1
|
Gao C, Jian C, Wang L, Liu Y, Xiong Y, Wu T, Shi C. FAP-targeting biomimetic nanosystem to restore the activated cancer-associated fibroblasts to quiescent state for breast cancer radiotherapy. Int J Pharm 2025; 670:125190. [PMID: 39788396 DOI: 10.1016/j.ijpharm.2025.125190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Cancer associated fibroblasts (CAFs) are one of the most important stromal cells in the tumor microenvironment, playing a pivotal role in the development, recurrence, metastasis, and immunosuppression of cancer and treatment resistance. Here, we developed a core-shell biomimetic nanosystem termed as FAP-C NPs. This system was comprised of 4T1 extracellular vesicles fused with a FAP single-chain antibody fragment to form the biomimetic shell, and PLGA nanoparticles loaded with calcipotriol as the core. The FAP-modified shell endowed this nanosystem with active targeting ability to CAFs. Calcipotriol, a vitamin D analog, can activate the vitamin D receptor expressed on CAFs, promoting their transition from an activated to quiescent state. This process would help to reduce the pro-tumorigenic signals generated by CAFs, inhibit the stemness of cancer cells, and attenuate the inhibitory effect of CAFs on immune cells. The hydrated particle size of FAP-C NPs was approximately 206 nm, with a narrow distribution (polydispersity index < 0.2). The zeta potential of FAP-C NPs was -12.63 ± 0.61 mV. FAP-C NPs can restore CAFs to a quiescent state to shield the function of activated CAFs, inhibit tumor cell stemness, facilitate the maturation of dendritic cell, and relieve the inhibition of CAFs on lymphocytes. Besides, when combined with radiotherapy, this biomimetic nanosystem could inhibit the activation of CAFs, improve the sensitivity to radiation, and stimulate potent anti-tumor immune response with a 2-fold increase in the infiltration of cytotoxic T cells in tumor microenvironment, thereby effectively suppressing tumor growth with the tumor inhibitory rate as 78.3 %. Therefore, FAP-C NPs hold great potential for targeted breast cancer therapy.
Collapse
Affiliation(s)
- Chen Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Chen Jian
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Lulu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Yajing Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Yiquan Xiong
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China.
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China.
| |
Collapse
|
2
|
Amerifar M, Arabnozari H, Shokrzadeh M, Habibi E. Evaluation of antioxidant properties and cytotoxicity of brown algae (nizamuddinia zanardinii) in uterine (hela) and pancreatic cancer cell lines (paca-2). Hum Exp Toxicol 2024; 43:9603271241227228. [PMID: 38238028 DOI: 10.1177/09603271241227228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Pancreatic cancer and cervical cancer are among the most common cancers. Brown algae have anti-inflammatory, anti-cancer, anti-fungal, antioxidant, and immune-boosting properties. This study investigated the antioxidant properties and the effect of brown algae extract on pancreatic and uterine cancer cells. MATERIALS AND METHODS In this study, Cervical (Hela) and pancreas (Paca-2) cancer cell lines were examined. The algae materials were extracted by sequential maceration method and amount of fucoxanthin content in the sample was determined by using High Performance Liquid Chromatography (HPLC) system. The cytotoxic effect of different concentrations of brown algae was measured by the MTT assay. All statistical calculations for comparing IC50 were analyzed using Graph Pad Prism software. RESULTS the algal sample contained an average of 102.52 ± 0.12 μg of fucoxanthin per 100 g. IC50 for 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide free radical scavenging activity for methanolic extract was 2.02 and 11.98 ± 0.13 respectively. Brown algae in all fractions inhibited cell growth and survival. In Hela cell lines, the methanolic extract was the most effective inhibitor, while in Paca cell lines, hexane and methanolic extracts were particularly potent. The methanolic extract was more toxic than other fractions on Hela and Paca cell lines. CONCLUSION This study highlights brown algae extracts strong anticancer effects on uterine and pancreatic cancer cells, suggesting its potential as a natural anticancer drug. Different fractions of the extract showed superior apoptotic and cytotoxic effects, with higher concentrations leading to increased apoptotic effects and reduced survival rates of cancer cells.
Collapse
Affiliation(s)
- Milad Amerifar
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hesamoddin Arabnozari
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Shokrzadeh
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Emran Habibi
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
Wang K, Chen S, Wu Y, Wang Y, Lu Y, Sun Y, Chen Y. The ufmylation modification of ribosomal protein L10 in the development of pancreatic adenocarcinoma. Cell Death Dis 2023; 14:350. [PMID: 37280198 DOI: 10.1038/s41419-023-05877-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Pancreatic adenocarcinoma (PAAD) is the most malignant cancer with a high mortality rate. Despite the association of ribosomal protein L10 (RPL10) with PAAD and previous reports on RPL26 ufmylation, the relationship between RPL10 ufmylation and PAAD development remains unexplored. Here, we report the dissection of ufmylating process of RPL10 and potential roles of RPL10 ufmylation in PAAD development. The ufmylation of RPL10 was confirmed in both pancreatic patient tissues and cell lines, and specific modification sites were identified and verified. Phenotypically, RPL10 ufmylation significantly increased cell proliferation and stemness, which is principally resulted from higher expression of transcription factor KLF4. Moreover, the mutagenesis of ufmylation sites in RPL10 further demonstrated the connection of RPL10 ufmylation with cell proliferation and stemness. Collectively, this study reveals that PRL10 ufmylation plays an important role to enhance the stemness of pancreatic cancer cells for PAAD development.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, 639 Longmian Ave., Nanjing, Jiangsu Province, 211198, China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, 639 Longmian Ave., Nanjing, Jiangsu Province, 211198, China
| | - Yue Wu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, 639 Longmian Ave., Nanjing, Jiangsu Province, 211198, China
| | - Yang Wang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, 639 Longmian Ave., Nanjing, Jiangsu Province, 211198, China
| | - Yousheng Lu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Kunlun Road, Nanjing, Jiangsu Province, 210009, China
| | - Yanzi Sun
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, 639 Longmian Ave., Nanjing, Jiangsu Province, 211198, China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, 639 Longmian Ave., Nanjing, Jiangsu Province, 211198, China.
