1
|
Livraghi L, Hanly JJ, Evans E, Wright CJ, Loh LS, Mazo-Vargas A, Kamrava K, Carter A, van der Heijden ESM, Reed RD, Papa R, Jiggins CD, Martin A. A long noncoding RNA at the cortex locus controls adaptive coloration in butterflies. Proc Natl Acad Sci U S A 2024; 121:e2403326121. [PMID: 39213180 PMCID: PMC11388343 DOI: 10.1073/pnas.2403326121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Evolutionary variation in the wing pigmentation of butterflies and moths offers striking examples of adaptation by crypsis and mimicry. The cortex locus has been independently mapped as the locus controlling color polymorphisms in 15 lepidopteran species, suggesting that it acts as a genomic hotspot for the diversification of wing patterns, but functional validation through protein-coding knockouts has proven difficult to obtain. Our study unveils the role of a long noncoding RNA (lncRNA) which we name ivory, transcribed from the cortex locus, in modulating color patterning in butterflies. Strikingly, ivory expression prefigures most melanic patterns during pupal development, suggesting an early developmental role in specifying scale identity. To test this, we generated CRISPR mosaic knock-outs in five nymphalid butterfly species and show that ivory mutagenesis yields transformations of dark pigmented scales into white or light-colored scales. Genotyping of Vanessa cardui germline mutants associates these phenotypes to small on-target deletions at the conserved first exon of ivory. In contrast, cortex germline mutant butterflies with confirmed null alleles lack any wing phenotype and exclude a color patterning role for this adjacent gene. Overall, these results show that a lncRNA gene acts as a master switch of color pattern specification and played key roles in the adaptive diversification of wing patterns in butterflies.
Collapse
Affiliation(s)
- Luca Livraghi
- Department of Biological Sciences, The George Washington University, Washington, DC20052
- Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Joseph J. Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC20052
- Department of Biology, Duke University, Durham, NC27708
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Elizabeth Evans
- Department of Biology, University of Puerto Rico at Río Piedras, San Juan00925, Puerto Rico
| | - Charlotte J. Wright
- Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
- Tree of Life, Wellcome Sanger Institute, CambridgeCB10 1RQ, United Kingdom
| | - Ling S. Loh
- Department of Biological Sciences, The George Washington University, Washington, DC20052
| | - Anyi Mazo-Vargas
- Department of Biological Sciences, The George Washington University, Washington, DC20052
- Department of Biology, Duke University, Durham, NC27708
| | - Kiana Kamrava
- Department of Biological Sciences, The George Washington University, Washington, DC20052
| | - Alexander Carter
- Department of Biological Sciences, The George Washington University, Washington, DC20052
| | - Eva S. M. van der Heijden
- Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
- Tree of Life, Wellcome Sanger Institute, CambridgeCB10 1RQ, United Kingdom
| | - Robert D. Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico at Río Piedras, San Juan00925, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, San Juan00925, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan00926, Puerto Rico
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parma43124, Italy
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC20052
| |
Collapse
|
2
|
Hoedjes KM, Grath S, Posnien N, Ritchie MG, Schlötterer C, Abbott JK, Almudi I, Coronado-Zamora M, Durmaz Mitchell E, Flatt T, Fricke C, Glaser-Schmitt A, González J, Holman L, Kankare M, Lenhart B, Orengo DJ, Snook RR, Yılmaz VM, Yusuf L. From whole bodies to single cells: A guide to transcriptomic approaches for ecology and evolutionary biology. Mol Ecol 2024:e17382. [PMID: 38856653 DOI: 10.1111/mec.17382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
RNA sequencing (RNAseq) methodology has experienced a burst of technological developments in the last decade, which has opened up opportunities for studying the mechanisms of adaptation to environmental factors at both the organismal and cellular level. Selecting the most suitable experimental approach for specific research questions and model systems can, however, be a challenge and researchers in ecology and evolution are commonly faced with the choice of whether to study gene expression variation in whole bodies, specific tissues, and/or single cells. A wide range of sometimes polarised opinions exists over which approach is best. Here, we highlight the advantages and disadvantages of each of these approaches to provide a guide to help researchers make informed decisions and maximise the power of their study. Using illustrative examples of various ecological and evolutionary research questions, we guide the readers through the different RNAseq approaches and help them identify the most suitable design for their own projects.
