between long-term shift work (SW) and cognitive impairment (CI) has been poorly understood. The effects of the long-term rotating night SW (RNSW) combining daytime recharge (DTR) on cognitive function were investigated.MethodsA total 920 retired nurses and 656 retired female teachers aged ≥50 years were analyzed. Participants who worked at least once per week for 8 hat night for more than 1 year were defined as the SW group, and those without a regular nighttime shift were defined as the control group. The associations among duration, frequency, and DTR of RNSW, and neuropsychological assessments were ascertained by regression models.ResultsParticipants with RNSW had a significantly higher proportion of mild CI (MCI), both amnestic MCI (aMCI) (14.4% in 11–20 years, p < 0.05, and 17.8% in > 20 years, p < 0.001) and non-amnestic MCI (naMCI) (8.1% in 11–20 years, p < 0.05), as well as dementia (1.5% in 1–10 years, and 11.7% in > 20 years, p < 0.05) compared to controls (8.4% with aMCI, 4.4% with naMCI, and 7.0% with dementia, respectively). There were significant negative relationships between general times of night SW and scores of Mini-Mental State Examination (MMSE) (R squared = 0.01, p = 0.0014) and Montreal Cognitive Assessment (MoCA) (R squared = 0.01, p = 0.0054). Participants with ≥1 h of DTR and ≥ 11 years of RNSW were about 2-fold more likely to experience MCI compared with the subjects in the control group, especially with 3–5 h (odds ratio [OR]: 2.35; 95% confidence interval: 1.49–3.68, p < 0.001).ConclusionThe long-term RNSW was associated with a higher risk of CI, especially aMCI and dementia, and the problem cannot be improved by DTR.
Collapse
Affiliation(s)
- Jinghuan Gan
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Dan Wang
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Department of Neurology, Tianjin Huanhu Hospital, Tianjin Dementia Institute, Tianjin, China
| | - Zhihong Shi
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Department of Neurology, Tianjin Huanhu Hospital, Tianjin Dementia Institute, Tianjin, China
| | - Junliang Yuan
- NHC Key Laboratory of Mental Health (Peking University), Department of Neurology, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Meiyun Zhang
- Department of Neurology, Tianjin People’s Hospital, Tianjin, China
| | - Shuai Liu
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Department of Neurology, Tianjin Huanhu Hospital, Tianjin Dementia Institute, Tianjin, China
| | - Fei Wang
- Department of Neurology, Yuncheng Central Hospital of Shanxi Province, Yuncheng, China
| | - Yong You
- Department of Neurology, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Peifei Jia
- Department of Neurology, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Lisha Feng
- Department of Encephalopathy, Research Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junying Xu
- Department of Neurology, Tianjin Baodi People’s Hospital, Tianjin, China
| | - Jinhong Zhang
- Department of Neurology, Cangzhou People’s Hospital, Cangzhou, China
| | - Wenzheng Hu
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhichao Chen
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Ji
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Department of Neurology, Tianjin Huanhu Hospital, Tianjin Dementia Institute, Tianjin, China
- *Correspondence: Yong Ji,
| |
Collapse
|
10
|
Impact of Shift Work and Long Working Hours on Worker Cognitive Functions: Current Evidence and Future Research Needs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126540. [PMID: 34204504 PMCID: PMC8296479 DOI: 10.3390/ijerph18126540] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022]
Abstract
Particular working conditions and/or organization of working time may cause important sleep disturbances that have been proposed to be predictive of cognitive decline. In this regard, circadian rhythm misalignment induced by exposure to night work or long working hours would be responsible for cognitive impairment. Nevertheless, evidence supporting this correlation is limited and several issues still need to be elucidated. In this regard, we conducted a systematic review to evaluate the association between shift/night work and cognitive impairment and address its main determinants. Information provided by the reviewed studies suggested that night work might have serious immediate negative effects especially on cognitive domains related to attention, memory and response inhibition. Furthermore, cognitive performance would progressively worsen over consecutive night shifts or following exposure to very long work shifts. Otherwise, conflicting results emerged regarding the possible etiological role that night work chronic exposure would have on cognitive impairment. Therefore, circadian rhythm desynchronization, lack of sleep and fatigue resulting from night work may negatively impact worker’s cognitive efficiency. However, in light of the considerable methodological variability of the reviewed studies, we proposed to develop a standardized research and evaluation strategy in order to obtain a better and comprehensive understanding of this topic.
Collapse
|
11
|
Mentink LJ, Thomas J, Melis RJF, Olde Rikkert MGM, Overeem S, Claassen JAHR. Home-EEG assessment of possible compensatory mechanisms for sleep disruption in highly irregular shift workers - The ANCHOR study. PLoS One 2020; 15:e0237622. [PMID: 33382689 PMCID: PMC7774973 DOI: 10.1371/journal.pone.0237622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/12/2020] [Indexed: 11/30/2022] Open
Abstract
Study objectives While poor sleep quality has been related to increased risk of Alzheimer’s disease, long-time shift workers (maritime pilots) did not manifest evidence of early Alzheimer’s disease in a recent study. We explored two hypotheses of possible compensatory mechanisms for sleep disruption: Increased efficiency in generating deep sleep during workweeks (model 1) and rebound sleep during rest weeks (model 2). Methods We used data from ten male maritime pilots (mean age: 51.6±2.4 years) with a history of approximately 18 years of irregular shift work. Subjective sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI). A single lead EEG-device was used to investigate sleep in the home/work environment, quantifying total sleep time (TST), deep sleep time (DST), and deep sleep time percentage (DST%). Using multilevel models, we studied the sleep architecture of maritime pilots over time, at the transition of a workweek to a rest week. Results Maritime pilots reported worse sleep quality in workweeks compared to rest weeks (PSQI = 8.2±2.2 vs. 3.9±2.0; p<0.001). Model 1 showed a trend towards an increase in DST% of 0.6% per day during the workweek (p = 0.08). Model 2 did not display an increase in DST% in the rest week (p = 0.87). Conclusions Our findings indicated that increased efficiency in generating deep sleep during workweeks is a more likely compensatory mechanism for sleep disruption in the maritime pilot cohort than rebound sleep during rest weeks. Compensatory mechanisms for poor sleep quality might mitigate sleep disruption-related risk of developing Alzheimer’s disease. These results should be used as a starting point for future studies including larger, more diverse populations of shift workers.
Collapse
Affiliation(s)
- Lara J. Mentink
- Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- * E-mail:
| | - Jana Thomas
- Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - René J. F. Melis
- Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel G. M. Olde Rikkert
- Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Sebastiaan Overeem
- Sleep Medicine Center Kempenhaeghe, Heeze, The Netherlands
- Biomedical Diagnostics Group, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jurgen A. H. R. Claassen
- Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|