1
|
Schweiger P, Hamann L, Strobel J, Weisbach V, Wandersee A, Christ J, Kehl S, Weidenthaler F, Antoniadis S, Hackstein H, Cunningham S. Functional Heterogeneity of Umbilical Cord Blood Monocyte-Derived Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:115-124. [PMID: 38809115 PMCID: PMC11215632 DOI: 10.4049/jimmunol.2400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Human umbilical cord blood (UCB) represents a unique resource for hematopoietic stem cell transplantation for children and patients lacking suitable donors. UCB harbors a diverse set of leukocytes such as professional APCs, including monocytes, that could act as a novel source for cellular therapies. However, the immunological properties of UCB monocytes and monocyte-derived dendritic cells (MoDCs) are not fully characterized. In this study, we characterized the phenotype and functions of UCB-MoDCs to gauge their potential for future applications. UCB exhibited higher frequencies of platelets and lymphocytes as well as lower frequencies of neutrophils in comparison with adult whole blood. Leukocyte subset evaluation revealed significantly lower frequencies of granulocytes, NK cells, and CD14+CD16- monocytes. Surface marker evaluation revealed significantly lower rates of costimulatory molecules CD80 and CD83 while chemokine receptors CCR7 and CXCR4, as well as markers for Ag presentation, were similarly expressed. UCB-MoDCs were sensitive to TLR1-9 stimulation and presented quantitative differences in the release of proinflammatory cytokines. UCB-MoDCs presented functional CCR7-, CXCR4-, and CCR5-associated migratory behavior as well as adequate receptor- and micropinocytosis-mediated Ag uptake. When cocultured with allogeneic T lymphocytes, UCB-MoDCs induced weak CD4+ T lymphocyte proliferation, CD71 expression, and release of IFN-γ and IL-2. Taken together, UCB-MoDCs present potentially advantageous properties for future medical applications.
Collapse
Affiliation(s)
- Petra Schweiger
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Livia Hamann
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Julian Strobel
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Alexandra Wandersee
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Julia Christ
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Sven Kehl
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Filip Weidenthaler
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Sophia Antoniadis
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Sarah Cunningham
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
2
|
Fu C, Ma T, Zhou L, Mi QS, Jiang A. Dendritic Cell-Based Vaccines Against Cancer: Challenges, Advances and Future Opportunities. Immunol Invest 2022; 51:2133-2158. [PMID: 35946383 DOI: 10.1080/08820139.2022.2109486] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the most potent professional antigen presenting cells, dendritic cells (DCs) have the ability to activate both naive CD4 and CD8 T cells. Recognized for their exceptional ability to cross-present exogenous antigens to prime naive antigen-specific CD8 T cells, DCs play a critical role in generating CD8 T cell immunity, as well as mediating CD8 T cell tolerance to tumor antigens. Despite the ability to potentiate host CD8 T cell-mediated anti-tumor immunity, current DC-based cancer vaccines have not yet achieved the promised success clinically with the exception of FDA-approved Provenge. Interestingly, recent studies have shown that type 1 conventional DCs (cDC1s) play a critical role in cross-priming tumor-specific CD8 T cells and determining the anti-tumor efficacy of cancer immunotherapies including immune checkpoint blockade (ICB). Together with promising clinical results in neoantigen-based cancer vaccines, there is a great need for DC-based vaccines to be further developed and refined either as monotherapies or in combination with other immunotherapies. In this review, we will present a brief review of DC development and function, discuss recent progress, and provide a perspective on future directions to realize the promising potential of DC-based cancer vaccines.