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, 401135, China.
| |
Collapse
|
4
|
Sung CJ, Wang HH, Sun KH, Hsieh CC, Huang R, Sun GH, Tang SJ. Fucoidan from Sargassum hemiphyllum inhibits the stemness of cancer stem cells and epithelial-mesenchymal transitions in bladder cancer cells. Int J Biol Macromol 2022; 221:623-633. [PMID: 36099992 DOI: 10.1016/j.ijbiomac.2022.09.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
A variety of anticancer activities have been established for fucoidan from brown algae, whereas whether cancer stem cells (CSCs) are inhibited by sulfated polysaccharides is unexplored. In this study, fucoidan extracted from Sargassum hemiphyllum was showed heat stable and might tolerate 140 °C treatment. Fucoidan did not exhibit cytotoxicity in 5637 and T24 bladder cancer cells. After fucoidan treatment, the stress fibers were aggregated into thick and abundant underneath the plasma membrane and getting around the cells, and the structure of F-actin showed a remarkable change in the filopodial protrusion in T24 and 5637 cells. Using culture inserts, transwell assays and time lapse recordings showed that fucoidan inhibited cell migration. In the epithelial-mesenchymal transition (EMT), fucoidan downregulated the expression of vimentin, a mesenchymal marker, and upregulated the expression of E-cadherin, an epithelial marker. Additionally, the transcription levels of Snail, Slug, Twist1, Twist2, MMP2 and MMP9 were significantly decreased by fucoidan, indicating EMT suppression. CSCs are implicated in tumor initiation, metastatic spread, drug resistance and tumor recurrence. Our results showed that fucoidan inhibited stemness gene expression and sphere formation in bladder CSCs. For the first time, our findings demonstrated that fucoidan inhibits CSC formation and provides evidence as potential anticancer therapy.
Collapse
Affiliation(s)
- Chun-Ju Sung
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Hsiao-Hsien Wang
- Section of Urology, Cheng-Hsin Rehabilitation Medical Center, Taipei 112, Taiwan
| | - Kuang-Hui Sun
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Chii-Cheng Hsieh
- Section of Urology, Cheng-Hsin Rehabilitation Medical Center, Taipei 112, Taiwan
| | - Roger Huang
- Taiwan International Algae Fund, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Guang-Huan Sun
- Department of Urology and Surgery, Tri-service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Shye-Jye Tang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; Taiwan International Algae Fund, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
5
|
Fernandes AS, Oliveira C, Reis RL, Martins A, Silva TH. Marine-Inspired Drugs and Biomaterials in the Perspective of Pancreatic Cancer Therapies. Mar Drugs 2022; 20:689. [PMID: 36355012 PMCID: PMC9698933 DOI: 10.3390/md20110689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 05/12/2024] Open
Abstract
Despite its low prevalence, pancreatic cancer (PC) is one of the deadliest, typically characterised as silent in early stages and with a dramatically poor prognosis when in its advanced stages, commonly associated with a high degree of metastasis. Many efforts have been made in pursuing innovative therapeutical approaches, from the search for new cytotoxic drugs and other bioactive compounds, to the development of more targeted approaches, including improved drug delivery devices. Marine biotechnology has been contributing to this quest by providing new chemical leads and materials originating from different organisms. In this review, marine biodiscovery for PC is addressed, particularly regarding marine invertebrates (namely sponges, molluscs, and bryozoans), seaweeds, fungi, and bacteria. In addition, the development of biomaterials based on marine-originating compounds, particularly chitosan, fucoidan, and alginate, for the production of advanced cancer therapies, is also discussed. The key role that drug delivery can play in new cancer treatments is highlighted, as therapeutical outcomes need to be improved to give further hope to patients.
