1
|
Stephenson HG, Betthauser TJ, Langhough R, Jonaitis E, Du L, Van Hulle C, Kollmorgen G, Quijano‐Rubio C, Chin NA, Okonkwo OC, Carlsson CM, Asthana S, Johnson SC, Blennow K, Zetterberg H, Bendlin BB. Amyloid is associated with accelerated atrophy in cognitively unimpaired individuals. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2025; 17:e70089. [PMID: 39996035 PMCID: PMC11848556 DOI: 10.1002/dad2.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/13/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025]
Abstract
INTRODUCTION This study examined the association of longitudinal atrophy with baseline cerebrospinal fluid (CSF) amyloid beta (Aβ, A) and phosphorylated tau (p-tau, T) biomarkers (Aβ42/40, p-tau181) in 406 cognitively unimpaired (CU) individuals (6.670 years of follow-up on average, up to 13 imaging visits) to assess whether A+ is associated with Alzheimer's disease-like atrophy and whether this depends on p-tau181 levels. METHODS An A-T- CU group free from abnormal neurodegeneration (N) was identified using a robust normative approach and used to model normal age-related atrophy via z-scoring. Linear mixed-effects models tested differences in longitudinal atrophy between A+ and A-T-N- individuals and between A/T subgroups. RESULTS A+ was associated with worse atrophy within and beyond the medial temporal lobe, even at low levels of p-tau181. DISCUSSION Neurodegeneration likely begins soon after the onset of abnormal Aβ pathology. Clinical intervention at the earliest signs of Aβ pathology may be needed to mitigate further neurodegeneration. Highlights An A-T-N- control group was identified using a robust normative approachA+ was associated with accelerated atrophy in cognitively unimpaired individualsAtrophy was observed even at low p-tau181 levels.
Collapse
|
2
|
An C, Cai H, Ren Z, Fu X, Quan S, Jia L. Biofluid biomarkers for Alzheimer's disease: past, present, and future. MEDICAL REVIEW (2021) 2024; 4:467-491. [PMID: 39664082 PMCID: PMC11629312 DOI: 10.1515/mr-2023-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/04/2024] [Indexed: 12/13/2024]
Abstract
Alzheimer's disease (AD) is a gradually progressive neurodegenerative disease with tremendous social and economic burden. Therefore, early and accurate diagnosis is imperative for effective treatment or prevention of the disease. Cerebrospinal fluid and blood biomarkers emerge as favorable diagnostic tools due to their relative accessibility and potential for widespread clinical use. This review focuses on the AT(N) biomarker system, which includes biomarkers reflecting AD core pathologies, amyloid deposition, and pathological tau, as well as neurodegeneration. Novel biomarkers associated with inflammation/immunity, synaptic dysfunction, vascular pathology, and α-synucleinopathy, which might contribute to either the pathogenesis or the clinical progression of AD, have also been discussed. Other emerging candidates including non-coding RNAs, metabolites, and extracellular vesicle-based markers have also enriched the biofluid biomarker landscape for AD. Moreover, the review discusses the current challenges of biofluid biomarkers in AD diagnosis and offers insights into the prospective future development.
Collapse
Affiliation(s)
- Chengyu An
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Huimin Cai
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Ziye Ren
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xiaofeng Fu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shuiyue Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
3
|
Mueller C, Nenert R, Catiul C, Pilkington J, Szaflarski JP, Amara AW. Relationship between sleep, physical fitness, brain microstructure, and cognition in healthy older adults: A pilot study. Brain Res 2024; 1839:149016. [PMID: 38768934 DOI: 10.1016/j.brainres.2024.149016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND There is a critical need for neuroimaging markers of brain integrity to monitor effects of modifiable lifestyle factors on brain health. This observational, cross-sectional study assessed relationships between brain microstructure and sleep, physical fitness, and cognition in healthy older adults. METHODS Twenty-three adults aged 60 and older underwent whole-brain multi-shell diffusion imaging, comprehensive cognitive testing, polysomnography, and exercise testing. Neurite Orientation Dispersion and Density Imaging (NODDI) was used to quantify neurite density (NDI) and orientation dispersion (ODI). Diffusion tensor imaging (DTI) was used to quantify axial diffusivity (AxD), fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD). Relationships between sleep efficiency (SE), time and percent in N3 sleep, cognitive function, physical fitness (VO2 peak) and the diffusion metrics in regions of interest and the whole brain were evaluated. RESULTS Higher NDI in bilateral white and gray matter was associated with better executive functioning. NDI in the right anterior cingulate and adjacent white matter was positively associated with language skills. Higher NDI in the left posterior corona radiata was associated with faster processing speed. Physical fitness was positively associated with NDI in the left precentral gyrus and corticospinal tract. N3 % was positively associated with NDI in the left caudate and right pre- and postcentral gyri. Higher ODI in the left putamen and adjacent white matter was associated with better executive function. CONCLUSION NDI and ODI derived from NODDI are potential neuroimaging markers for associations between brain microstructure and modifiable risk factors in aging. If these associations are observable in clinical samples, NODDI could be incorporated into clinical trials assessing the effects of modifiable risk factors on brain integrity in aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Christina Mueller
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States.