Collapse
Affiliation(s)
- Katja M Hoedjes
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sonja Grath
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Nico Posnien
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Michael G Ritchie
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | | | | | - Isabel Almudi
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | - Esra Durmaz Mitchell
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Claudia Fricke
- Institute for Zoology/Animal Ecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | - Luke Holman
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Benedict Lenhart
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Dorcas J Orengo
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Vera M Yılmaz
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Leeban Yusuf
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| |
Collapse
|
3
|
Prakash A, Dion E, Banerjee TD, Monteiro A. The molecular basis of scale development highlighted by a single-cell atlas of Bicyclus anynana butterfly pupal forewings. Cell Rep 2024; 43:114147. [PMID: 38662541 DOI: 10.1016/j.celrep.2024.114147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/26/2024] [Accepted: 04/09/2024] [Indexed: 06/01/2024] Open
Abstract
Butterfly wings display a diversity of cell types, including large polyploid scale cells, yet the molecular basis of such diversity is poorly understood. To explore scale cell diversity at a transcriptomic level, we employ single-cell RNA sequencing of ∼5,200 large cells (>6 μm) from 22.5- to 25-h male pupal forewings of the butterfly Bicyclus anynana. Using unsupervised clustering, followed by in situ hybridization, immunofluorescence, and CRISPR-Cas9 editing of candidate genes, we annotate various cell types on the wing. We identify genes marking non-innervated scale cells, pheromone-producing glandular cells, and innervated sensory cell types. We show that senseless, a zinc-finger transcription factor, and HR38, a hormone receptor, determine the identity, size, and color of different scale cell types and are important regulators of scale cell differentiation. This dataset and the identification of various wing cell-type markers provide a foundation to compare and explore scale cell-type diversification across arthropod species.
Collapse
Affiliation(s)
- Anupama Prakash
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Emilie Dion
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Tirtha Das Banerjee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Martins ARP, Warren NB, McMillan WO, Barrett RDH. Spatiotemporal dynamics in butterfly hybrid zones. INSECT SCIENCE 2024; 31:328-353. [PMID: 37596954 DOI: 10.1111/1744-7917.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Evaluating whether hybrid zones are stable or mobile can provide novel insights for evolution and conservation biology. Butterflies exhibit high sensitivity to environmental changes and represent an important model system for the study of hybrid zone origins and maintenance. Here, we review the literature exploring butterfly hybrid zones, with a special focus on their spatiotemporal dynamics and the potential mechanisms that could lead to their movement or stability. We then compare different lines of evidence used to investigate hybrid zone dynamics and discuss the strengths and weaknesses of each approach. Our goal with this review is to reveal general conditions associated with the stability or mobility of butterfly hybrid zones by synthesizing evidence obtained using different types of data sampled across multiple regions and spatial scales. Finally, we discuss spatiotemporal dynamics in the context of a speciation/divergence continuum, the relevance of hybrid zones for conservation biology, and recommend key topics for future investigation.
Collapse
Affiliation(s)
- Ananda R Pereira Martins
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
- Smithsonian Tropical Research Institute, Gamboa, Panama City, Panama
| | - Natalie B Warren
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Gamboa, Panama City, Panama
| | - Rowan D H Barrett
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Tendolkar A, Mazo-Vargas A, Livraghi L, Hanly JJ, Van Horne KC, Gilbert LE, Martin A. Cis-regulatory modes of Ultrabithorax inactivation in butterfly forewings. eLife 2024; 12:RP90846. [PMID: 38261357 PMCID: PMC10945631 DOI: 10.7554/elife.90846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Hox gene clusters encode transcription factors that drive regional specialization during animal development: for example the Hox factor Ubx is expressed in the insect metathoracic (T3) wing appendages and differentiates them from T2 mesothoracic identities. Hox transcriptional regulation requires silencing activities that prevent spurious activation and regulatory crosstalks in the wrong tissues, but this has seldom been studied in insects other than Drosophila, which shows a derived Hox dislocation into two genomic clusters that disjoined Antennapedia (Antp) and Ultrabithorax (Ubx). Here, we investigated how Ubx is restricted to the hindwing in butterflies, amidst a contiguous Hox cluster. By analysing Hi-C and ATAC-seq data in the butterfly Junonia coenia, we show that a Topologically Associated Domain (TAD) maintains a hindwing-enriched profile of chromatin opening around Ubx. This TAD is bordered by a Boundary Element (BE) that separates it from a region of joined wing activity around the Antp locus. CRISPR mutational perturbation of this BE releases ectopic Ubx expression in forewings, inducing homeotic clones with hindwing identities. Further mutational interrogation of two non-coding RNA encoding regions and one putative cis-regulatory module within the Ubx TAD cause rare homeotic transformations in both directions, indicating the presence of both activating and repressing chromatin features. We also describe a series of spontaneous forewing homeotic phenotypes obtained in Heliconius butterflies, and discuss their possible mutational basis. By leveraging the extensive wing specialization found in butterflies, our initial exploration of Ubx regulation demonstrates the existence of silencing and insulating sequences that prevent its spurious expression in forewings.
