1
|
Zhang Z, Guo J. Deciphering Oxidative Stress in Cardiovascular Disease Progression: A Blueprint for Mechanistic Understanding and Therapeutic Innovation. Antioxidants (Basel) 2024; 14:38. [PMID: 39857372 PMCID: PMC11759168 DOI: 10.3390/antiox14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress plays a pivotal role in the pathogenesis and progression of cardiovascular diseases (CVDs). This review focuses on the signaling pathways of oxidative stress during the development of CVDs, delving into the molecular regulatory networks underlying oxidative stress in various disease stages, particularly apoptosis, inflammation, fibrosis, and metabolic imbalance. By examining the dual roles of oxidative stress and the influences of sex differences on oxidative stress levels and cardiovascular disease susceptibility, this study offers a comprehensive understanding of the pathogenesis of cardiovascular diseases. The study integrates key findings from current research in three comprehensive ways. First, it outlines the major CVDs associated with oxidative stress and their respective signaling pathways, emphasizing oxidative stress's central role in cardiovascular pathology. Second, it summarizes the cardiovascular protective effects, mechanisms of action, and animal models of various antioxidants, offering insights into future drug development. Third, it discusses the applications, advantages, limitations, and potential molecular targets of gene therapy in CVDs, providing a foundation for novel therapeutic strategies. These tables underscore the systematic and integrative nature of this study while offering a theoretical basis for precision treatment for CVDs. A major contribution of this study is the systematic review of the differential effects of oxidative stress across different stages of CVDs, in addition to the proposal of innovative, multi-level intervention strategies, which open new avenues for precision treatment of the cardiovascular system.
Collapse
Affiliation(s)
- Zhaoshan Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiawei Guo
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
2
|
Le DCP, Bui HT, Vu YTH, Vo QD. Induced pluripotent stem cell therapies in heart failure treatment: a meta-analysis and systematic review. Regen Med 2024; 19:497-509. [PMID: 39263954 PMCID: PMC11487948 DOI: 10.1080/17460751.2024.2393558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Background: Heart failure (HF) causes over 266,400 deaths annually. Despite treatment advancements, HF mortality remains high. Induced pluripotent stem cells (iPSCs) offer promising new options. This review assesses iPSC-based treatments for HF.Method: the review included studies from PubMed, ScienceDirect and Web of Science.Results: Analysis of 25 studies with 553 animals showed a baseline ejection fraction (EF) of 39.2 ± 8.9%. iPSC treatment significantly improved EF (MD = 8.6, p < 0.001) and fractional shortening (MD = 6.38, p < 0.001), and reduced ventricular remodeling without increasing arrhythmia risk.Conclusion: iPSC-based therapy improves heart function and reduces ventricular volumes in HF animal models, aligning with promising early clinical trial outcomes.
Collapse
Affiliation(s)
- Duy Cao Phuong Le
- Departmentof Cardiovascular Intervention, Nguyen Tri Phuong Hospital, Ho Chi Minh city, 700000, Vietnam
- Faculty of Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Hoa The Bui
- Departmentof Cardiovascular Intervention, Nguyen Tri Phuong Hospital, Ho Chi Minh city, 700000, Vietnam
| | - Yen Thi Hai Vu
- Faculty of Medicine, Thai Binh University of Medicine, Thai Binh, 61000, Vietnam
| | - Quan Duy Vo
- Departmentof Cardiovascular Intervention, Nguyen Tri Phuong Hospital, Ho Chi Minh city, 700000, Vietnam
- Faculty of Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
- Cardiovascular Medicine Department, Okayama University, Okayama city, 7000000, Japan
| |
Collapse
|
3
|
Kavaliunaite E, Dhumale P, Jensen CH, Sheikh SP, Lindholt JS, Stubbe J. A Single Injection of ADRCs Does Not Prevent AAA Formation in Rats in a Randomized Blinded Design. Int J Mol Sci 2024; 25:7591. [PMID: 39062833 PMCID: PMC11276694 DOI: 10.3390/ijms25147591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
There is a pressing need for alternative medical treatments for abdominal aortic aneurysms (AAAs). Mesenchymal regenerative cells derived from adipose tissue (ADRCs) have shown potential in modulating the inflammation and immune responses that drive AAA progression. We hypothesized that ADRCs could reduce inflammation and preserve vascular integrity, potentially slowing the progression of AAA. In our study, subcutaneous adipose tissue was harvested from male Sprague Dawley rats, from which ADRCs were isolated. AAA was induced in these rats using intraluminal porcine pancreatic elastase, followed by intravenous administration of either ADRCs (106 cells) or saline (0.1 mL). We monitored the progression of AAA through weekly ultrasound, and the rats were sacrificed on day 28 for histological analysis. Our results showed no significant difference in the inner abdominal aortic diameter at day 28 between the control group (172% ± 73%, n = 17) and the ADRC-treated group (181% ± 75%, n = 15). Histological analyses of AAA cross-sections also revealed no significant difference in the infiltration of neutrophils or macrophages between the two groups. Furthermore, the integrity and content of elastin in the tunica media were similar between groups. These findings indicate that a single injection of ADRCs does not inhibit the development of AAA in rats in a randomized blinded study.