Collapse
Affiliation(s)
- Chunmei Fu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Tianle Ma
- Department of Computer Science and Engineering, School of Engineering and Computer Science, Oakland University, Rochester, Michigan, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Aimin Jiang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
3
|
Fu C, Zhou L, Mi QS, Jiang A. Plasmacytoid Dendritic Cells and Cancer Immunotherapy. Cells 2022; 11:222. [PMID: 35053338 PMCID: PMC8773673 DOI: 10.3390/cells11020222] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Despite largely disappointing clinical trials of dendritic cell (DC)-based vaccines, recent studies have shown that DC-mediated cross-priming plays a critical role in generating anti-tumor CD8 T cell immunity and regulating anti-tumor efficacy of immunotherapies. These new findings thus support further development and refinement of DC-based vaccines as mono-immunotherapy or combinational immunotherapies. One exciting development is recent clinical studies with naturally circulating DCs including plasmacytoid DCs (pDCs). pDC vaccines were particularly intriguing, as pDCs are generally presumed to play a negative role in regulating T cell responses in tumors. Similarly, DC-derived exosomes (DCexos) have been heralded as cell-free therapeutic cancer vaccines that are potentially superior to DC vaccines in overcoming tumor-mediated immunosuppression, although DCexo clinical trials have not led to expected clinical outcomes. Using a pDC-targeted vaccine model, we have recently reported that pDCs required type 1 conventional DCs (cDC1s) for optimal cross-priming by transferring antigens through pDC-derived exosomes (pDCexos), which also cross-prime CD8 T cells in a bystander cDC-dependent manner. Thus, pDCexos could combine the advantages of both cDC1s and pDCs as cancer vaccines to achieve better anti-tumor efficacy. In this review, we will focus on the pDC-based cancer vaccines and discuss potential clinical application of pDCexos in cancer immunotherapy.
Collapse
Affiliation(s)
- Chunmei Fu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Aimin Jiang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| |
Collapse
|
4
|
Lu Y, Shi Y, You J. Strategy and clinical application of up-regulating cross presentation by DCs in anti-tumor therapy. J Control Release 2021; 341:184-205. [PMID: 34774890 DOI: 10.1016/j.jconrel.2021.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022]
Abstract
The cross presentation of exogenous antigen (Ag) by dendritic cells (DCs) facilitates a diversified mode of T-cell activation, orchestrates specific humoral and cellular immunity, and contributes to an efficient anti-tumor immune response. DCs-mediated cross presentation is subject to both intrinsic and extrinsic factors, including the homing and phenotype of DCs, the spatiotemporal trafficking and degradation kinetics of Ag, and multiple microenvironmental clues, with many details largely unexplored. Here, we systemically review the current mechanistic understanding and regulation strategies of cross presentation by heterogeneous DC populations. We also provide insights into the future exploitation of DCs cross presentation for a better clinical efficacy in anti-tumor therapy.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
5
|
Fernandes SS, Limaye LS, Kale VP. Differentiated Cells Derived from Hematopoietic Stem Cells and Their Applications in Translational Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:29-43. [PMID: 34114129 DOI: 10.1007/5584_2021_644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Hematopoietic stem cells (HSCs) and their development are one of the most widely studied model systems in mammals. In adults, HSCs are predominantly found in the bone marrow, from where they maintain homeostasis. Besides bone marrow and mobilized peripheral blood, cord blood is also being used as an alternate allogenic source of transplantable HSCs. HSCs from both autologous and allogenic sources are being applied for the treatment of various conditions like blood cancers, anemia, etc. HSCs can further differentiate to mature blood cells. Differentiation process of HSCs is being extensively studied so as to obtain a large number of pure populations of various differentiated cells in vitro so that they can be taken up for clinical trials. The ability to generate sufficient quantity of clinical-grade specialized blood cells in vitro would take the field of hematology a step ahead in translational medicine.
Collapse
Affiliation(s)
| | - Lalita S Limaye
- Stem Cell Lab, National Centre for Cell Science, Pune, India
| | - Vaijayanti P Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India.
| |
Collapse
|
6
|
Cord-Blood-Derived Professional Antigen-Presenting Cells: Functions and Applications in Current and Prospective Cell Therapies. Int J Mol Sci 2021; 22:ijms22115923. [PMID: 34072923 PMCID: PMC8199409 DOI: 10.3390/ijms22115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
Human umbilical cord blood (UCB) represents a valuable source of hematopoietic stem cells, particularly for patients lacking a matching donor. UCB provides practical advantages, including a lower risk of graft-versus-host-disease and permissive human leukocyte antigen mismatching. These advantageous properties have so far been applied for stem cell, mesenchymal stromal cell, and chimeric antigen receptor T cell therapies. However, UCB-derived professional antigen-presenting cells are increasingly being utilized in the context of immune tolerance and regenerative therapy. Here, we review the cell-specific characteristics as well as recent advancements in UCB-based cell therapies focusing on dendritic cells, monocytes, B lymphocytes, innate lymphoid cells, and macrophages.
