1
|
Dean J, Hoch C, Wollenberg B, Navidzadeh J, Maheta B, Mandava A, Knoedler S, Sherwani K, Baecher H, Schmitz A, Alfertshofer M, Heiland M, Kreutzer K, Koerdt S, Knoedler L. Advancements in bioengineered and autologous skin grafting techniques for skin reconstruction: a comprehensive review. Front Bioeng Biotechnol 2025; 12:1461328. [PMID: 39840132 PMCID: PMC11747595 DOI: 10.3389/fbioe.2024.1461328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/03/2024] [Indexed: 01/23/2025] Open
Abstract
The reconstruction of complex skin defects challenges clinical practice, with autologous skin grafts (ASGs) as the traditional choice due to their high graft take rate and patient compatibility. However, ASGs have limitations such as donor site morbidity, limited tissue availability, and the necessity for multiple surgeries in severe cases. Bioengineered skin grafts (BSGs) aim to address these drawbacks through advanced tissue engineering and biomaterial science. This study conducts a systematic review to describe the benefits and shortcomings of BSGs and ASGs across wound healing efficacy, tissue integration, immunogenicity, and functional outcomes focusing on wound re-epithelialization, graft survival, and overall aesthetic outcomes. Preliminary findings suggest ASGs show superior early results, while BSGs demonstrate comparable long-term outcomes with reduced donor site morbidity. This comparative analysis enhances understanding of bioengineered alternatives in skin reconstruction, potentially redefining best practices based on efficacy, safety, and patient-centric outcomes, highlighting the need for further innovation in bioengineered solutions.
Collapse
Affiliation(s)
- Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cosima Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Justin Navidzadeh
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bhagvat Maheta
- California Northstate University College of Medicine, Elk Grove, CA, United States
| | - Anisha Mandava
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Khalil Sherwani
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Helena Baecher
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Alina Schmitz
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Michael Alfertshofer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Max Heiland
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Kilian Kreutzer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Steffen Koerdt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Leonard Knoedler
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| |
Collapse
|
2
|
Lv Y, Yang W, Kannan PR, Zhang H, Zhang R, Zhao R, Kong X. Materials-based hair follicle engineering: Basic components and recent advances. Mater Today Bio 2024; 29:101303. [PMID: 39498149 PMCID: PMC11532916 DOI: 10.1016/j.mtbio.2024.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
The hair follicle (HF) is a significant skin appendage whose primary function is to produce the hair shaft. HFs are a non-renewable resource; skin damage or follicle closure may lead to permanent hair loss. Advances in biomaterials and biomedical engineering enable the feasibility of manipulating the HF-associated cell function for follicle reconstruction via rational design. The regeneration of bioengineered HF addresses the issue of limited resources and contributes to advancements in research and applications in hair loss treatment, HF development, and drug screening. Based on these requirements, this review summarizes the basic and recent advances in hair follicle regulation, including four components: acquisition of stem cells, signaling pathways, materials, and engineering methods. Recent studies have focused on efficiently combining these components and reproducing functionality, which would boost fabrication in HF rebuilding ex vivo, thereby eliminating the obstacles of transplantation into animals to promote mature development.
Collapse
Affiliation(s)
- Yudie Lv
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weili Yang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Perumal Ramesh Kannan
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Han Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Rui Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
3
|
Tang X, Wang J, Chen J, Liu W, Qiao P, Quan H, Li Z, Dang E, Wang G, Shao S. Epidermal stem cells: skin surveillance and clinical perspective. J Transl Med 2024; 22:779. [PMID: 39169334 PMCID: PMC11340167 DOI: 10.1186/s12967-024-05600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
The skin epidermis is continually influenced by a myriad of internal and external elements. At its basal layer reside epidermal stem cells, which fuels epidermal renovation and hair regeneration with powerful self-renewal ability, as well as keeping diverse signals that direct their activity under surveillance with quick response. The importance of epidermal stem cells in wound healing and immune-related skin conditions has been increasingly recognized, and their potential for clinical applications is attracting attention. In this review, we delve into recent advancements and the various physiological and psychological factors that govern distinct epidermal stem cell populations, including psychological stress, mechanical forces, chronic aging, and circadian rhythm, as well as providing an overview of current methodological approaches. Furthermore, we discuss the pathogenic role of epidermal stem cells in immune-related skin disorders and their potential clinical applications.
Collapse
Affiliation(s)
- Xin Tang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaqi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Wanting Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Huiyi Quan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Zhiguo Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| |
Collapse
|
4
|
Nagano H, Mizuno N, Sato H, Mizutani E, Yanagida A, Kano M, Kasai M, Yamamoto H, Watanabe M, Suchy F, Masaki H, Nakauchi H. Skin graft with dermis and appendages generated in vivo by cell competition. Nat Commun 2024; 15:3366. [PMID: 38684678 PMCID: PMC11058811 DOI: 10.1038/s41467-024-47527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Autologous skin grafting is a standard treatment for skin defects such as burns. No artificial skin substitutes are functionally equivalent to autologous skin grafts. The cultured epidermis lacks the dermis and does not engraft deep wounds. Although reconstituted skin, which consists of cultured epidermal cells on a synthetic dermal substitute, can engraft deep wounds, it requires the wound bed to be well-vascularized and lacks skin appendages. In this study, we successfully generate complete skin grafts with pluripotent stem cell-derived epidermis with appendages on p63 knockout embryos' dermis. Donor pluripotent stem cell-derived keratinocytes encroach the embryos' dermis by eliminating p63 knockout keratinocytes based on cell-extracellular matrix adhesion mediated cell competition. Although the chimeric skin contains allogenic dermis, it is engraftable as long as autologous grafts. Furthermore, we could generate semi-humanized skin segments by human keratinocytes injection into the amnionic cavity of p63 knockout mice embryos. Niche encroachment opens the possibility of human skin graft production in livestock animals.