Collapse
Affiliation(s)
- Egle Kavaliunaite
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Cardiac, Thoracic and Vascular Surgery, Odense University Hospital (OUH), 5000 Odense C, Denmark;
| | - Pratibha Dhumale
- Department of Clinical Research, University of Southern Denmark (SDU), 5230 Odense M, Denmark; (P.D.)
- Department of Clinical Biochemistry, Odense University Hospital (OUH), 5000 Odense C, Denmark
| | - Charlotte Harken Jensen
- Department of Clinical Research, University of Southern Denmark (SDU), 5230 Odense M, Denmark; (P.D.)
- Department of Clinical Biochemistry, Odense University Hospital (OUH), 5000 Odense C, Denmark
| | - Søren P. Sheikh
- Open Patient Data Explorative Network, Institute of Clinical Research, Odense University Hospital (OUH), 5000 Odense C, Denmark
| | - Jes S. Lindholt
- Department of Cardiac, Thoracic and Vascular Surgery, Odense University Hospital (OUH), 5000 Odense C, Denmark;
| | - Jane Stubbe
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
4
|
Hosseinpour A, Kamalpour J, Dehdari Ebrahimi N, Mirhosseini SA, Sadeghi A, Kavousi S, Attar A. Comparative effectiveness of mesenchymal stem cell versus bone-marrow mononuclear cell transplantation in heart failure: a meta-analysis of randomized controlled trials. Stem Cell Res Ther 2024; 15:202. [PMID: 38971816 PMCID: PMC11227704 DOI: 10.1186/s13287-024-03829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND There is no clear evidence on the comparative effectiveness of bone-marrow mononuclear cell (BMMNC) vs. mesenchymal stromal cell (MSC) stem cell therapy in patients with chronic heart failure (HF). METHODS Using a systematic approach, eligible randomized controlled trials (RCTs) of stem cell therapy (BMMNCs or MSCs) in patients with HF were retrieved to perform a meta-analysis on clinical outcomes (major adverse cardiovascular events (MACE), hospitalization for HF, and mortality) and echocardiographic indices (including left ventricular ejection fraction (LVEF)) were performed using the random-effects model. A risk ratio (RR) or mean difference (MD) with corresponding 95% confidence interval (CI) were pooled based on the type of the outcome and subgroup analysis was performed to evaluate the potential differences between the types of cells. RESULTS The analysis included a total of 36 RCTs (1549 HF patients receiving stem cells and 1252 patients in the control group). Transplantation of both types of cells in patients with HF resulted in a significant improvement in LVEF (BMMNCs: MD (95% CI) = 3.05 (1.11; 4.99) and MSCs: MD (95% CI) = 2.82 (1.19; 4.45), between-subgroup p = 0.86). Stem cell therapy did not lead to a significant change in the risk of MACE (MD (95% CI) = 0.83 (0.67; 1.06), BMMNCs: RR (95% CI) = 0.59 (0.31; 1.13) and MSCs: RR (95% CI) = 0.91 (0.70; 1.19), between-subgroup p = 0.12). There was a marginally decreased risk of all-cause death (MD (95% CI) = 0.82 (0.68; 0.99)) and rehospitalization (MD (95% CI) = 0.77 (0.61; 0.98)) with no difference among the cell types (p > 0.05). CONCLUSION Both types of stem cells are effective in improving LVEF in patients with heart failure without any noticeable difference between the cells. Transplantation of the stem cells could not decrease the risk of major adverse cardiovascular events compared with controls. Future trials should primarily focus on the impact of stem cell transplantation on clinical outcomes of HF patients to verify or refute the findings of this study.
Collapse
Affiliation(s)
- Alireza Hosseinpour
- Department of Cardiovascular Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jahangir Kamalpour
- Department of Cardiovascular Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Alireza Sadeghi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahin Kavousi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Armin Attar
- Department of Cardiovascular Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Mulari S, Kesävuori R, Stewart JA, Karjalainen P, Holmström M, Lehtinen M, Peltonen J, Laine M, Sinisalo J, Juvonen T, Kupari M, Harjula A, Pätilä T, Kivistö S, Kankuri E, Vento A. Follow-up of intramyocardial bone marrow mononuclear cell transplantation beyond 10 years. Sci Rep 2024; 14:3747. [PMID: 38355940 PMCID: PMC10866866 DOI: 10.1038/s41598-024-53776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
Bone marrow mononuclear cells (BMMCs) have been evaluated for their ability to improve cardiac repair and benefit patients with severe ischemic heart disease and heart failure. In our single-center trial in 2006-2011 we demonstrated the safety and efficacy of BMMCs injected intramyocardially in conjunction with coronary artery bypass surgery. The effect persisted in the follow-up study 5 years later. In this study, we investigated the efficacy of BMMC therapy beyond 10 years. A total of 18 patients (46%) died during over 10-years follow-up and 21 were contacted for participation. Late gadolinium enhancement cardiac magnetic resonance imaging (CMRI) and clinical evaluation were performed on 14 patients, seven from each group. CMRIs from the study baseline, 1-year and 5-years follow-ups were re-analyzed to enable comparison. The CMRI demonstrated a 2.1-fold larger reduction in the mass of late gadolinium enhancement values between the preoperative and the over 10-years follow-up, suggesting less scar or fibrosis after BMMC treatment (- 15.1%; 95% CI - 23 to - 6.7% vs. - 7.3%; 95% CI - 16 to 4.5%, p = 0.039), compared to placebo. No differences in mortality or morbidity were observed. Intramyocardially injected BMMCs may exert long-term benefits in patients with ischemic heart failure. This deserves further evaluation in patients who have received BMMCs in international clinical studies over two decades.