Collapse
|
7
|
Fu C, Zhou L, Mi QS, Jiang A. DC-Based Vaccines for Cancer Immunotherapy. Vaccines (Basel) 2020; 8:vaccines8040706. [PMID: 33255895 PMCID: PMC7712957 DOI: 10.3390/vaccines8040706] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
As the sentinels of the immune system, dendritic cells (DCs) play a critical role in initiating and regulating antigen-specific immune responses. Cross-priming, a process that DCs activate CD8 T cells by cross-presenting exogenous antigens onto their MHCI (Major Histocompatibility Complex class I), plays a critical role in mediating CD8 T cell immunity as well as tolerance. Current DC vaccines have remained largely unsuccessful despite their ability to potentiate both effector and memory CD8 T cell responses. There are two major hurdles for the success of DC-based vaccines: tumor-mediated immunosuppression and the functional limitation of the commonly used monocyte-derived dendritic cells (MoDCs). Due to their resistance to tumor-mediated suppression as inert vesicles, DC-derived exosomes (DCexos) have garnered much interest as cell-free therapeutic agents. However, current DCexo clinical trials have shown limited clinical benefits and failed to generate antigen-specific T cell responses. Another exciting development is the use of naturally circulating DCs instead of in vitro cultured DCs, as clinical trials with both human blood cDC2s (type 2 conventional DCs) and plasmacytoid DCs (pDCs) have shown promising results. pDC vaccines were particularly encouraging, especially in light of promising data from a recent clinical trial using a human pDC cell line, despite pDCs being considered tolerogenic and playing a suppressive role in tumors. However, how pDCs generate anti-tumor CD8 T cell immunity remains poorly understood, thus hindering their clinical advance. Using a pDC-targeted vaccine model, we have recently reported that while pDC-targeted vaccines led to strong cross-priming and durable CD8 T cell immunity, cross-presenting pDCs required cDCs to achieve cross-priming in vivo by transferring antigens to cDCs. Antigen transfer from pDCs to bystander cDCs was mediated by pDC-derived exosomes (pDCexos), which similarly required cDCs for cross-priming of antigen-specific CD8 T cells. pDCexos thus represent a new addition in our arsenal of DC-based cancer vaccines that would potentially combine the advantage of pDCs and DCexos.
Collapse
Affiliation(s)
- Chunmei Fu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Aimin Jiang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
- Correspondence: ; Tel.: +1-716-400-2536
| |
Collapse
|
8
|
Baldin AV, Savvateeva LV, Bazhin AV, Zamyatnin AA. Dendritic Cells in Anticancer Vaccination: Rationale for Ex Vivo Loading or In Vivo Targeting. Cancers (Basel) 2020; 12:cancers12030590. [PMID: 32150821 PMCID: PMC7139354 DOI: 10.3390/cancers12030590] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) have shown great potential as a component or target in the landscape of cancer immunotherapy. Different in vivo and ex vivo strategies of DC vaccine generation with different outcomes have been proposed. Numerous clinical trials have demonstrated their efficacy and safety in cancer patients. However, there is no consensus regarding which DC-based vaccine generation method is preferable. A problem of result comparison between trials in which different DC-loading or -targeting approaches have been applied remains. The employment of different DC generation and maturation methods, antigens and administration routes from trial to trial also limits the objective comparison of DC vaccines. In the present review, we discuss different methods of DC vaccine generation. We conclude that standardized trial designs, treatment settings and outcome assessment criteria will help to determine which DC vaccine generation approach should be applied in certain cancer cases. This will result in a reduction in alternatives in the selection of preferable DC-based vaccine tactics in patient. Moreover, it has become clear that the application of a DC vaccine alone is not sufficient and combination immunotherapy with recent advances, such as immune checkpoint inhibitors, should be employed to achieve a better clinical response and outcome.