Collapse
Affiliation(s)
- Amruta Tendolkar
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| | - Anyi Mazo-Vargas
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| | - Luca Livraghi
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| | - Joseph J Hanly
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
- Smithsonian Tropical Research InstitutePanama CityPanama
| | - Kelsey C Van Horne
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| | - Lawrence E Gilbert
- Department of Integrative Biology, University of Texas – AustinAustinUnited States
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington UniversityWashington, DCUnited States
| |
Collapse
|
6
|
Hanly JJ, Loh LS, Mazo-Vargas A, Rivera-Miranda TS, Livraghi L, Tendolkar A, Day CR, Liutikaite N, Earls EA, Corning OBWH, D'Souza N, Hermina-Perez JJ, Mehta C, Ainsworth JA, Rossi M, Papa R, McMillan WO, Perry MW, Martin A. Frizzled2 receives WntA signaling during butterfly wing pattern formation. Development 2023; 150:dev201868. [PMID: 37602496 PMCID: PMC10560568 DOI: 10.1242/dev.201868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
Butterfly color patterns provide visible and biodiverse phenotypic readouts of the patterning processes. Although the secreted ligand WntA has been shown to instruct the color pattern formation in butterflies, its mode of reception remains elusive. Butterfly genomes encode four homologs of the Frizzled-family of Wnt receptors. Here, we show that CRISPR mosaic knockouts of frizzled2 (fz2) phenocopy the color pattern effects of WntA loss of function in multiple nymphalids. Whereas WntA mosaic clones result in intermediate patterns of reduced size, fz2 clones are cell-autonomous, consistent with a morphogen function. Shifts in expression of WntA and fz2 in WntA crispant pupae show that they are under positive and negative feedback, respectively. Fz1 is required for Wnt-independent planar cell polarity in the wing epithelium. Fz3 and Fz4 show phenotypes consistent with Wnt competitive-antagonist functions in vein formation (Fz3 and Fz4), wing margin specification (Fz3), and color patterning in the Discalis and Marginal Band Systems (Fz4). Overall, these data show that the WntA/Frizzled2 morphogen-receptor pair forms a signaling axis that instructs butterfly color patterning and shed light on the functional diversity of insect Frizzled receptors.
Collapse
Affiliation(s)
- Joseph J. Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| | - Ling S. Loh
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Anyi Mazo-Vargas
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | | | - Luca Livraghi
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Amruta Tendolkar
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Christopher R. Day
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27708, USA
| | - Neringa Liutikaite
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Emily A. Earls
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Olaf B. W. H. Corning
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Natalie D'Souza
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - José J. Hermina-Perez
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Caroline Mehta
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Julia A. Ainsworth
- Department of Cell and Developmental Biology, UC San Diego, La Jolla, CA, USA
| | - Matteo Rossi
- Division of Evolutionary Biology, Ludwig Maximilian University, Munich 80539, Germany
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico at Río Piedras, San Juan 00931, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan 00931, Puerto Rico
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parma 43121, Italy
| | - W. Owen McMillan
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| | - Michael W. Perry
- Department of Cell and Developmental Biology, UC San Diego, La Jolla, CA, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| |
Collapse
|
7
|
Van Belleghem SM, Ruggieri AA, Concha C, Livraghi L, Hebberecht L, Rivera ES, Ogilvie JG, Hanly JJ, Warren IA, Planas S, Ortiz-Ruiz Y, Reed R, Lewis JJ, Jiggins CD, Counterman BA, McMillan WO, Papa R. High level of novelty under the hood of convergent evolution. Science 2023; 379:1043-1049. [PMID: 36893249 PMCID: PMC11000492 DOI: 10.1126/science.ade0004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/08/2023] [Indexed: 03/11/2023]
Abstract
Little is known about the extent to which species use homologous regulatory architectures to achieve phenotypic convergence. By characterizing chromatin accessibility and gene expression in developing wing tissues, we compared the regulatory architecture of convergence between a pair of mimetic butterfly species. Although a handful of color pattern genes are known to be involved in their convergence, our data suggest that different mutational paths underlie the integration of these genes into wing pattern development. This is supported by a large fraction of accessible chromatin being exclusive to each species, including the de novo lineage-specific evolution of a modular optix enhancer. These findings may be explained by a high level of developmental drift and evolutionary contingency that occurs during the independent evolution of mimicry.