Collapse
Affiliation(s)
- Severi Mulari
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Haartmaninkatu 8, PO Box 63, 00014, Helsinki, Finland
| | - Risto Kesävuori
- Department of Radiology, HUS Medical Imaging Center and Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Juhani A Stewart
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Pasi Karjalainen
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Miia Holmström
- Department of Radiology, HUS Medical Imaging Center and Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Miia Lehtinen
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Juha Peltonen
- Department of Radiology, HUS Medical Imaging Center and Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mika Laine
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Juha Sinisalo
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tatu Juvonen
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markku Kupari
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ari Harjula
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tommi Pätilä
- Pediatric Cardiac Surgery, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sari Kivistö
- Department of Radiology, HUS Medical Imaging Center and Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Haartmaninkatu 8, PO Box 63, 00014, Helsinki, Finland.
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Vo QD, Saito Y, Nakamura K, Iida T, Yuasa S. Induced Pluripotent Stem Cell-Derived Cardiomyocytes Therapy for Ischemic Heart Disease in Animal Model: A Meta-Analysis. Int J Mol Sci 2024; 25:987. [PMID: 38256060 PMCID: PMC10815661 DOI: 10.3390/ijms25020987] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Ischemic heart disease (IHD) poses a significant challenge in cardiovascular health, with current treatments showing limited success. Induced pluripotent derived-cardiomyocyte (iPSC-CM) therapy within regenerative medicine offers potential for IHD patients, although its clinical impacts remain uncertain. This study utilizes meta-analysis to assess iPSC-CM outcomes in terms of efficacy and safety in IHD animal model studies. A meta-analysis encompassing PUBMED, ScienceDirect, Web of Science, and the Cochrane Library databases, from inception until October 2023, investigated iPSC therapy effects on cardiac function and safety outcomes. Among 51 eligible studies involving 1012 animals, despite substantial heterogeneity, the iPSC-CM transplantation improved left ventricular ejection fraction (LVEF) by 8.23% (95% CI, 7.15 to 9.32%; p < 0.001) compared to control groups. Additionally, cell-based treatment reduced the left ventricle fibrosis area and showed a tendency to reduce left ventricular end-systolic volume (LVESV) and end-diastolic volume (LVEDV). No significant differences emerged in mortality and arrhythmia risk between iPSC-CM treatment and control groups. In conclusion, this meta-analysis indicates iPSC-CM therapy's promise as a safe and beneficial intervention for enhancing heart function in IHD. However, due to observed heterogeneity, the efficacy of this treatment must be further explored through large randomized controlled trials based on rigorous research design.
Collapse
Affiliation(s)
- Quan Duy Vo
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (S.Y.)
| | - Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (S.Y.)
| | - Toshihiro Iida
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (S.Y.)
| | - Shinsuke Yuasa
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (S.Y.)
| |
Collapse
|
7
|
Deszcz I. Stem Cell-Based Therapy and Cell-Free Therapy as an Alternative Approach for Cardiac Regeneration. Stem Cells Int 2023; 2023:2729377. [PMID: 37954462 PMCID: PMC10635745 DOI: 10.1155/2023/2729377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
The World Health Organization reports that cardiovascular diseases (CVDs) represent 32% of all global deaths. The ineffectiveness of conventional therapies in CVDs encourages the development of novel, minimally invasive therapeutic strategies for the healing and regeneration of damaged tissue. The self-renewal capacity, multilineage differentiation, lack of immunogenicity, and immunosuppressive properties of mesenchymal stem cells (MSCs) make them a promising option for CVDs. However, growing evidence suggests that myocardial regeneration occurs through paracrine factors and extracellular vesicle (EV) secretion, rather than through differentiation into cardiomyocytes. Research shows that stem cells secrete or surface-shed into their culture media various cytokines, chemokines, growth factors, anti-inflammatory factors, and EVs, which constitute an MSC-conditioned medium (MSC-CM) or the secretome. The use of MSC-CM enhances cardiac repair through resident heart cell differentiation, proliferation, scar mass reduction, a decrease in infarct wall thickness, and cardiac function improvement comparable to MSCs without their side effects. This review highlights the limitations and benefits of therapies based on stem cells and their secretome as an innovative treatment of CVDs.