Collapse
Affiliation(s)
- Alexey V. Baldin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
| | - Lyudmila V. Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, 81377 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
- Belozersky Institute of Physico-Chemical Biology, Department of Cell Signaling, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +74-956-229-843
| |
Collapse
|
9
|
Wang C, Li Z, Zhu Z, Chai Y, Wu Y, Yuan Z, Chang Z, Wang Z, Zhang M. Allogeneic dendritic cells induce potent antitumor immunity by activating KLRG1 +CD8 T cells. Sci Rep 2019; 9:15527. [PMID: 31664180 PMCID: PMC6820535 DOI: 10.1038/s41598-019-52151-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022] Open
Abstract
The graft-versus-leukemia effect reminds us to observe the allogeneic cell elicited anti-tumor immune responses. Here we immunized recipient B6 mice with different types of allogenic leukocytes and found that vaccination with allogenic dendritic cells (alloDC) elicited the most efficient protection against broad-spectrum tumors. The recipient lymphocytes were analyzed and the data showed that CD8 T cells increased significantly after immunization and expressed effector memory T cell marker KLRG1. Functional evaluation demonstrated that these KLRG1+CD8 T cells could kill tumor cells in vitro and in vivo in Granzyme B- and Fas/FasL-dependent manners with no tumor antigen specificity, and tend to migrate into tumor sites by high expression of heparanase. Adoptive transfer of these cells could provide antitumor protection against tumors. AlloDC could also treat mice with residual tumors and combination of anti-PD1 antibody could enhance this effects. Together, our study showed that alloDC-immunization could induce potent antitumor effect through the expansion of KLRG1+CD8 T cells, which can work as both preventive and therapeutic tumor vaccines.
Collapse
Affiliation(s)
- Chao Wang
- School of Medicine, Tsinghua University, Beijing, 100084, China.,Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhengyuan Li
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zhongli Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Yijie Chai
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yiqing Wu
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zhenglong Yuan
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zhijie Chang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Zhao Wang
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Minghui Zhang
- School of Medicine, Tsinghua University, Beijing, 100084, China. .,The Central Laboratory, The First Hospital of Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Shinde P, Melinkeri S, Santra MK, Kale V, Limaye L. Autologous Hematopoietic Stem Cells Are a Preferred Source to Generate Dendritic Cells for Immunotherapy in Multiple Myeloma Patients. Front Immunol 2019; 10:1079. [PMID: 31164886 PMCID: PMC6536579 DOI: 10.3389/fimmu.2019.01079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
In multiple myeloma (MM), dendritic cells (DCs), and their precursors are prone to malignant cell-mediated regulation of function leading to low efficacy of DC vaccine. DCs taken directly from MM patient's body or derived from monocytes are fewer in numbers and are also dysfunctional. Here, we investigated the functionality of Hematopoietic stem cell-derived DCs (SC-DCs) from MM patients. Mature-MM-SC-DCs showed all essential functions like antigen uptake, allogenic T cells simulation and migration comparable to those derived from healthy donor (HD) samples. A comparison of Mo-DCs and SC-DCs obtained from the same MM patients' samples revealed that the expression of IL-6 was higher in the precursors of Mo-DCs leading to their impaired migration. In addition, expression of CCR7 which is responsible for DCs migration was found to be lower in MM-Mo-DCs. The chromatin permissiveness as observed by H3K4me3 histone modification at the Ccr7 promoter in MM-Mo-DCs was significantly lower than those in MM-SC-DCs. Levels of Zbtb46- a hall mark DC transcription factor mRNA was also found to be reduced in MM-Mo-DCs. Cytotoxic T cells generated from MM-SC-DCs from autologous naïve T cells exhibited reduced antitumor activity because the T cells were exhausted. Blocking of CTLA-4 on autologous T cells could partially restore T cell proliferation and activation. Thus, a combination of MM-SC-DC vaccine and anti-CTLA-4 antibody may serve as a better candidate for immunotherapy of MM. This study has implications in increasing the efficacy of cancer immunotherapy in MM.