Collapse
Affiliation(s)
- Steven M. Van Belleghem
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
- Ecology, Evolution and Conservation Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Angelo A. Ruggieri
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - Carolina Concha
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Luca Livraghi
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Laura Hebberecht
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
- School of Biological Sciences, Bristol University, Bristol, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Edgardo Santiago Rivera
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
- Department of Biomaterials, Universität Bayreuth, Bayreuth, Germany
| | - James G. Ogilvie
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Joseph J. Hanly
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Ian A. Warren
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Silvia Planas
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Yadira Ortiz-Ruiz
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Robert Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - James J. Lewis
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | | | | | - W. Owen McMillan
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
8
|
Armstrong AR, Boggs CL. Antibody development to identify components of IIS and mTOR signaling pathways in lepidopteran species, a set of non-model insects. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000755. [PMID: 36879981 PMCID: PMC9984946 DOI: 10.17912/micropub.biology.000755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023]
Abstract
Nutritional stress impacts many insect species that have differing reproductive strategies and life histories, yet it is unclear how nutrient-sensing signaling pathways mediate tissue-specific responses to changes in dietary input. In Drosophila melanogaster , insulin/insulin-like growth factor (IIS) and mTOR-mediated signaling within adipocytes regulates oogenesis. To facilitate comparative study of nutrient-sensing pathway activity in the fat body, we developed antibodies to assess IIS (anti-FOXO) and mTOR signaling (anti-TOR) across three nymphalid species (Lepidoptera). By optimizing whole-mount fat body immunostaining, we find FOXO nuclear enrichment in adult adipocytes, like that observed in Drosophila . Additionally, we show a previously uncharacterized TOR localization pattern in the fat body.
Collapse
Affiliation(s)
- Alissa R Armstrong
- Biological Sciences, University of South Carolina, Columbia, South Carolina, United States
| | - Carol L Boggs
- School of the Earth, Ocean & Environment and Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States
| |
Collapse
|
9
|
McDonald JMC, Reed RD. Patterns of selection across gene regulatory networks. Semin Cell Dev Biol 2022; 145:60-67. [PMID: 35474149 DOI: 10.1016/j.semcdb.2022.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/31/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022]
Abstract
Gene regulatory networks (GRNs) are the core engine of organismal development. If we would like to understand the origin and diversification of phenotypes, it is necessary to consider the structure of GRNs in order to reconstruct the links between genetic mutations and phenotypic change. Much of the progress in evolutionary developmental biology, however, has occurred without a nuanced consideration of the evolution of functional relationships between genes, especially in the context of their broader network interactions. Characterizing and comparing GRNs across traits and species in a more detailed way will allow us to determine how network position influences what genes drive adaptive evolution. In this perspective paper, we consider the architecture of developmental GRNs and how positive selection strength may vary across a GRN. We then propose several testable models for these patterns of selection and experimental approaches to test these models.
Collapse
Affiliation(s)
- Jeanne M C McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States.