Collapse
Affiliation(s)
- Iwona Deszcz
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556, Wroclaw, Poland
| |
Collapse
|
8
|
Thamrin AMH, Soetisna TW, Ramadhani ANE, Hendarto H. Cell sheet transplantation for ischemic heart disease: a systematic review. Indian J Thorac Cardiovasc Surg 2023; 39:577-587. [PMID: 37885940 PMCID: PMC10597942 DOI: 10.1007/s12055-023-01554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 10/28/2023] Open
Abstract
Objective Cell sheet transplantation is emerging as an appealing alternative for ischemic heart disease patients as it potentially can increase stem cell viability and retention. But the outcomes and safety of this treatment are still limited in literature and the result varies widely. We conduct a systematic review to look at the efficacy and safety of this promising transplantation method. Methods A systematic review was performed according to PRISMA guidelines. A comprehensive literature search was undertaken using the PubMed, Scopus, and Embase databases. Articles were thoroughly evaluated and analyzed. Results Seven publications about cell sheet transplantation for ischemic heart disease patients were included. The primary outcomes measured were left ventricular ejection fraction (LVEF) and New York Heart Association (NYHA) class. Safety measurement was depicted by cardiac-related readmission and deaths. The follow-up time ranged from 3 to 36 months for clinical outcomes and 8.5 years for safety outcomes. Cell sheet transplantation showed improvement in LVEF and NYHA class in most studies. Cardiac-related readmission and adverse events of cell sheet transplantation range from 0 to 30.4%, all were nonfatal as no cardiac-related death was reported. Patient preoperative status seems can affect the patient's response to cell sheet therapy. Conclusion Cell sheet transplantation can safely improve LVEF and NYHA class in ischemic heart disease patients, even in very low ejection fraction patients with unsuccessful standard therapy before. Further studies with better patient inclusion, larger population, and long-term follow-up required to confirm these results.
Collapse
Affiliation(s)
- Ahmad Muslim Hidayat Thamrin
- Adult Cardiac Surgery Division, Department of Thoracic and Cardiovascular Surgery, Harapan Kita National Cardiovascular Center Hospital, S. Parman Street Cavling 87, Jakarta, Indonesia
- Faculty of Medicine Syarif Hidayatullah State Islamic University – Haji Hospital, Jakarta, Indonesia
| | - Tri Wisesa Soetisna
- Adult Cardiac Surgery Division, Department of Thoracic and Cardiovascular Surgery, Harapan Kita National Cardiovascular Center Hospital, S. Parman Street Cavling 87, Jakarta, Indonesia
- Department of Thoracic and Cardiovascular Surgery, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Andi Nurul Erisya Ramadhani
- Adult Cardiac Surgery Division, Department of Thoracic and Cardiovascular Surgery, Harapan Kita National Cardiovascular Center Hospital, S. Parman Street Cavling 87, Jakarta, Indonesia
| | - Hari Hendarto
- Faculty of Medicine Syarif Hidayatullah State Islamic University – Haji Hospital, Jakarta, Indonesia
| |
Collapse
|
9
|
Kalou Y, Al-Khani AM, Haider KH. Bone Marrow Mesenchymal Stem Cells for Heart Failure Treatment: A Systematic Review and Meta-Analysis. Heart Lung Circ 2023; 32:870-880. [PMID: 36872163 DOI: 10.1016/j.hlc.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 03/06/2023]
Abstract
AIM Bone marrow-derived mesenchymal stem cells (BM-MSCs) are the most well-studied and characterised stem cell types. This review was undertaken of the current available phase II/III randomised clinical trials (RCTs) that delivered BM-MSCs to treat patients with cardiomyopathy, and to assess their performance. METHODS The Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines were followed during the systematic review and meta-analysis. Eligible studies were reviewed, and their data charted. To assess the efficacy of BM-MSCs, the outcome was improvement in left ventricular ejection fraction (LVEF) and 6-minute walking distance (6MWD). RESULTS The pooled weighted mean difference (WMD) showed that BM-MSCs treatment improved the 6MWD by 27.86 m (95% CI 0.11-55.6 m) compared with the control groups. The pooled WMD showed that BM-MSCs treatment improved the LVEF by 6.37% (95% CI 5.48%-7.26%) compared with the control groups. CONCLUSION BM-MSCs treatment is an effective intervention for managing patients with heart failure, but it requires larger and more robust clinical trials to support its routine use in clinics.
Collapse
Affiliation(s)
- Yazan Kalou
- College of Medicine, Sulaiman Al Rajhi University, Bukairyah, Al-Qassim, Saudi Arabia. https://twitter.com/yazka16
| | - Abdullah Murhaf Al-Khani
- College of Medicine, Sulaiman Al Rajhi University, Bukairyah, Al-Qassim, Saudi Arabia. https://twitter.com/Al_khani_95
| | | |
Collapse
|
10
|
Banovic M, Poglajen G, Vrtovec B, Ristic A. Contemporary Challenges of Regenerative Therapy in Patients with Ischemic and Non-Ischemic Heart Failure. J Cardiovasc Dev Dis 2022; 9:jcdd9120429. [PMID: 36547426 PMCID: PMC9783726 DOI: 10.3390/jcdd9120429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2022] Open
Abstract
It has now been almost 20 years since first clinical trials of stem cell therapy for heart repair were initiated. While initial preclinical data were promising and suggested that stem cells may be able to directly restore a diseased myocardium, this was never unequivocally confirmed in the clinical setting. Clinical trials of cell therapy did show the process to be feasible and safe. However, the clinical benefits of this treatment modality in patients with ischemic and non-ischemic heart failure have not been consistently confirmed. What is more, in the rapidly developing field of stem cell therapy in patients with heart failure, relevant questions regarding clinical trials' protocol streamlining, optimal patient selection, stem cell type and dose, and the mode of cell delivery remain largely unanswered. Recently, novel approaches to myocardial regeneration, including the use of pluripotent and allogeneic stem cells and cell-free therapeutic approaches, have been proposed. Thus, in this review, we aim to outline current knowledge and highlight contemporary challenges and dilemmas in clinical aspects of stem cell and regenerative therapy in patients with chronic ischemic and non-ischemic heart failure.