Collapse
Affiliation(s)
- Prajakta Shinde
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Sameer Melinkeri
- Blood and Marrow Transplant Unit, Deenanath Mangeshkar Hospital, Pune, India
| | - Manas Kumar Santra
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Vaijayanti Kale
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Lalita Limaye
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| |
Collapse
|
11
|
Abstract
With the spotlight on cancer immunotherapy and the expanding use of immune checkpoint inhibitors, strategies to improve the response rate and duration of current cancer immunotherapeutics are highly sought. In that sense, investigators around the globe have been putting spurs on the development of effective cancer vaccines in humans after decades of efforts that led to limited clinical success. In more than three decades of research in pursuit of targeted and personalized immunotherapy, several platforms have been incorporated into the list of cancer vaccines from live viral or bacterial agents harboring antigens to synthetic peptides with the hope of stronger and durable immune responses that will tackle cancers better. Unlike adoptive cell therapy, cancer vaccines can take advantage of using a patient's entire immune system that can include more than engineered receptors or ligands in developing antigen-specific responses. Advances in molecular technology also secured the use of genetically modified genes or proteins of interest to enhance the chance of stronger immune responses. The formulation of vaccines to increase chances of immune recognition such as nanoparticles for peptide delivery is another area of great interest. Studies indicate that cancer vaccines alone may elicit tumor-specific cellular or humoral responses in immunologic assays and even regression or shrinkage of the cancer in select trials, but novel strategies, especially in combination with other cancer therapies, are under study and are likely to be critical to achieve and optimize reliable objective responses and survival benefit. In this review, cancer vaccine platforms with different approaches to deliver tumor antigens and boost immunity are discussed with the intention of summarizing what we know and what we need to improve in the clinical trial setting.
Collapse
Affiliation(s)
- Hoyoung M. Maeng
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
12
|
Liu G, Fan X, Cai Y, Fu Z, Gao F, Dong J, Li K, Cai J. Efficacy of dendritic cell-based immunotherapy produced from cord blood in vitro and in a humanized NSG mouse cancer model. Immunotherapy 2019; 11:599-616. [PMID: 30943862 DOI: 10.2217/imt-2018-0103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/18/2019] [Indexed: 02/08/2023] Open
Abstract
AIM To produce dendritic cells (DCs) from CD34+ stem cells from cord blood and explore their prophylactic and curative effect against tumors by vaccinating humanized NSG mice. MATERIALS & METHODS Separated CD34+ stem cells from cord blood were cultured for 30 days, and the resultant DCs (CD34-DCs) were collected. The basic function of the CD34-DCs and the cytotoxicity of CD34-cytotoxic-T lymphocytes (CTLs) were tested in vitro, and tumor inhibition in a humanized NSG mouse tumor model was observed. RESULTS The number of CD34-DCs reached approximately 9 log. These cells performed functions similar to those of DCs derived from monocytes from peripheral blood (PBMC-DCs). The CTLs of the CD34-DCs (CD34-CTLs) presented a better antitumor effect in vitro. The obvious prophylactic and therapeutic antitumor effects of the CD34-DC vaccine were observed in the humanized NSG mouse models. CONCLUSION CD34-DCs from cord blood were sufficient in quantity and quality as a vaccine agent against tumors in vitro and in vivo.