Collapse
Affiliation(s)
- Andreia S. Fernandes
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Catarina Oliveira
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Albino Martins
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| |
Collapse
|
6
|
Hu Y, Li Q, Yi K, Yang C, Lei Q, Wang G, Wang Q, Xu X. HuR Affects the Radiosensitivity of Esophageal Cancer by Regulating the EMT-Related Protein Snail. Front Oncol 2022; 12:883444. [PMID: 35664798 PMCID: PMC9160430 DOI: 10.3389/fonc.2022.883444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/21/2022] [Indexed: 12/05/2022] Open
Abstract
Purpose We previously found that Hu antigen R (HuR) can regulate the proliferation and metastasis of esophageal cancer cells. This study aims to explore the effects of HuR on the radiosensitivity of esophageal cancer. Materials and Method Analyses of CCK-8, colony formation assay, Western blot, immunofluorescence, flow cytometry, reactive oxygen species (ROS), and mitochondrial membrane potential were conducted to characterize the esophageal cancer cells. Nude mouse models were used to detect the effects of HuR in a combination of X-ray treatment on the subcutaneous xenografts of esophageal cancer. In addition, a luciferase assay was used to detect the direct interaction of HuR with Snail mRNA 3’-UTR. Results The down-regulation of HuR combined with X-ray can significantly inhibit the proliferation and colony formation of esophageal cancer cells. Flow cytometry data showed that the down-regulation of HuR could induce a G1 phase cell cycle block in esophageal cancer cells, and aggravate X-ray-induced apoptosis, indicated by the increases of apoptosis-related proteins Bax, caspase-3 and caspase-9. Moreover, the down-regulation of HuR could significantly impair the mitochondrial membrane potential and increase the ROS production and DNA double-strand break marker γH2AX expression in esophageal cancer cells that were exposed to X-rays. In vivo data showed that the down-regulation of HuR combined with radiation significantly decreased the growth of subcutaneous xenograft tumors. Furthermore, HuR could interact with Snail. Up-regulation of Snail can reverse the EMT inhibitory effects caused by HuR down-regulation, and attenuate the tumor-inhibiting and radiosensitizing effects caused by HuR down-regulation. Conclusion In summary, our data demonstrate that HuR effectively regulates the radiosensitivity of esophageal cancer, which may be achieved by stabilizing Snail. Thus, HuR/Snail axis is a potentially therapeutic target for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Yan Hu
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Taicang, China
| | - Qing Li
- Department of Gastroenterology, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Taicang, China
| | - Ke Yi
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Taicang, China
| | - Chi Yang
- Department of General Surgery, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Taicang, China
| | - Qingjun Lei
- Department of General Surgery, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Taicang, China
| | - Guanghui Wang
- School of Pharmacy, Soochow University, Suzhou, China
| | - Qianyun Wang
- Department of Thoracic Surgery, the Third Affiliated Hospital to Soochow University, Changzhou, China
| | - Xiaohui Xu
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Taicang, China.,Department of General Surgery, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Taicang, China
| |
Collapse
|
7
|
Patil K, Khan FB, Akhtar S, Ahmad A, Uddin S. The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance. Cancer Metastasis Rev 2021; 40:691-720. [PMID: 34453639 PMCID: PMC8556195 DOI: 10.1007/s10555-021-09979-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
The ever-growing perception of cancer stem cells (CSCs) as a plastic state rather than a hardwired defined entity has evolved our understanding of the functional and biological plasticity of these elusive components in malignancies. Pancreatic cancer (PC), based on its biological features and clinical evolution, is a prototypical example of a CSC-driven disease. Since the discovery of pancreatic CSCs (PCSCs) in 2007, evidence has unraveled their control over many facets of the natural history of PC, including primary tumor growth, metastatic progression, disease recurrence, and acquired drug resistance. Consequently, the current near-ubiquitous treatment regimens for PC using aggressive cytotoxic agents, aimed at ''tumor debulking'' rather than eradication of CSCs, have proven ineffective in providing clinically convincing improvements in patients with this dreadful disease. Herein, we review the key hallmarks as well as the intrinsic and extrinsic resistance mechanisms of CSCs that mediate treatment failure in PC and enlist the potential CSC-targeting 'natural agents' that are gaining popularity in recent years. A better understanding of the molecular and functional landscape of PCSC-intrinsic evasion of chemotherapeutic drugs offers a facile opportunity for treating PC, an intractable cancer with a grim prognosis and in dire need of effective therapeutic advances.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Farheen B Khan
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
8
|
Rajamani K, Thirugnanasambandan SS, Natesan C, Subramaniam S, Thangavel B, Aravindan N. Squalene deters drivers of RCC disease progression beyond VHL status. Cell Biol Toxicol 2020; 37:611-631. [PMID: 33219891 DOI: 10.1007/s10565-020-09566-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Identifying drug candidates to target cellular events/signaling that evades von Hippel-Lindau tumor suppressor (VHL) gene interaction is critical for the cure of renal cell carcinoma (RCC). Recently, we characterized a triterpene-squalene derived from marine brown alga. Herein, we investigated the potential of squalene in targeting HIF-signaling and other drivers of RCC progression. Squalene inhibited cell proliferation, induced cell dealth and reverted the cells' metastatic state (migration, clonal expansion) independent of their VHL status. Near-identical inhibition of HIF-1α and HIF-2α and the regulation of downstream targets in VHL wild type and mutant cell lines demonstrated squalene efficacy beyond VHL-HIF interaction. In a rat model of chemically induced RCC, squalene displayed chemopreventive capabilities by substantial reversal of lipid peroxidation, mitochondrial redox regulation, maintaining ∆ψm, inflammation [Akt, nuclear factor κB (NF-κB)], angiogenesis (VEGFα), metastasis [matrix metalloproteinase 2 (MMP-2)], and survival (Bax/Bcl2, cytochrome-c, Casp3). Squalene restored glutathione, glutathione reductase, glutathione-s-transferase, catalase, and superoxide dismutase and stabilized alkaline phosphatase, alkaline transaminase, and aspartate transaminase. The correlation of thiobarbituric acid reactive substance with VEGF/NF-κB and negative association of GSH with Casp3 show that squalene employs reduction in ROS regulation. Cytokinesis-block micronuclei (CBMN) assay in VHLwt/mut cells revealed both direct and bystander effects of squalene with increased micronucleus (MN) frequency. Clastogenicity analysis of rat bone marrow cells demonstrated an anti-clastogenic effect of squalene, with increased polychromatic erythrocytes (PCEs), decreased MNPCE,s and MN normochromatic erythrocytes. Squalene could effectively target HIF signaling that orchestrate RCC evolution. The efficacy of squalene is similar in VHLwt and VHLmut RCC cells, and hence, squalene could serve as a promising drug candidate for an RCC cure beyond VHL status and VHL-HIF interaction dependency. Summary: Squalene derived from marine brown algae displays strong anti-cancer (RCC) activity, functionally targeting HIF-signaling pathway, and affects various cellular process. The significance of squalene effect for RCC is highlighted by its efficiency beyond VHL status, designating itself a promising drug candidate. Graphical abstract.