Collapse
Affiliation(s)
- Marko Banovic
- Cardiology Department, University Clinical Center of Serbia, 11000 Beograd, Serbia
- Belgrade Medical School, 11000 Belgrade, Serbia
- Correspondence: (M.B.); (G.P.)
| | - Gregor Poglajen
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Medical Faculty Ljubljana, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (M.B.); (G.P.)
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Medical Faculty Ljubljana, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Arsen Ristic
- Cardiology Department, University Clinical Center of Serbia, 11000 Beograd, Serbia
- Belgrade Medical School, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Sim DS, Jones DA, Davies C, Locca D, Veerapen J, Reid A, Godec T, Martin J, Mathur A. Cell administration routes for heart failure: a comparative re-evaluation of the REGENERATE-DCM and REGENERATE-IHD trials. Regen Med 2022; 17:891-903. [PMID: 36226504 DOI: 10.2217/rme-2022-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: Given the logistical issues surrounding intramyocardial cell delivery, we sought to address the efficacy of the simpler, more accessible intracoronary route by re-evaluating REGENERATE-DCM and REGENERATE-IHD (autologous cell therapy trials for heart failure; n = 150). Methods: A retrospective statistical analysis was performed on the trials' combined data. The following end points were evaluated: left ventricular ejection fraction (LVEF), N-terminal pro brain natriuretic peptide concentration (NT-proBNP), New York Heart Association class (NYHA) and quality of life. Results: This demonstrated a new efficacy signal for intracoronary delivery, with significant benefits to: LVEF (3.7%; p = 0.01), NT-proBNP (median -76 pg/ml; p = 0.04), NYHA class (48% patients; p = 0.01) and quality of life (12 ± 19; p = 0.006). The improvements in LVEF, NYHA and quality of life scores remained significant compared to the control group. Conclusion: The efficacy and logistical simplicity of intracoronary delivery should be taken into consideration for future trials.
Collapse
Affiliation(s)
- Doo Sun Sim
- Centre for Cardiovascular Medicine & Devices, William Harvey Research Institute, Queen Mary University of London, London, UK.,Department of Cardiovascular Medicine, Chonnam National University Hospital, Chonnam National University School of Medicine, Gwanjgu, Republic of Korea
| | - Daniel A Jones
- Centre for Cardiovascular Medicine & Devices, William Harvey Research Institute, Queen Mary University of London, London, UK.,Department of Interventional Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Ceri Davies
- Centre for Cardiovascular Medicine & Devices, William Harvey Research Institute, Queen Mary University of London, London, UK.,Department of Interventional Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Didier Locca
- Centre for Cardiovascular Medicine & Devices, William Harvey Research Institute, Queen Mary University of London, London, UK.,École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jessry Veerapen
- Centre for Cardiovascular Medicine & Devices, William Harvey Research Institute, Queen Mary University of London, London, UK.,Department of Interventional Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Alice Reid
- Centre for Cardiovascular Medicine & Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Thomas Godec
- Centre for Cardiovascular Medicine & Devices, William Harvey Research Institute, Queen Mary University of London, London, UK.,Barts Cardiovascular Clinical Trials Unit, William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Anthony Mathur
- Centre for Cardiovascular Medicine & Devices, William Harvey Research Institute, Queen Mary University of London, London, UK.,Department of Interventional Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| |
Collapse
|
12
|
Li X, Wen H, Lv J, Luan B, Meng J, Gong S, Wen J, Xin S. Therapeutic efficacy of mesenchymal stem cells for abdominal aortic aneurysm: a meta-analysis of preclinical studies. Stem Cell Res Ther 2022; 13:81. [PMID: 35209940 PMCID: PMC8867868 DOI: 10.1186/s13287-022-02755-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is life-threatening, surgical treatment is currently the only clinically available intervention for the disease. Mesenchymal stem cells (MSCs) have presented eligible immunomodulatory and regenerative abilities which showed favorable therapeutic efficacy in various cardiovascular diseases. However, current evidence summarizing the effectiveness of MSCs for AAA is lacking. Thus, a meta-analysis and systematic review was necessary to be performed to assess the therapeutic efficacy of MSCs for AAA in preclinical studies. Methods Comprehensive literature search restricted in English was conducted in PubMed, Cochrane Library, EBSCO, EMBASE and Web of Science from inception to Oct 2021. The primary outcomes were parameters about aortic diameter change during MSCs intervention. The secondary outcomes included elastin content and expression level of inflammatory cytokines, matrix metalloproteinases (MMPs) and their inhibitors (TIMPs). Data were extracted and analyzed independently by two authors. The meta package with random effects model was used to calculate the pooled effect size and 95% confidence intervals in R (version 4.0.2). Results Meta-analysis of 18 included studies demonstrated that MSCs intervention has significant therapeutic effects on suppressing aortic diameter enlargement compared with the control group (diameter, SMD = − 1.19, 95% CI [− 1.47, − 0.91]; diameter change ratio, SMD = − 1.36, 95% CI [− 1.72, − 1.00]). Subgroup analysis revealed differences between MSCs and control group regarding to cell type, intervention route and cell compatibility. Moreover, the meta-analysis also showed that MSCs intervention had a significant effect on preserving aortic elastin content, reducing MCP-1, TNF-α, IL-6, MMP-2/9 and increasing TIMP-1/2 expression level compared with control group. Conclusion Our results suggested that MSC intervention is effective in AAA by suppressing aortic diameter enlargement, reducing elastin degradation, and modulating local immunoinflammatory reactions. These results are important for the systemic application of MSCs as a potential treatment candidate for AAA in further animal experiments and clinical trials. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02755-w.