Collapse
Affiliation(s)
- Gang Liu
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
- Department of Surgery, Hebei General Hospital, 348 Heping West Road, Shijiazhuang 050051, China
| | - Xiaoyan Fan
- Department of Oncology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang 050051, China
| | - Ying Cai
- Department of Research and Development, Hebei Engineering Technology Research Center for Cell Therapy, Hebei HOFOY Biotech Corporation Ltd, 238 Changjiang Aveneu, Shijiazhuang 500350, China
| | - Zexian Fu
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Fei Gao
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Jiantao Dong
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
- Department of Surgery, Hebei General Hospital, 348 Heping West Road, Shijiazhuang 050051, China
| | - Kang Li
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Jianhui Cai
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
- Department of Surgery, Hebei General Hospital, 348 Heping West Road, Shijiazhuang 050051, China
- Department of Oncology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang 050051, China
| |
Collapse
|
13
|
Abstract
The link between oncology and immunology has a long history, and its development is forced by the necessity to develop innovative and highly efficient modalities for the immunological destruction of malignant cells. The success of cancer immunotherapy depends on two major factors: adequate tumor-specific antigens and a vehicle capable of inducing a tumor-specific immune response by effective delivery of these antigens. Dendritic cells (DCs) are the most powerful antigen-presenting cells, because of their unique characteristics, and these cells are actively used in cancer immunotherapy. DCs form a critical interface between innate and adaptive immunity. They integrate signals derived from tissue infection or damage and present processed antigen from these sites to naive T-cells in secondary lymphoid organs while also providing multiple soluble and surface-bound signals that help to guide T-cell differentiation. They are sentinel of immune system, as they are deployed through the body and monitor their surroundings for antigens and danger signals derived from pathogens or tissue damage. These cells (DCs) with their potent antigen-presenting ability are considered as critical factor in antitumor immunity. In recent years, the existence of immunosuppressive regulatory DCs in tumor microenvironment is well described. Monocytic myeloid-derived suppressor cells can contribute to the pool of tumor-associated DCs by differentiating to inflammatory DCs, which appear to have specific phenotype and are critical components of antitumor response. There is currently much interest in modulating DC function to improve cancer immunotherapy. Many strategies have been developed to target DCs in cancer, such as the administration of antigens with immunomodulators that mobilize and activate endogenous DCs and the generation of DC-based vaccines. Here, we highlight the role of DCs along with other DC subsets in the regulation of immune responses in cancer treatment.
Collapse
Affiliation(s)
| | - T Smitha
- Department of Oral Pathology, Vokkaliga Sangha Dental College, Bengaluru, Karnataka, India
| |
Collapse
|
14
|
Saxena M, Bhardwaj N. Re-Emergence of Dendritic Cell Vaccines for Cancer Treatment. Trends Cancer 2018; 4:119-137. [PMID: 29458962 DOI: 10.1016/j.trecan.2017.12.007] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) are essential in immunity owing to their role in activating T cells, thereby promoting antitumor responses. Tumor cells, however, hijack the immune system, causing T cell exhaustion and DC dysfunction. Tumor-induced T cell exhaustion may be reversed through immune checkpoint blockade (ICB); however, this treatment fails to show clinical benefit in many patients. While ICB serves to reverse T cell exhaustion, DCs are still necessary to prime, activate, and direct the T cells to target tumor cells. In this review we provide a brief overview of DC function, describe mechanisms by which DC functions are disrupted by the tumor microenvironment, and highlight recent developments in DC cancer vaccines.
Collapse
Affiliation(s)
- Mansi Saxena
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA; Parker Institute of Cancer Immunotherapy, San Francisco, CA 94129, USA.