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
10
|
Hanly JJ, Livraghi L, Heryanto C, McMillan WO, Jiggins CD, Gilbert LE, Martin A. A large deletion at the cortex locus eliminates butterfly wing patterning. G3 GENES|GENOMES|GENETICS 2022; 12:6517782. [PMID: 35099556 PMCID: PMC8982378 DOI: 10.1093/g3journal/jkac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/21/2022] [Indexed: 11/21/2022]
Abstract
As the genetic basis of natural and domesticated variation has been described in recent years, a number of hotspot genes have been repeatedly identified as the targets of selection, Heliconius butterflies display a spectacular diversity of pattern variants in the wild and the genetic basis of these patterns has been well-described. Here, we sought to identify the mechanism behind an unusual pattern variant that is instead found in captivity, the ivory mutant, in which all scales on both the wings and body become white or yellow. Using a combination of autozygosity mapping and coverage analysis from 37 captive individuals, we identify a 78-kb deletion at the cortex wing patterning locus, a gene which has been associated with wing pattern evolution in H. melpomene and 10 divergent lepidopteran species. This deletion is undetected among 458 wild Heliconius genomes samples, and its dosage explains both homozygous and heterozygous ivory phenotypes found in captivity. The deletion spans a large 5′ region of the cortex gene that includes a facultative 5′UTR exon detected in larval wing disk transcriptomes. CRISPR mutagenesis of this exon replicates the wing phenotypes from coding knock-outs of cortex, consistent with a functional role of ivory-deleted elements in establishing scale color fate. Population demographics reveal that the stock giving rise to the ivory mutant has a mixed origin from across the wild range of H. melpomene, and supports a scenario where the ivory mutation occurred after the introduction of cortex haplotypes from Ecuador. Homozygotes for the ivory deletion are inviable while heterozygotes are the targets of artificial selection, joining 40 other examples of allelic variants that provide heterozygous advantage in animal populations under artificial selection by fanciers and breeders. Finally, our results highlight the promise of autozygosity and association mapping for identifying the genetic basis of aberrant mutations in captive insect populations.
Collapse
Affiliation(s)
- Joseph J Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Panama 0843-03092, Republic of Panama
| | - Luca Livraghi
- Smithsonian Tropical Research Institute, Panama 0843-03092, Republic of Panama
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Christa Heryanto
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panama 0843-03092, Republic of Panama
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Lawrence E Gilbert
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
11
|
Common Themes and Future Challenges in Understanding Gene Regulatory Network Evolution. Cells 2022; 11:cells11030510. [PMID: 35159319 PMCID: PMC8834487 DOI: 10.3390/cells11030510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/18/2022] Open
Abstract
A major driving force behind the evolution of species-specific traits and novel structures is alterations in gene regulatory networks (GRNs). Comprehending evolution therefore requires an understanding of the nature of changes in GRN structure and the responsible mechanisms. Here, we review two insect pigmentation GRNs in order to examine common themes in GRN evolution and to reveal some of the challenges associated with investigating changes in GRNs across different evolutionary distances at the molecular level. The pigmentation GRN in Drosophila melanogaster and other drosophilids is a well-defined network for which studies from closely related species illuminate the different ways co-option of regulators can occur. The pigmentation GRN for butterflies of the Heliconius species group is less fully detailed but it is emerging as a useful model for exploring important questions about redundancy and modularity in cis-regulatory systems. Both GRNs serve to highlight the ways in which redeployment of trans-acting factors can lead to GRN rewiring and network co-option. To gain insight into GRN evolution, we discuss the importance of defining GRN architecture at multiple levels both within and between species and of utilizing a range of complementary approaches.
Collapse
|
12
|
Ernst DA, Westerman EL. Stage- and sex-specific transcriptome analyses reveal distinctive sensory gene expression patterns in a butterfly. BMC Genomics 2021; 22:584. [PMID: 34340656 PMCID: PMC8327453 DOI: 10.1186/s12864-021-07819-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/11/2021] [Indexed: 01/24/2023] Open
Abstract
Background Animal behavior is largely driven by the information that animals are able to extract and process from their environment. However, the function and organization of sensory systems often change throughout ontogeny, particularly in animals that undergo indirect development. As an initial step toward investigating these ontogenetic changes at the molecular level, we characterized the sensory gene repertoire and examined the expression profiles of genes linked to vision and chemosensation in two life stages of an insect that goes through metamorphosis, the butterfly Bicyclus anynana. Results Using RNA-seq, we compared gene expression in the heads of late fifth instar larvae and newly eclosed adults that were reared under identical conditions. Over 50 % of all expressed genes were differentially expressed between the two developmental stages, with 4,036 genes upregulated in larval heads and 4,348 genes upregulated in adult heads. In larvae, upregulated vision-related genes were biased toward those involved with eye development, while phototransduction genes dominated the vision genes that were upregulated in adults. Moreover, the majority of the chemosensory genes we identified in the B. anynana genome were differentially expressed between larvae and adults, several of which share homology with genes linked to pheromone detection, host plant recognition, and foraging in other species of Lepidoptera. Conclusions These results revealed promising candidates for furthering our understanding of sensory processing and behavior in the disparate developmental stages of butterflies and other animals that undergo metamorphosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07819-4.