Collapse
Affiliation(s)
- Karthikeyan Rajamani
- Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608502, TN, India.
- Rajah Muthiah Medical College, Annamalai University, Annamalai Nagar, Chidambaram, 608002, TN, India.
- WHO Collaborating Center for Occupational and Environmental Health, ICMR Center for Air Quality, Climate and Health, Department of Environmental Health Engineering, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, TN, 600116, India.
| | | | - Chidambaram Natesan
- Rajah Muthiah Medical College, Annamalai University, Annamalai Nagar, Chidambaram, 608002, TN, India
| | - Sethupathy Subramaniam
- Rajah Muthiah Medical College, Annamalai University, Annamalai Nagar, Chidambaram, 608002, TN, India
| | | | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, BMSB 737, 947 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
9
|
Ding S, Xu S, Fang J, Jiang H. The Protective Effect of Polyphenols for Colorectal Cancer. Front Immunol 2020; 11:1407. [PMID: 32754151 PMCID: PMC7366338 DOI: 10.3389/fimmu.2020.01407] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers that threaten people in many countries. It is a multi-factorial chronic disease caused by a combination of genetic and environmental factors, but it is mainly related to lifestyle factors, including diet. Plentiful plant foods and beverages are abundant in polyphenols with antioxidant, anti-atherosclerotic, anti-inflammatory, and anticancer properties. These compounds participate in host nutrition and disease pathology regulation in different ways. Polyphenolic compounds have been used to prevent and inhibit the development and prognosis of cancer, and examples include green tea polyphenol (-)epigallocatechin-3-O-gallate (EGCG), curcumin, and resveratrol. Of course, there are more known and unknown polyphenol compounds that need to be further explored for their anticancer properties. This article focuses on the fact that polyphenols affect the progression of CRC by controlling intestinal inflammation, epigenetics, and the intestinal microbe in the aspects of prevention, treatment, and prognosis.
Collapse
Affiliation(s)
- Sujuan Ding
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Sheng Xu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jun Fang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Hongmei Jiang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
10
|
Gašić U, Ćirić I, Pejčić T, Radenković D, Djordjević V, Radulović S, Tešić Ž. Polyphenols as Possible Agents for Pancreatic Diseases. Antioxidants (Basel) 2020; 9:antiox9060547. [PMID: 32585831 PMCID: PMC7346180 DOI: 10.3390/antiox9060547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is very aggressive and it is estimated that it kills nearly 50% of patients within the first six months. The lack of symptoms specific to this disease prevents early diagnosis and treatment. Today, gemcitabine alone or in combination with other cytostatic agents such as cisplatin (Cis), 5-fluorouracil (5-FU), irinotecan, capecitabine, or oxaliplatin (Oxa) is used in conventional therapy. Outgoing literature provides data on the use of polyphenols, biologically active compounds, in the treatment of pancreatic cancer and the prevention of acute pancreatitis. Therefore, the first part of this review gives a brief overview of the state of pancreatic disease as well as the procedures for its treatment. The second part provides a detailed overview of the research regarding the anticancer effects of both pure polyphenols and their plant extracts. The results regarding the antiproliferative, antimetastatic, as well as inhibitory effects of polyphenols against PC cell lines as well as the prevention of acute pancreatitis are presented in detail. Finally, particular emphasis is given to the polyphenolic profiles of apples, berries, cherries, sour cherries, and grapes, given the fact that these fruits are rich in polyphenols and anthocyanins. Polyphenolic profiles, the content of individual polyphenols, and their relationships are discussed. Based on this, significant data can be obtained regarding the amount of fruit that should be consumed daily to achieve a therapeutic effect.