Collapse
Affiliation(s)
- Xintong Li
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, No. 155, Nanjing Street, Heping District, Shenyang, 110001, China.,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Hao Wen
- Department of Trauma Center, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Junyuan Lv
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Boyang Luan
- Department of Trauma Center, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinze Meng
- Department of Pharmacology, China Medical University, Shenyang, China
| | - Shiqiang Gong
- Department of Pharmacology, China Medical University, Shenyang, China
| | - Jie Wen
- Department of Ultrasonography, Inner Mongolia Baotou City Central Hospital, Baotou, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, No. 155, Nanjing Street, Heping District, Shenyang, 110001, China. .,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China.
| |
Collapse
|
13
|
Yu J, Zhang RF, Mao YL, Zhang H. Efficacy and Safety of mesenchymal stem cell therapy in patients with acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Curr Stem Cell Res Ther 2021; 17:793-807. [PMID: 34397334 DOI: 10.2174/1574888x16666210816111031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES The adjuvant treatment of stem cell therapy for acute myocardial infarction (AMI) has been studied in multiple clinical trials, but many questions remain to be addressed, such as efficacy, safety, identification of the optimal cell type, tractable route of delivery, transplant dosage, and transplant timing. The current meta-analysis aimed to explore the issues of mesenchymal stem cells (MSCs) transplantation in patients with AMI based on published randomized controlled trials (RCTs) and guide the design of subsequent clinical trials of MSCs therapy for AMI. METHODS The Cochrane Library, PubMed, EMBASE databases were searched for relevant clinical trials from January 1, 2000, to January 23, 2021. Results from RCTs involving MSCs transplantation for the treatment of AMI were identified. According to the Cochrane systematic review method, the literature quality, including studies, was evaluated and valid data was extracted. RevMan 5.3 and Stata 15.1 software were used for Meta-analysis. RESULTS After a literature search and detailed evaluation, 9 randomized controlled trials enrolling 460 patients were included in the quantitative analysis. Pooled analyses indicated that MSCs therapy was associated with a significantly greater improvement in overall left ventricular ejection fraction (LVEF), and the effect was maintained for up to 24 months. No significant difference in favor of MSCs treatment in left ventricular (LV) volume and in the risk of rehospitalization as a result of heart failure (HF) was noted, compared with the controls. For transplantation dose, the LVEF of patients accepting a MSCs dose of 107-108 cells was significantly increased by 2.62% (95% CI 1.54 to 3.70; P < 0.00001; I2 =0%), but this increase was insignificant in the subgroup that accepted an MSCs dose of < 107 cells (1.65% in LVEF, 95% CI, 0.03 to 3.27; P =0.05; I2 =75%) or >108 cells (4.65% in LVEF, 95% CI, -4.55 to 13.48; P =0.32; I2 =95%), compared with the controls. For transplantation timing, a significant improvement of LVEF of 3.18% was achieved in the group of patients accepting a MSCs infusion within 2 to 14 days Percutaneous coronary intervention (PCI) (95% CI, 2.89 to 3.47; P <0.00001; I2 = 0). There was no association between MSCs therapy and major adverse events. CONCLUSION Results from our systematic review suggest that MSCs therapy for patients with AMI appears to be safe and might induce a significant increase in LVEF with a limited impact on LV volume and rehospitalization caused by HF. The effect was maintained for up to 24 months. MSCs dose of 107-108 cells was more likely to achieve better clinical endpoints than <107 or >108 cells. The optimal time window for cell transplantation might be within 2-14 days after PCI. This meta-analysis was registered with PROSPERO, number CRD 42021241104.
Collapse
Affiliation(s)
- Jiang Yu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Run-Feng Zhang
- Department of Cardiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang 621000, Sichuan, China
| | - Yi-Li Mao
- Department of Cardiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang 621000, Sichuan, China
| | - Heng Zhang
- Department of Cardiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang 621000, Sichuan, China
| |
Collapse
|
14
|
Cho HM, Cho JY. Cardiomyocyte Death and Genome-Edited Stem Cell Therapy for Ischemic Heart Disease. Stem Cell Rev Rep 2021; 17:1264-1279. [PMID: 33492627 PMCID: PMC8316208 DOI: 10.1007/s12015-020-10096-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 01/14/2023]
Abstract
Massive death of cardiomyocytes is a major feature of cardiovascular diseases. Since the regenerative capacity of cardiomyocytes is limited, the regulation of their death has been receiving great attention. The cell death of cardiomyocytes is a complex mechanism that has not yet been clarified, and it is known to appear in various forms such as apoptosis, necrosis, etc. In ischemic heart disease, the apoptosis and necrosis of cardiomyocytes appear in two types of programmed forms (intrinsic and extrinsic pathways) and they account for a large portion of cell death. To repair damaged cardiomyocytes, diverse stem cell therapies have been attempted. However, despite the many positive effects, the low engraftment and survival rates have clearly limited the application of stem cells in clinical therapy. To solve these challenges, the introduction of the desired genes in stem cells can be used to enhance their capacity and improve their therapeutic efficiency. Moreover, as genome engineering technologies have advanced significantly, safer and more stable delivery of target genes and more accurate deletion of genes have become possible, which facilitates the genetic modification of stem cells. Accordingly, stem cell therapy for damaged cardiac tissue is expected to further improve. This review describes myocardial cell death, stem cell therapy for cardiac repair, and genome-editing technologies. In addition, we introduce recent stem cell therapies that incorporate genome-editing technologies in the myocardial infarction model. Graphical Abstract.