Collapse
Affiliation(s)
- David A Ernst
- Department of Biological Sciences, University of Arkansas, 72701, Fayetteville, AR, USA.
| | - Erica L Westerman
- Department of Biological Sciences, University of Arkansas, 72701, Fayetteville, AR, USA
| |
Collapse
|
13
|
Zhang Y, Teng D, Lu W, Liu M, Zeng H, Cao L, Southcott L, Potdar S, Westerman E, Zhu AJ, Zhang W. A widely diverged locus involved in locomotor adaptation in Heliconius butterflies. SCIENCE ADVANCES 2021; 7:7/32/eabh2340. [PMID: 34348900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Heliconius butterflies have undergone adaptive radiation and therefore serve as an excellent system for exploring the continuum of speciation and adaptive evolution. However, there is a long-lasting paradox between their convergent mimetic wing patterns and rapid divergence in speciation. Here, we characterize a locus that consistently displays high divergence among Heliconius butterflies and acts as an introgression hotspot. We further show that this locus contains multiple genes related to locomotion and conserved in Lepidoptera. In light of these findings, we consider that locomotion traits may be under selection, and if these are heritable traits that are selected for, then they might act as species barriers.
Collapse
Affiliation(s)
- Yubo Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Dequn Teng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Lu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hua Zeng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lei Cao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Laura Southcott
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| | - Sushant Potdar
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Erica Westerman
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Van Belleghem SM, Lewis JJ, Rivera ES, Papa R. Heliconius butterflies: a window into the evolution and development of diversity. Curr Opin Genet Dev 2021; 69:72-81. [PMID: 33714874 PMCID: PMC8364860 DOI: 10.1016/j.gde.2021.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 10/21/2022]
Abstract
Butterflies have become prominent models for studying the evolution and development of phenotypic variation. In Heliconius, extraordinary within species divergence and between species convergence in wing color patterns has driven decades of comparative genetic studies. However, connecting genetic patterns of diversification to the molecular mechanisms of adaptation has remained elusive. Recent studies are bridging this gap between genome and function and have driven substantial advances in deciphering the genetic architecture of diversification in Heliconius. While only a handful of large-effect genes were initially identified in the diversification of Heliconius color patterns, recent experiments have begun to unravel the underlying gene regulatory networks and how these have evolved. These results reveal an evolutionary story of many interacting loci and partly independent genetic architectures that underlie convergent evolution.
Collapse
Affiliation(s)
| | - James J Lewis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA; Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Edgardo S Rivera
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico; Chairs of Biomaterials, University of Bayreuth, Bayreuth, Bayern, Germany
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico; Molecular Sciences and Research Center, University of Puerto Rico, San Juan, Puerto Rico.
| |
Collapse
|
15
|
Zhang Y, Teng D, Lu W, Liu M, Zeng H, Cao L, Southcott L, Potdar S, Westerman E, Zhu AJ, Zhang W. A widely diverged locus involved in locomotor adaptation in Heliconius butterflies. SCIENCE ADVANCES 2021; 7:eabh2340. [PMID: 34348900 PMCID: PMC8336958 DOI: 10.1126/sciadv.abh2340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2023]
Abstract
Heliconius butterflies have undergone adaptive radiation and therefore serve as an excellent system for exploring the continuum of speciation and adaptive evolution. However, there is a long-lasting paradox between their convergent mimetic wing patterns and rapid divergence in speciation. Here, we characterize a locus that consistently displays high divergence among Heliconius butterflies and acts as an introgression hotspot. We further show that this locus contains multiple genes related to locomotion and conserved in Lepidoptera. In light of these findings, we consider that locomotion traits may be under selection, and if these are heritable traits that are selected for, then they might act as species barriers.