| |
Collapse
|
15
|
Shinde P, Khan N, Melinkeri S, Kale V, Limaye L. Freezing of dendritic cells with trehalose as an additive in the conventional freezing medium results in improved recovery after cryopreservation. Transfusion 2018; 59:686-696. [PMID: 30456902 DOI: 10.1111/trf.15028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dendritic cell (DC) vaccination involves administration of multiple doses. Cryopreservation of tumor antigen-pulsed DCs can provide a ready to use vaccine source and eliminate the need of frequent withdrawal of the patient's blood for vaccine preparation. The aim of this study was to assess the effect of addition of trehalose in the freezing medium on the recovery of DCs after cryopreservation. STUDY DESIGN AND METHODS DCs were generated from mononuclear cells from apheresis samples of healthy donors. For long-term storage of 6 months, cells were frozen with a rate-controlled programmable freezer and stored in liquid nitrogen. For short-term storage of 1 month, cells were frozen and stored at -80°C. DCs frozen with Iscove's Modified Dulbecco's Medium + 10% dimethyl sulfoxide + 20% fetal bovine serum served as the control group, while the test group was additionally supplemented with 50 μg/mL of trehalose. After revival of control and test DCs, they were assessed for viability, morphology, phenotype, and functions. RESULTS The addition of trehalose to the conventional freezing medium helped to preserve the viability and functionality of DCs better than dimethyl sulfoxide alone in both long- and short-term cryopreservation. Trehalose also protected the mitochondrial membrane potential and cytoskeleton integrity of DCs, which are necessary for their functionality. Mediators of the intrinsic apoptotic pathway like Caspase-9 and Bim-1 were found to be low in the test. CONCLUSION Supplementation of conventional freezing medium with trehalose results in better quality of DCs revived after cryopreservation. This finding could help improve DC vaccine preparation for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Nikhat Khan
- National Centre for Cell Science, Pune, India
| | - Sameer Melinkeri
- Blood and Marrow Transplant Unit, Deenanath Mangeshkar Hospital, Pune, India
| | | | | |
Collapse
|
16
|
Cornel AM, van Til NP, Boelens JJ, Nierkens S. Strategies to Genetically Modulate Dendritic Cells to Potentiate Anti-Tumor Responses in Hematologic Malignancies. Front Immunol 2018; 9:982. [PMID: 29867960 PMCID: PMC5968097 DOI: 10.3389/fimmu.2018.00982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
Dendritic cell (DC) vaccination has been investigated as a potential strategy to target hematologic malignancies, while generating sustained immunological responses to control potential future relapse. Nonetheless, few clinical trials have shown robust long-term efficacy. It has been suggested that a combination of surmountable shortcomings, such as selection of utilized DC subsets, DC loading and maturation strategies, as well as tumor-induced immunosuppression may be targeted to maximize anti-tumor responses of DC vaccines. Generation of DC from CD34+ hematopoietic stem and progenitor cells (HSPCs) may provide potential in patients undergoing allogeneic HSPC transplantations for hematologic malignancies. CD34+ HSPC from the graft can be genetically modified to optimize antigen presentation and to provide sufficient T cell stimulatory signals. We here describe beneficial (gene)-modifications that can be implemented in various processes in T cell activation by DC, among which major histocompatibility complex (MHC) class I and MHC class II presentation, DC maturation and migration, cross-presentation, co-stimulation, and immunosuppression to improve anti-tumor responses.
Collapse
Affiliation(s)
- Annelisa M Cornel
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niek P van Til
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jaap Jan Boelens
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Pediatric Blood and Marrow Transplantation Program, University Medical Center Utrecht, Utrecht, Netherlands.,Blood and Marrow Transplantation Program, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Stefan Nierkens
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
17
|
Shinde P, Fernandes S, Melinkeri S, Kale V, Limaye L. Compromised functionality of monocyte-derived dendritic cells in multiple myeloma patients may limit their use in cancer immunotherapy. Sci Rep 2018; 8:5705. [PMID: 29632307 PMCID: PMC5890285 DOI: 10.1038/s41598-018-23943-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) have the potential to elicit long-lasting anti-tumour immune responses. Most of the clinical trials of anti-cancer DC vaccines are based on monocyte-derived DCs (Mo-DCs). However, their outcomes have shown limited promise especially in multiple myeloma (MM) patients. Here, we investigated whether in vitro generated Mo-DCs from MM patients (MM-DCs) possess impaired functionality, thus contributing to the limited success of DC vaccines. We generated MM-DCs and compared them with DCs from healthy donors (HD-DCs). The yield of DCs in MM was 3.5 fold lower than in HD sets. However morphology, phenotype, antigen uptake and allo-T cell stimulation were comparable. Migration and secretion of IL12p70 and IFN-γ (in DC-T cell co-cultures) were significantly reduced in MM-DCs. Thus, MM-DCs were compromised in functionality. This impairment could be attributed to autocrine secretion of IL6 by MM-monocytes and activation of their P38 MAPK pathway. This indicates a need to look for alternative sources of DCs.