Collapse
Affiliation(s)
- Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Ivanka Ćirić
- Innovation Center, University of Belgrade—Faculty of Chemistry, P.O. Box 51, 11158 Belgrade, Serbia;
| | - Tomislav Pejčić
- Clinic of Urology, Clinical Centre of Serbia, Pasterova 2, 11000 Belgrade, Serbia;
| | - Dejan Radenković
- University of Belgrade—Faculty of Medicine, dr Subotića 8, 11000 Belgrade, Serbia;
- First Surgical Clinic, Clinical Center of Serbia, Koste Todorovića 6, 11000 Belgrade, Serbia;
| | - Vladimir Djordjević
- First Surgical Clinic, Clinical Center of Serbia, Koste Todorovića 6, 11000 Belgrade, Serbia;
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Živoslav Tešić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, P.O. Box 51, 11158 Belgrade, Serbia
- Correspondence: ; Tel.: +381-113336733
| |
Collapse
|
11
|
Delma CR, Thirugnanasambandan S, Srinivasan GP, Raviprakash N, Manna SK, Natarajan M, Aravindan N. Fucoidan from marine brown algae attenuates pancreatic cancer progression by regulating p53 - NFκB crosstalk. PHYTOCHEMISTRY 2019; 167:112078. [PMID: 31450091 DOI: 10.1016/j.phytochem.2019.112078] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Poor pancreatic cancer (PC) prognosis has been attributed to its resistance to apoptosis and propensity for early systemic dissemination. Existing therapeutic strategies are often circumvented by the molecular crosstalk between cell-signalling pathways. p53 is mutated in more than 50% of PC and NFκB is constitutively activated in therapy-resistant residual disease; these mutations and activations account for the avoidance of cell death and metastasis. Recently, we demonstrated the anti-PC potential of fucoidan extract from marine brown alga, Turbinaria conoides (J. Agardh) Kützing (Sargassaceae). In this study, we aimed to characterize the active fractions of fucoidan extract to identify their select anti-PC efficacy, and to define the mechanism(s) involved. Five fractions of fucoidan isolated by ion exchange chromatography were tested for their potential in genetically diverse human PC cell lines. All fractions exerted significant dose-dependent and time-dependent regulation of cell survival. Fucoidans induced apoptosis, activated caspase -3, -8 and -9, and cleaved Poly ADP ribose polymerase (PARP). Pathway-specific transcriptional analysis recognized inhibition of 57 and 38 nuclear factor κB (NFκB) pathway molecules with fucoidan-F5 in MiaPaCa-2 and Panc-1 cells, respectively. In addition, fucoidan-F5 inhibited both the constitutive and Tumor necrosis factor-α (TNFα)-mediated NFκB DNA-binding activity in PC cells. Upregulation of cytoplasmic IκB levels and significant reduction of NFκB-dependent luciferase activity further substantiate the inhibitory potential of seaweed fucoidans on NFκB. Moreover, fucoidan(s) treatment increased cellular p53 in PC cells and reverted NFκB forced-expression-related p53 reduction. The results suggest that fucoidan regulates PC progression and that fucoidans may target p53-NFκB crosstalk and dictate apoptosis in PC cells.
Collapse
Affiliation(s)
- Caroline R Delma
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, TN, India; Department of Pathology, University of Texas Health Sciences Center at San Antonio, TX, USA.
| | | | - Guru Prasad Srinivasan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, TN, India
| | - Nune Raviprakash
- Laboratory of Immunology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, AP, India
| | - Sunil K Manna
- Laboratory of Immunology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, AP, India
| | - Mohan Natarajan
- Department of Pathology, University of Texas Health Sciences Center at San Antonio, TX, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
12
|
Targeting acquired oncogenic burden in resilient pancreatic cancer: a novel benefit from marine polyphenols. Mol Cell Biochem 2019; 460:175-193. [PMID: 31367889 DOI: 10.1007/s11010-019-03579-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023]
Abstract
The upsurge of marine-derived therapeutics for cancer treatment is evident, with many drugs in clinical use and in clinical trials. Seaweeds harbor large amounts of polyphenols and their anti-cancer benefit is linear to their anti-oxidant activity. Our studies identified three superlative anti-cancer seaweed polyphenol drug candidates (SW-PD). We investigated the acquisition of oncogenic burden in radiation-resilient pancreatic cancer (PC) that could drive tumor relapse, and elucidated the efficacy of SW-PD candidates as adjuvants in genetically diverse in vitro systems and a mouse model of radiation-residual disease. QPCR profiling of 88 oncogenes in therapy-resilient PC cells identified a 'shared' activation of 40 oncogenes. SW-PD pretreatment inflicted a significant mitigation of acquired (shared) oncogenic burden, in addition to drug- and cell-line-specific repression signatures. Tissue microarray with IHC of radiation-residual tumors in mice signified acquired cellular localization of key oncoproteins and other critical architects. Conversely, SW-PD treatment inhibited the acquisition of these critical drivers of tumor genesis, dissemination, and evolution. Heightened death of resilient PC cells with SW-PD treatment validated the translation aspects. The results defined the acquisition of oncogenic burden in resilient PC and demonstrated that the marine polyphenols effectively target the acquired oncogenic burden and could serve as adjuvant(s) for PC treatment.
Collapse
|
13
|
Liskova A, Kubatka P, Samec M, Zubor P, Mlyncek M, Bielik T, Samuel SM, Zulli A, Kwon TK, Büsselberg D. Dietary Phytochemicals Targeting Cancer Stem Cells. Molecules 2019; 24:molecules24050899. [PMID: 30836718 PMCID: PMC6429493 DOI: 10.3390/molecules24050899] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
There is an increasing awareness of the importance of a diet rich in fruits and vegetables for human health. Cancer stem cells (CSCs) are characterized as a subpopulation of cancer cells with aberrant regulation of self-renewal, proliferation or apoptosis leading to cancer progression, invasiveness, metastasis formation, and therapy resistance. Anticancer effects of phytochemicals are also directed to target CSCs. Here we provide a comprehensive review of dietary phytochemicals targeting CSCs. Moreover, we evaluate and summarize studies dealing with effects of dietary phytochemicals on CSCs of various malignancies in preclinical and clinical research. Dietary phytochemicals have a significant impact on CSCs which may be applied in cancer prevention and treatment. However, anticancer effects of plant derived compounds have not yet been fully investigated in clinical research.