Collapse
Affiliation(s)
- Hyun-Min Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Gwanak-ro1, Gwanak-gu, Seoul, 151-742, South Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Gwanak-ro1, Gwanak-gu, Seoul, 151-742, South Korea.
| |
Collapse
|
15
|
Gangadaran P, Rajendran RL, Oh JM, Oh EJ, Hong CM, Chung HY, Lee J, Ahn BC. Identification of Angiogenic Cargo in Extracellular Vesicles Secreted from Human Adipose Tissue-Derived Stem Cells and Induction of Angiogenesis In Vitro and In Vivo. Pharmaceutics 2021; 13:495. [PMID: 33916460 PMCID: PMC8066163 DOI: 10.3390/pharmaceutics13040495] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is defined as the generation of new blood vessels or the sprouting of endothelial cells from a pre-existing vascular network. Angiogenesis occurs during the growth and development of an organism, the response of organs or tissues to injury, and during cancer development and progression. The majority of studies on stem-cell-derived extracellular vesicles (EVs) have used cell lines, and have primarily focused on well-known solitary proteins. Here, we isolated stem cells from human adipose tissue (ADSCs), and we isolated EVs from them (ADSC-EVs). The ADSC-EVs were characterised and 20 angiogenic proteins were analysed using an angiogenic antibody array. Furthermore, we analysed the ability of ADSC-EVs to induce angiogenesis in vitro and in vivo. ADSC-EVs were positive for CD81 and negative for GM130, calnexin, and cytochrome-C. ADSC-EVs showed typical EV spherical morphology and were ~200 nm in size. ADSC-EVs were found to contain angiogenic proteins as cargo, among which interleukin 8 (IL-8) was the most abundant, followed by chemokine (C-C motif) ligand 2 (CCL2), a tissue inhibitor of metalloproteinases 1 (TIMP-1), TIMP-2, and vascular endothelial growth factor-D (VEGF-D). ADSC-EVs treatment increased the proliferation, migration, total vessel length, total number of junctions, and junction density of endothelial cells in vitro. The results of an in vivo Matrigel plug assay revealed that ADSC-EVs induced more blood vessels in the Matrigel compared with the control. These results demonstrate that ADSC-EVs contain angiogenic proteins as cargo and promote angiogenesis in vitro and in vivo. Therefore, ADSC-EVs have potential for therapeutic use in ischaemia.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (P.G.); (H.Y.C.)
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (J.M.O.); (J.L.)
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (J.M.O.); (J.L.)
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (J.M.O.); (J.L.)
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Korea;
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Korea;
| | - Ho Yun Chung
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (P.G.); (H.Y.C.)
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Korea;
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (J.M.O.); (J.L.)
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Korea;
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (P.G.); (H.Y.C.)
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (J.M.O.); (J.L.)
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, 680 Gukchaebosangro, Junggu, Daegu 41944, Korea;
| |
Collapse
|
16
|
DeFrates KG, Franco D, Heber-Katz E, Messersmith PB. Unlocking mammalian regeneration through hypoxia inducible factor one alpha signaling. Biomaterials 2021; 269:120646. [PMID: 33493769 PMCID: PMC8279430 DOI: 10.1016/j.biomaterials.2020.120646] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
Historically, the field of regenerative medicine has aimed to heal damaged tissue through the use of biomaterials scaffolds or delivery of foreign progenitor cells. Despite 30 years of research, however, translation and commercialization of these techniques has been limited. To enable mammalian regeneration, a more practical approach may instead be to develop therapies that evoke endogenous processes reminiscent of those seen in innate regenerators. Recently, investigations into tadpole tail regrowth, zebrafish limb restoration, and the super-healing Murphy Roths Large (MRL) mouse strain, have identified ancient oxygen-sensing pathways as a possible target to achieve this goal. Specifically, upregulation of the transcription factor, hypoxia-inducible factor one alpha (HIF-1α) has been shown to modulate cell metabolism and plasticity, as well as inflammation and tissue remodeling, possibly priming injuries for regeneration. Since HIF-1α signaling is conserved across species, environmental or pharmacological manipulation of oxygen-dependent pathways may elicit a regenerative response in non-healing mammals. In this review, we will explore the emerging role of HIF-1α in mammalian healing and regeneration, as well as attempts to modulate protein stability through hyperbaric oxygen treatment, intermittent hypoxia therapy, and pharmacological targeting. We believe that these therapies could breathe new life into the field of regenerative medicine.