Collapse
Affiliation(s)
- Yubo Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Dequn Teng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Lu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hua Zeng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lei Cao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Laura Southcott
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| | - Sushant Potdar
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Erica Westerman
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Cong Q, Shen J, Zhang J, Li W, Kinch LN, Calhoun JV, Warren AD, Grishin NV. Genomics Reveals the Origins of Historical Specimens. Mol Biol Evol 2021; 38:2166-2176. [PMID: 33502509 PMCID: PMC8097301 DOI: 10.1093/molbev/msab013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Centuries of zoological studies have amassed billions of specimens in collections worldwide. Genomics of these specimens promises to reinvigorate biodiversity research. However, because DNA degrades with age in historical specimens, it is a challenge to obtain genomic data for them and analyze degraded genomes. We developed experimental and computational protocols to overcome these challenges and applied our methods to resolve a series of long-standing controversies involving a group of butterflies. We deduced the geographical origins of several historical specimens of uncertain provenance that are at the heart of these debates. Here, genomics tackles one of the greatest problems in zoology: countless old specimens that serve as irreplaceable embodiments of species concepts cannot be confidently assigned to extant species or population due to the lack of diagnostic morphological features and clear documentation of the collection locality. The ability to determine where they were collected will resolve many on-going disputes. More broadly, we show the utility of applying genomics to historical museum specimens to delineate the boundaries of species and populations, and to hypothesize about genotypic determinants of phenotypic traits.
Collapse
Affiliation(s)
- Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jinhui Shen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jing Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wenlin Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lisa N Kinch
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John V Calhoun
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Andrew D Warren
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
17
|
Livraghi L, Hanly JJ, Van Bellghem SM, Montejo-Kovacevich G, van der Heijden ESM, Loh LS, Ren A, Warren IA, Lewis JJ, Concha C, Hebberecht L, Wright CJ, Walker JM, Foley J, Goldberg ZH, Arenas-Castro H, Salazar C, Perry MW, Papa R, Martin A, McMillan WO, Jiggins CD. Cortex cis-regulatory switches establish scale colour identity and pattern diversity in Heliconius. eLife 2021; 10:e68549. [PMID: 34280087 PMCID: PMC8289415 DOI: 10.7554/elife.68549] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
In Heliconius butterflies, wing colour pattern diversity and scale types are controlled by a few genes of large effect that regulate colour pattern switches between morphs and species across a large mimetic radiation. One of these genes, cortex, has been repeatedly associated with colour pattern evolution in butterflies. Here we carried out CRISPR knockouts in multiple Heliconius species and show that cortex is a major determinant of scale cell identity. Chromatin accessibility profiling and introgression scans identified cis-regulatory regions associated with discrete phenotypic switches. CRISPR perturbation of these regions in black hindwing genotypes recreated a yellow bar, revealing their spatially limited activity. In the H. melpomene/timareta lineage, the candidate CRE from yellow-barred phenotype morphs is interrupted by a transposable element, suggesting that cis-regulatory structural variation underlies these mimetic adaptations. Our work shows that cortex functionally controls scale colour fate and that its cis-regulatory regions control a phenotypic switch in a modular and pattern-specific fashion.