| | - Rodolphe Nenert
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Corina Catiul
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Jennifer Pilkington
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Jerzy P Szaflarski
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Amy W Amara
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States; University of Colorado Anschutz Medical Campus, 1635 Aurora Ct, Aurora, CO 80045, United States
| |
Collapse
|
4
|
Andersson Forsman O, Sjöström H, Svenningsson P, Granberg T. Combined MR quantitative susceptibility mapping and multi-shell diffusion in Parkinson's disease. J Neuroimaging 2024; 34:603-611. [PMID: 39004781 DOI: 10.1111/jon.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Quantitative susceptibility mapping (QSM), neurite orientation dispersion and density imaging (NODDI), and the g-ratio have separately shown differences between Parkinson's disease (PD) and healthy controls. The g-ratio has, however, not been studied in PD in the substantia nigra (SN) and the putamen. A combination of these methods could also potentially be a complementary imaging biomarker for PD. This study aimed to assess the diagnostic performance of QSM, NODDI, the g-ratio, and a combined QSM-NODDI imaging marker in the SN and putamen of PD patients. METHODS In this prospective study, the diagnostic performance of median region of interest values was compared in a cohort of 15 participants with PD and 14 healthy controls after manual segmentation. The diagnostic performance was assessed using the area under curve (AUC) for the receiving operator characteristic. RESULTS Median QSM in the contralateral SN identified PD with AUC 0.77, and median isotropic volume fraction identified PD in the ipsilateral SN with AUC 0.68. A combined NODDI-QSM marker improved diagnostic performance (AUC 0.80). No significant differences were found in the g-ratio. CONCLUSION A combination of median QSM and median isotropic volume fraction improves the differentiation of PD from healthy controls and is a potential biomarker in the diagnostics of PD. This confirms previously reported results indicating that combining QSM and NODDI modestly improves differentiation of PD.
Collapse
Affiliation(s)
| | - Henrik Sjöström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Tato-Fernández C, Ekblad LL, Pietilä E, Saunavaara V, Helin S, Parkkola R, Zetterberg H, Blennow K, Rinne JO, Snellman A. Cognitively healthy APOE4/4 carriers show white matter impairment associated with serum NfL and amyloid-PET. Neurobiol Dis 2024; 192:106439. [PMID: 38365046 DOI: 10.1016/j.nbd.2024.106439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Except for aging, carrying the APOE ε4 allele (APOE4) is the most important risk factor for sporadic Alzheimer's disease. APOE4 carriers may have reduced capacity to recycle lipids, resulting in white matter microstructural abnormalities. In this study, we evaluated whether white matter impairment measured by diffusion tensor imaging (DTI) differs between healthy individuals with a different number of APOE4 alleles, and whether white matter impairment associates with brain beta-amyloid (Aβ) load and serum levels of neurofilament light chain (NfL). We studied 96 participants (APOE3/3, N = 37; APOE3/4, N = 39; APOE4/4, N = 20; mean age 70.7 (SD 5.22) years, 63% females) with a brain MRI including a DTI sequence (N = 96), Aβ-PET (N = 89) and a venous blood sample for the serum NfL concentration measurement (N = 88). Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AxD) in six a priori-selected white matter regions-of-interest (ROIs) were compared between the groups using ANCOVA, with sex and age as covariates. A voxel-weighted average of FA, MD, RD and AxD was calculated for each subject, and correlations with Aβ-PET and NfL levels were evaluated. APOE4/4 carriers exhibited a higher MD and a higher RD in the body of corpus callosum than APOE3/4 (p = 0.0053 and p = 0.0049, respectively) and APOE3/3 (p = 0.026 and p = 0.042). APOE4/4 carriers had a higher AxD than APOE3/4 (p = 0.012) and APOE3/3 (p = 0.040) in the right cingulum adjacent to cingulate cortex. In the total sample, composite MD, RD and AxD positively correlated with the cortical Aβ load (r = 0.26 to 0.33, p < 0.013 for all) and with serum NfL concentrations (r = 0.31 to 0.36, p < 0.0028 for all). In conclusion, increased local diffusivity was detected in cognitively unimpaired APOE4/4 homozygotes compared to APOE3/4 and APOE3/3 carriers, and increased diffusivity correlated with biomarkers of Alzheimer's disease and neurodegeneration. White matter impairment seems to be an early phenomenon in the Alzheimer's disease pathologic process in APOE4/4 homozygotes.
Collapse
Affiliation(s)
- Claudia Tato-Fernández
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland.
| | - Laura L Ekblad
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland; Department of Geriatric Medicine, Turku University Hospital, Turku, Finland
| | - Elina Pietilä
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland
| | - Virva Saunavaara
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland; Department of Medical Physics, Division of Medical Imaging, Turku University Hospital, Finland
| | - Semi Helin
- Turku PET Centre, University of Turku, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, Turku University Hospital, Turku, Finland; Department of Radiology, University of Turku, Turku, Finland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, PR China
| | - Juha O Rinne
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland; InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Anniina Snellman
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland
| |
Collapse
|