Collapse
Affiliation(s)
- Kelsey G DeFrates
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Daniela Franco
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Ellen Heber-Katz
- Laboratory of Regenerative Medicine, Lankenau Institute for Medical Research, Wynnewood, PA, USA.
| | - Phillip B Messersmith
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
17
|
Rahmani A, Saleki K, Javanmehr N, Khodaparast J, Saadat P, Nouri HR. Mesenchymal stem cell-derived extracellular vesicle-based therapies protect against coupled degeneration of the central nervous and vascular systems in stroke. Ageing Res Rev 2020; 62:101106. [PMID: 32565329 DOI: 10.1016/j.arr.2020.101106] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
Stem cell-based treatments have been suggested as promising candidates for stroke. Recently, mesenchymal stem cells (MSCs) have been reported as potential therapeutics for a wide range of diseases. In particular, clinical trial studies have suggested MSCs for stroke therapy. The focus of MSC treatments has been directed towards cell replacement. However, recent research has lately highlighted their paracrine actions. The secretion of extracellular vesicles (EVs) is offered to be the main therapeutic mechanism of MSC therapy. However, EV-based treatments may provide a wider therapeutic window compared to tissue plasminogen activator (tPA), the traditional treatment for stroke. Exosomes are nano-sized EVs secreted by most cell types, and can be isolated from conditioned cell media or body fluids such as plasma, urine, and cerebrospinal fluid (CSF). Exosomes apply their effects through targeting their cargos such as microRNAs (miRs), DNAs, messenger RNAs, and proteins at the host cells, which leads to a shift in the behavior of the recipient cells. It has been indicated that exosomes, in particular their functional cargoes, play a significant role in the coupled pathogenesis and recovery of stroke through affecting the neurovascular unit (NVU). Therefore, it seems that exosomes could be utilized as diagnostic and therapeutic tools in stroke treatment. The miRs are small endogenous non-coding RNA molecules which serve as the main functional cargo of exosomes, and apply their effects as epigenetic regulators. These versatile non-coding RNA molecules are involved in various stages of stroke and affect stroke-related factors. Moreover, the involvement of aging-induced changes to specific miRs profile in stroke further highlights the role of miRs. Thus, miRs could be utilized as diagnostic, prognostic, and therapeutic tools in stroke. In this review, we discuss the roles of stem cells, exosomes, and their application in stroke therapy. We also highlight the usage of miRs as a therapeutic choice in stroke therapy.
Collapse
|
18
|
Bonios MJ, Tseliou E, Drakos SG. Commentary: Major lessons from minor people: Beta blockers and cytokinesis in tetralogy of Fallot. J Thorac Cardiovasc Surg 2020; 161:1592-1593. [PMID: 32763027 DOI: 10.1016/j.jtcvs.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Michael J Bonios
- Division of Cardiovascular Medicine, University of Utah Health and School of Medicine, Salt Lake City, Utah; Heart Failure and Transplant Unit, Onassis Cardiac Surgery Center, Athens, Greece
| | - Eleni Tseliou
- Division of Cardiovascular Medicine, University of Utah Health and School of Medicine, Salt Lake City, Utah
| | - Stavros G Drakos
- Division of Cardiovascular Medicine, University of Utah Health and School of Medicine, Salt Lake City, Utah; Third Department of Cardiology, School of Medicine, National Kapodestrian University of Athens, Athens, Greece.
| |
Collapse
|
19
|
Adolfsson E, Helenius G, Friberg Ö, Samano N, Frøbert O, Johansson K. Bone marrow- and adipose tissue-derived mesenchymal stem cells from donors with coronary artery disease; growth, yield, gene expression and the effect of oxygen concentration. Scandinavian Journal of Clinical and Laboratory Investigation 2020; 80:318-326. [PMID: 32189529 DOI: 10.1080/00365513.2020.1741023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) for cardiovascular cell therapy are procured from different sources including bone marrow and adipose tissue. Differently located MSCs differ in growth potential, differentiation ability and gene expression when cultured in vitro, and studies show different healing abilities for different MSC subgroups. In this study, bone marrow derived MSCs (BMSCs) and adipose tissue derived MSCs (ADSCs) from six human donors with coronary artery disease were compared for growth potential and expression of target genes (Angpt1, LIF, HGF, TGF-β1 and VEGF-A) in response to exposure to 1% and 5% O2, for up to 48 h. We found greater growth of ADSCs compared to BMSCs. ADSCs expressed higher levels of Angpt1, LIF and TGF-β1 and equal levels of VEGF-A and HGF as BMSCs. In BMSCs, exposure to low oxygen resulted in upregulation of TGF-β1, whereas other target genes were unaffected. Upregulation was only present at 1% O2. In ADSCs, LIF was upregulated in both oxygen concentrations, whereas Angpt1 was upregulated only at 1% O2. Different response to reduced oxygen culture conditions is of relevance when expanding cells in vitro prior to administration. These findings indicate ADSCs as better suited for cardiovascular cell therapy compared to BMSCs.
Collapse
Affiliation(s)
- Emma Adolfsson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Gisela Helenius
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Örjan Friberg
- Department of Cardiothoracic Surgery, Faculty of Health, Örebro University, Örebro, Sweden
| | - Ninos Samano
- Department of Cardiothoracic Surgery, Faculty of Health, Örebro University, Örebro, Sweden
| | - Ole Frøbert
- Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden
| | - Karin Johansson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|