Collapse
Affiliation(s)
- Luca Livraghi
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Joseph J Hanly
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
- The George Washington University Department of Biological Sciences, Science and Engineering HallWashingtonUnited States
| | - Steven M Van Bellghem
- Department of Biology, Centre for Applied Tropical Ecology and Conservation, University of Puerto RicoRio PiedrasPuerto Rico
| | | | - Eva SM van der Heijden
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Ling Sheng Loh
- The George Washington University Department of Biological Sciences, Science and Engineering HallWashingtonUnited States
| | - Anna Ren
- The George Washington University Department of Biological Sciences, Science and Engineering HallWashingtonUnited States
| | - Ian A Warren
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
| | - James J Lewis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | | | - Laura Hebberecht
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Charlotte J Wright
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
| | - Jonah M Walker
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
| | | | - Zachary H Goldberg
- Cell & Developmental Biology, Division of Biological Sciences, UC San DiegoLa JollaUnited States
| | | | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences, Universidad del RosarioBogotáColombia
| | - Michael W Perry
- Cell & Developmental Biology, Division of Biological Sciences, UC San DiegoLa JollaUnited States
| | - Riccardo Papa
- Department of Biology, Centre for Applied Tropical Ecology and Conservation, University of Puerto RicoRio PiedrasPuerto Rico
| | - Arnaud Martin
- The George Washington University Department of Biological Sciences, Science and Engineering HallWashingtonUnited States
| | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| |
Collapse
|
18
|
Hanly JJ, Robertson ECN, Corning OBWH, Martin A. Porcupine/Wntless-dependent trafficking of the conserved WntA ligand in butterflies. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:470-481. [PMID: 34010515 DOI: 10.1002/jez.b.23046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/11/2022]
Abstract
Wnt ligands are key signaling molecules in animals, but little is known about the evolutionary dynamics and mode of action of the WntA orthologs, which are not present in the vertebrates or in Drosophila. Here we show that the WntA subfamily evolved at the base of the Bilateria + Cnidaria clade, and conserved the thumb region and Ser209 acylation site present in most other Wnts, suggesting WntA requires the core Wnt secretory pathway. WntA proteins are distinguishable from other Wnts by a synapomorphic Iso/Val/Ala216 amino-acid residue that replaces the otherwise ubiquitous Thr216 position. WntA embryonic expression is conserved between beetles and butterflies, suggesting functionality, but the WntA gene was lost three times within arthropods, in podoplean copepods, in the cyclorrhaphan fly radiation, and in ensiferan crickets and katydids. Finally, CRISPR mosaic knockouts (KOs) of porcupine and wntless phenocopied the pattern-specific effects of WntA KOs in the wings of Vanessa cardui butterflies. These results highlight the molecular conservation of the WntA protein across invertebrates, and imply it functions as a typical Wnt ligand that is acylated and secreted through the Porcupine/Wntless secretory pathway.
Collapse
Affiliation(s)
- Joseph J Hanly
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Erica C N Robertson
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Olaf B W H Corning
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
19
|
McMillan WO, Livraghi L, Concha C, Hanly JJ. From Patterning Genes to Process: Unraveling the Gene Regulatory Networks That Pattern Heliconius Wings. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
20
|
Van Belleghem SM, Alicea Roman PA, Carbia Gutierrez H, Counterman BA, Papa R. Perfect mimicry between Heliconius butterflies is constrained by genetics and development. Proc Biol Sci 2020; 287:20201267. [PMID: 32693728 PMCID: PMC7423669 DOI: 10.1098/rspb.2020.1267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Müllerian mimicry strongly exemplifies the power of natural selection. However, the exact measure of such adaptive phenotypic convergence and the possible causes of its imperfection often remain unidentified. Here, we first quantify wing colour pattern differences in the forewing region of 14 co-mimetic colour pattern morphs of the butterfly species Heliconius erato and Heliconius melpomene and measure the extent to which mimicking colour pattern morphs are not perfectly identical. Next, using gene-editing CRISPR/Cas9 KO experiments of the gene WntA, which has been mapped to colour pattern diversity in these butterflies, we explore the exact areas of the wings in which WntA affects colour pattern formation differently in H. erato and H. melpomene. We find that, while the relative size of the forewing pattern is generally nearly identical between co-mimics, the CRISPR/Cas9 KO results highlight divergent boundaries in the wing that prevent the co-mimics from achieving perfect mimicry. We suggest that this mismatch may be explained by divergence in the gene regulatory network that defines wing colour patterning in both species, thus constraining morphological evolution even between closely related species.
Collapse
Affiliation(s)
| | - Paola A Alicea Roman
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico.,Department of Biology, University of Puerto Rico, Humacao, Puerto Rico
| | - Heriberto Carbia Gutierrez
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico.,Department of Mathematics, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - Brian A Counterman
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico.,Smithsonian Tropical Research Institution, Panama, Republic of Panama.,Molecular Sciences and Research Center, University of Puerto Rico, Puerto Rico
| |
Collapse
|
21
|
Fenner J, Benson C, Rodriguez-Caro L, Ren A, Papa R, Martin A, Hoffmann F, Range R, Counterman BA. Wnt Genes in Wing Pattern Development of Coliadinae Butterflies. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
22
|
Interplay between Developmental Flexibility and Determinism in the Evolution of Mimetic Heliconius Wing Patterns. Curr Biol 2019; 29:3996-4009.e4. [DOI: 10.1016/j.cub.2019.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/26/2019] [Accepted: 10/08/2019] [Indexed: 11/20/2022]
|