Collapse
Affiliation(s)
- Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Bratislava, Slovakia.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Bratislava, Slovakia.
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Bratislava, Slovakia.
| | - Pavol Zubor
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Bratislava, Slovakia.
| | - Milos Mlyncek
- Department of Obstetrics and Gynecology Faculty Hospital Nitra Constantine the Philosopher University, 949 01 Nitra, Slovakia.
| | - Tibor Bielik
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Bratislava, Slovakia.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha 24144, Qatar.
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia.
| | - Taeg Kyu Kwon
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu 426 01, Korea.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha 24144, Qatar.
| |
Collapse
|
14
|
Zhou Y, Su Y, Zhu H, Wang X, Li X, Dai C, Xu C, Zheng T, Mao C, Chen D. Interleukin-23 receptor signaling mediates cancer dormancy and radioresistance in human esophageal squamous carcinoma cells via the Wnt/Notch pathway. J Mol Med (Berl) 2018; 97:177-188. [PMID: 30483821 PMCID: PMC6348073 DOI: 10.1007/s00109-018-1724-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 01/05/2023]
Abstract
Abstract In the tumor microenvironment, inflammatory cells and molecules influence almost every process; among them, interleukin-23 (IL-23) is a pro-inflammatory molecule that exhibits pro- or anti-tumor properties, but both activities remain poorly understood. In this study, we investigated the effect of extracellular IL-23 in IL-23 receptor-positive (IL-23R+) esophageal squamous cell carcinoma (ESCC) and explored the mechanisms underlying this effect. We analyzed ESCC tumor tissues by immunohistochemical and immunofluorescence staining and found that IL-23, which was highly expressed, co-localized with Oct-4A in IL-23R+ ESCC cells. In addition, IL-23 treatment significantly increased the accumulation of CD133+ cells and activated the Wnt and Notch signaling pathways in CD133−IL-23R+ ESCC cell lines. Consistently, CD133−IL-23R+ cells pretreated with IL-23 showed stronger anti-apoptosis activity when exposed to radiation and higher survival than untreated groups. Moreover, the inhibition of Wnt/Notch signaling by a small-molecule inhibitor or siRNA abolished the effect of IL-23-induced dormancy and consequent radioresistance. Taken together, these results suggested that IL-23 facilitates radioresistance in ESCC by activating Wnt/Notch-mediated G0/1 phase arrest, and attenuating these detrimental changes by blocking the formation of dormancy may prove to be an effective pretreatment for radiotherapy. Key messages IL-23/IL-23R is correlated with the acquisition of stem-like potential in ESCC. CD133−IL-23R+ ESCCs acquired dormancy via IL-23. Radioresistance depends on IL-23-mediated Wnt/Notch pathway activation in vitro and vivo.
Electronic supplementary material The online version of this article (10.1007/s00109-018-1724-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuepeng Zhou
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiefang Road 438, Zhenjiang, 212001, China
| | - Yuting Su
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiefang Road 438, Zhenjiang, 212001, China
| | - Haitao Zhu
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xuefeng Wang
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xiaoqin Li
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiefang Road 438, Zhenjiang, 212001, China
| | - Chunhua Dai
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiefang Road 438, Zhenjiang, 212001, China
| | - Chengcheng Xu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Tingting Zheng
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Chaoming Mao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiefang Road 438, Zhenjiang, 212001, China.
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiefang Road 438, Zhenjiang, 212001, China.
| |
Collapse
|
15
|
Zhao X, Zhao J, Hu R, Yao Q, Zhang G, Shen H, Yagüe E, Hu Y. Ruanjian Sanjie decoction exhibits antitumor activity by inducing cell apoptosis in breast cancer. Oncol Lett 2017; 13:3071-3079. [PMID: 28529560 PMCID: PMC5431657 DOI: 10.3892/ol.2017.5832] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/06/2017] [Indexed: 12/28/2022] Open
Abstract
Traditional Chinese medicine, based on theories developed and practiced for >2,000 years, is one of the most common complementary and alternative types of medicine currently used in the treatment of patients with breast cancer. Ruanjian Sanjie (RJSJ) decoction, is composed of four herbs, including Ban xia (Pinellia ternata), Xia ku cao (Prunella vulgaris), Shan ci gu (Cremastra appendiculata) and Hai zao (Sargassum pallidum), and has traditionally been used for softening hard lumps and resolving hard tissue masses. However, the active compounds and mechanisms of action of RJSJ remain unknown. The present study demonstrated the antitumor activity of RJSJ against Ehrlich ascites carcinoma in Swiss albino mice and breast cancer xenografts in nude mice. Notably, RJSJ does not induce body weight loss, immune function toxicity or myelosuppression in mice, indicating that it is safe and well tolerated. In addition, RJSJ shows potent cytotoxicity against breast cancer cells in vitro by the suppression of the anti-apoptotic proteins B-cell lymphoma 2 and survivin, leading to the activation of caspase-3/7 and caspase-9, and the apoptotic cascade. These findings provide a clear rationale to explore the therapeutic strategy of using RJSJ alone or in combination with chemotherapeutic agents for breast cancer patients and the characterization of its active principles.