Collapse
Affiliation(s)
- Prajakta Shinde
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411007, India
| | - Sophia Fernandes
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411007, India
| | - Sameer Melinkeri
- Blood and Marrow Transplant Unit, Deenanath Mangeshkar Hospital, Erandawne, Pune, 411004, India
| | - Vaijayanti Kale
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411007, India
| | - Lalita Limaye
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
18
|
Lycium barbarum Polysaccharide Promotes Maturation of Dendritic Cell via Notch Signaling and Strengthens Dendritic Cell Mediated T Lymphocyte Cytotoxicity on Colon Cancer Cell CT26-WT. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2305683. [PMID: 29619065 PMCID: PMC5829330 DOI: 10.1155/2018/2305683] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 09/13/2017] [Accepted: 09/25/2017] [Indexed: 01/12/2023]
Abstract
Lycium barbarum polysaccharide (LBP) is the major function component of Lycium barbarum L. and has been previously reported to induce the phenotypic and functional maturation of dendritic cells (DCs) as well as activating T lymphocytes. In the current study, the immunologic cytotoxicity promoting effect of LBP was assessed and the underlying mechanism was explored. The impact of LBP on the phenotype, maturation, and immunogenicity of DCs was assessed. The activity of Notch pathway which is involved in the regulation of LBP on DCs was detected. Afterwards, the influence of LBP on cytotoxicity of DC-mediated cytotoxicity T lymphocytes (CTLs) to CT26-WT colon cancer cells was further assessed. Administration of LBP induced the phenotypic and functional maturation of DCs. After being subjected to LBP, the expression of Notch and Jagged and Notch targets Hes1 and Hes5 was all upregulated. The cytotoxicity of DC-mediated CTLs was strengthened by administration of LBP. Additionally, cytotoxicity of DC-mediated CTLs on CT26-WT colon cancer cells also increased with effector-target ratio. In conclusion, LBP could induce the phenotypic and functional maturation of DCs via Notch signaling and promote the cytotoxicity of DC-mediated CTLs, which could be employed as a promising adjuvant for cancer immunotherapy.
Collapse
|
19
|
Abstract
Immunotherapy using dendritic cell (DC)-based vaccination is an approved approach for harnessing the potential of a patient's own immune system to eliminate tumor cells in metastatic hormone-refractory cancer. Overall, although many DC vaccines have been tested in the clinic and proven to be immunogenic, and in some cases associated with clinical outcome, there remains no consensus on how to manufacture DC vaccines. In this review we will discuss what has been learned thus far about human DC biology from clinical studies, and how current approaches to apply DC vaccines in the clinic could be improved to enhance anti-tumor immunity.
Collapse
|
20
|
Zhao J, Huang P, Wang Z, Tan Y, Hou X, Zhang L, He CY, Chen ZY. Synthesis of Amphiphilic Poly(β-amino ester) for Efficiently Minicircle DNA Delivery in Vivo. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19284-19290. [PMID: 27267084 DOI: 10.1021/acsami.6b04412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Minicircle DNA (mcDNA) is a kind of enhanced nonviral DNA vector with excellent profiles in biosafety and transgene expression. Herein, we reported a novel amphiphilic polymer comprising polyethylenimine(PEI) modified Poly(β-amino ester) PEI-PBAE(C16) for efficient mcDNA delivery in vivo. The synthesized polymer could condense mcDNA into nanoscaled structure and exhibited efficient gene transfection ability without detectable cytotoxicity. Importantly, when injected into mouse intraperitoneally, these PEI-PBAE(C16) nanocomplexes were able to result in high level of trangene expression which lasted at least 72 h. Overall, these results demonstrated the PEI-PBAE(C16) can mediate effective and safe gene delivery in vivo with clinical application potential.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Ping Huang
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Zhiyong Wang
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Yan Tan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Xiaohu Hou
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Liping Zhang
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Cheng-Yi He
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Zhi-Ying Chen
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| |
Collapse
|
21
|
Mahla RS. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics. Int J Cell Biol 2016; 2016:6940283. [PMID: 27516776 PMCID: PMC4969512 DOI: 10.1155/2016/6940283] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 06/05/2016] [Indexed: 12/18/2022] Open
Abstract
Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation.
Collapse
Affiliation(s)
- Ranjeet Singh Mahla
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|