Collapse
Affiliation(s)
- Xiumei Zhao
- Centre for Research and Development of Anti Tumor Drugs, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, P.R. China
| | - Jing Zhao
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Renjie Hu
- Centre for Research and Development of Anti Tumor Drugs, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, P.R. China
| | - Qiang Yao
- Tianjin People's Hospital, Tianjin 300121, P.R. China
| | - Guixian Zhang
- Centre for Research and Development of Anti Tumor Drugs, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, P.R. China
| | - Hongsheng Shen
- Centre for Research and Development of Anti Tumor Drugs, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, P.R. China
| | - Ernesto Yagüe
- Cancer Research Center, Division of Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Yunhui Hu
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
16
|
Aravindan S, Ramraj S, Kandasamy K, Thirugnanasambandan SS, Somasundaram DB, Herman TS, Aravindan N. Hormophysa triquerta polyphenol, an elixir that deters CXCR4- and COX2-dependent dissemination destiny of treatment-resistant pancreatic cancer cells. Oncotarget 2017; 8:5717-5734. [PMID: 27974694 PMCID: PMC5351584 DOI: 10.18632/oncotarget.13900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022] Open
Abstract
Therapy-resistant pancreatic cancer (PC) cells play a crucial role in tumor relapse, recurrence, and metastasis. Recently, we showed the anti-PC potential of an array of seaweed polyphenols and identified efficient drug deliverables. Herein, we investigated the benefit of one such deliverable, Hormophysa triquerta polyphenol (HT-EA), in regulating the dissemination physiognomy of therapy-resistant PC cells in vitro,and residual PC in vivo. Human PC cells exposed to ionizing radiation (IR), with/without HT-EA pre-treatment were examined for the alterations in the tumor invasion/metastasis (TIM) transcriptome (93 genes, QPCR-profiling). Utilizing a mouse model of residual PC, we investigated the benefit of HT-EA in the translation regulation of crucial TIM targets (TMA-IHC). Radiation activated 30, 50, 15, and 38 TIM molecules in surviving Panc-1, Panc-3.27, BxPC3, and MiaPaCa-2 cells. Of these, 15, 44, 12, and 26 molecules were suppressed with HT-EA pre-treatment. CXCR4 and COX2 exhibited cell-line-independent increases after IR, and was completely suppressed with HT-EA, across all PC cells. HT-EA treatment resulted in translational repression of IR-induced CXCR4, COX2, β-catenin, MMP9, Ki-67, BAPX, PhPT-1, MEGF10, and GRB10 in residual PC. Muting CXCR4 or COX2 regulated the migration/invasion potential of IR-surviving cells, while forced expression of CXCR4 or COX2 significantly increased migration/invasion capabilities of PC cells. Further, treatment with HT-EA significantly inhibited IR-induced and CXCR4/COX2 forced expression-induced PC cell migration/invasion. This study (i) documents the TIM blueprint in therapy-resistant PC cells, (ii) defines the role of CXCR4 and COX2 in induced metastatic potential, and (iii) recognizes the potential of HT-EA in deterring the CXCR4/COX2-dependent dissemination destiny of therapy-resistant residual PC cells.
Collapse
Affiliation(s)
- Sheeja Aravindan
- Department of Marine Sciences, Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, TN, India
- Stephenson Cancer Center, Oklahoma City, OK, USA
| | - Satishkumar Ramraj
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kathiresan Kandasamy
- Department of Marine Sciences, Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, TN, India
| | | | - Dinesh Babu Somasundaram
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Terence S. Herman
- Stephenson Cancer Center, Oklahoma City, OK, USA
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
17
|
High Energy Particle Radiation-associated Oncogenic Transformation in Normal Mice: Insight into the Connection between Activation of Oncotargets and Oncogene Addiction. Sci Rep 2016; 6:37623. [PMID: 27876887 PMCID: PMC5120307 DOI: 10.1038/srep37623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022] Open
Abstract
Concerns on high-energy particle radiation-induced tumorigenic transformation of normal tissue in astronauts, and in cancer patients undergoing radiotherapy, emphasizes the significance of elucidating the mechanisms involved in radiogenic transformation processes. Mostly used genetically modified or tumor-prone models are less reliable in determining human health risk in space or protracted post-treatment normal tissue toxicity. Here, in wild type C57BL/6 mice, we related the deregulation of distinctive set of tissue-specific oncotargets in major organs upon 56Fe (600 MeV/amu; 0.5 Gy/min; 0.8 Gy) particle radiation and compared the response with low LET γ-radiation (137Cs; 0.5 Gy/min; 2 Gy). One of the novel findings is the ‘tissue-independent’ activation of TAL2 upon high-energy radiation, and thus qualifies TAL2 as a potential biomarker for particle and other qualities of radiation. Heightened expression of TAL2 gene transcript, which sustained over four weeks post-irradiation foster the concept of oncogene addiction signaling in radiogenic transformation. The positive/negative expression of other selected oncotargets that expresses tissue-dependent manner indicated their role as a secondary driving force that addresses the diversity of tissue-dependent characteristics of tumorigenesis. This study, while reporting novel findings on radiogenic transformation of normal tissue when exposed to particle radiation, it also provides a platform for further investigation into different radiation quality, LET and dose/dose rate effect in healthy organs.
Collapse
|
18
|
Jia Y, Dong Z, Yan T, Wu B, Liao Z, Bi K, Gong P, Suna B. Antidepressant-like activity of red wine phenolic extracts in repeated corticosterone-induced depression mice via BDNF/TrkB/CREB signaling pathway. BIO WEB OF CONFERENCES 2016. [DOI: 10.1051/bioconf/20160704009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
19
|
Li F, Zhou K, Gao L, Zhang B, Li W, Yan W, Song X, Yu H, Wang S, Yu N, Jiang Q. Radiation induces the generation of cancer stem cells: A novel mechanism for cancer radioresistance. Oncol Lett 2016; 12:3059-3065. [PMID: 27899964 PMCID: PMC5103903 DOI: 10.3892/ol.2016.5124] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/19/2016] [Indexed: 12/13/2022] Open
Abstract
Radioresistance remains a major obstacle for the radiotherapy treatment of cancer. Previous studies have demonstrated that the radioresistance of cancer is due to the existence of intrinsic cancer stem cells (CSCs), which represent a small, but radioresistant cell subpopulation that exist in heterogeneous tumors. By contrast, non-stem cancer cells are considered to be radiosensitive and thus, easy to kill. However, recent studies have revealed that under conditions of radiation-induced stress, theoretically radiosensitive non-stem cancer cells may undergo dedifferentiation subsequently obtaining the phenotypes and functions of CSCs, including high resistance to radiotherapy, which indicates that radiation may directly result in the generation of novel CSCs from non-stem cancer cells. These findings suggest that in addition to intrinsic CSCs, non-stem cancer cells may also contribute to the relapse and metastasis of cancer following transformation into CSCs. This review aims to investigate the radiation-induced generation of CSCs, its association with epithelial-mesenchymal transition and its significance with regard to the radioresistance of cancer.
Collapse
Affiliation(s)
- Fengsheng Li
- Central Laboratories, The Second Artillery General Hospital, Beijing 100088, P.R. China
| | - Kunming Zhou
- Central Laboratories, The Second Artillery General Hospital, Beijing 100088, P.R. China
| | - Ling Gao
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, China Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Bin Zhang
- Department of Colorectal Disease Surgery, The Second Artillery General Hospital, Beijing 100088, P.R. China
| | - Wei Li
- Central Laboratories, The Second Artillery General Hospital, Beijing 100088, P.R. China
| | - Weijuan Yan
- Central Laboratories, The Second Artillery General Hospital, Beijing 100088, P.R. China
| | - Xiujun Song
- Central Laboratories, The Second Artillery General Hospital, Beijing 100088, P.R. China
| | - Huijie Yu
- Central Laboratories, The Second Artillery General Hospital, Beijing 100088, P.R. China
| | - Sinian Wang
- Central Laboratories, The Second Artillery General Hospital, Beijing 100088, P.R. China
| | - Nan Yu
- Central Laboratories, The Second Artillery General Hospital, Beijing 100088, P.R. China
| | - Qisheng Jiang
- Central Laboratories, The Second Artillery General Hospital, Beijing 100088, P.R. China
| |
Collapse
|
20
|
Makinde AY, Eke I, Aryankalayil MJ, Ahmed MM, Coleman CN. Exploiting Gene Expression Kinetics in Conventional Radiotherapy, Hyperfractionation, and Hypofractionation for Targeted Therapy. Semin Radiat Oncol 2016; 26:254-60. [PMID: 27619247 DOI: 10.1016/j.semradonc.2016.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The dramatic changes in the technological delivery of radiation therapy, the repertoire of molecular targets for which pathway inhibitors are available, and the cellular and immunologic responses that can alter long-term clinical outcome provide a potentially unique role for using the radiation-inducible changes as therapeutic targets. Various mathematical models of dose and fractionation are extraordinarily useful in guiding treatment regimens. However, although the model may fit the clinical outcome, a deeper understanding of the molecular and cellular effect of the individual dose size and the adaptation to repeated exposure, called multifraction (MF) adaptation, may provide new therapeutic targets for use in combined modality treatments using radiochemotherapy and radioimmunotherapy. We discuss the potential of using different radiation doses and MF adaptation for targeting transcription factors, immune and inflammatory response, and cell "stemness." Given the complex genetic composition of tumors before treatment and their adaptation to drug treatment, innovative combinations using both the pretreatment molecular data and also the MF-adaptive response to radiation may provide an important role for focused radiation therapy as an integral part of precision medicine and immunotherapy.
Collapse
Affiliation(s)
- Adeola Y Makinde
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | - Iris Eke
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Mansoor M Ahmed
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - C Norman Coleman
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD; Radiation Research Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
21
|
Casas MP, Rodríguez-Hermida V, Pérez-Larrán P, Conde E, Liveri MT, Ribeiro D, Fernandes E, Domínguez H. In vitro bioactive properties of phlorotannins recovered from hydrothermal treatment of Sargassum muticum. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|