Collapse
Affiliation(s)
- Hisato Nagano
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Plastic and Reconstructive Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Naoaki Mizuno
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Hideyuki Sato
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Eiji Mizutani
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Laboratory of Stem Cell Therapy, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Ayaka Yanagida
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Mayuko Kano
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Metabolism and Endocrinology, Department of Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Mariko Kasai
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiromi Yamamoto
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Motoo Watanabe
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Fabian Suchy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hideki Masaki
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Liu C, Zhang Q, Liu Z, Zhuang D, Wang S, Deng H, Shi Y, Sun J, Guo J, Wei F, Wu X. miR-21 Expressed by Dermal Fibroblasts Enhances Skin Wound Healing Through the Regulation of Inflammatory Cytokine Expression. Inflammation 2024; 47:572-590. [PMID: 38041730 DOI: 10.1007/s10753-023-01930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
The management of skin wound healing is still a challenge. MicroRNA-21 (miR-21) has been reported to play important roles in wound repair; however, the underlying mechanism needs to be further clarified. The present study aimed to study the direct role of miR-21 in skin wound healing in miR-21 KO mice and to investigate the role of miR-21 in controlling the migration and proliferation of primary human skin cells and its underlying mechanism(s). miR-21 KO and wild-type (WT) mice were used for in vivo wound healing assays, while mouse and human primary skin cells were used for in vitro assays. miR-21 inhibitors or mimics or negative control small RNAs were transfected to either inhibit or enhance miR-21 expression in the human primary dermal fibroblasts or epidermal cells. RNA sequencing analysis was performed to identify the potential molecular pathways involved. We found that the loss of miR-21 resulted in slower wound healing in miR-21 KO mouse skin and especially delayed the healing of dermal tissue. In vitro assays demonstrated that the reduced expression of miR-21 caused by its inhibitor inhibited the migration of human primary dermal fibroblasts, which could be enhanced by increased miR-21 expression caused by miR-21 mimics. RNA-sequence analysis revealed that the inhibition of miR-21 expression downregulated the inflammatory response pathways associated with the decreased expression of inflammatory cytokines, and the addition of IL-1β into the culture medium enhanced the migration and proliferation of dermal fibroblasts in vitro. In conclusion, miR-21 in dermal fibroblasts can promote the migration and growth of epidermal and dermal cells to enhance skin wound healing through controlling the expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Chang Liu
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Qun Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Zhenan Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Dexuan Zhuang
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Shuangshuang Wang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Huiting Deng
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
| | - Yuxin Shi
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
| | - Jianfeng Sun
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
| | - Jing Guo
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong, China.
| | - Xunwei Wu
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China.
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
- Suzhou Research Institute, Shandong University, No. 388 Ruoshui Road, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Ansari M, Darvishi A. A review of the current state of natural biomaterials in wound healing applications. Front Bioeng Biotechnol 2024; 12:1309541. [PMID: 38600945 PMCID: PMC11004490 DOI: 10.3389/fbioe.2024.1309541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Skin, the largest biological organ, consists of three main parts: the epidermis, dermis, and subcutaneous tissue. Wounds are abnormal wounds in various forms, such as lacerations, burns, chronic wounds, diabetic wounds, acute wounds, and fractures. The wound healing process is dynamic, complex, and lengthy in four stages involving cells, macrophages, and growth factors. Wound dressing refers to a substance that covers the surface of a wound to prevent infection and secondary damage. Biomaterials applied in wound management have advanced significantly. Natural biomaterials are increasingly used due to their advantages including biomimicry of ECM, convenient accessibility, and involvement in native wound healing. However, there are still limitations such as low mechanical properties and expensive extraction methods. Therefore, their combination with synthetic biomaterials and/or adding bioactive agents has become an option for researchers in this field. In the present study, the stages of natural wound healing and the effect of biomaterials on its direction, type, and level will be investigated. Then, different types of polysaccharides and proteins were selected as desirable natural biomaterials, polymers as synthetic biomaterials with variable and suitable properties, and bioactive agents as effective additives. In the following, the structure of selected biomaterials, their extraction and production methods, their participation in wound healing, and quality control techniques of biomaterials-based wound dressings will be discussed.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | |
Collapse
|
7
|
Wang M, Zhang L, Hao H, Yan M, Zhu Z. Applications of Engineered Skin Tissue for Cosmetic Component and Toxicology Detection. Cell Transplant 2024; 33:9636897241235464. [PMID: 38491929 PMCID: PMC10944590 DOI: 10.1177/09636897241235464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 03/18/2024] Open
Abstract
The scale of the cosmetic market is increasing every day. There are many safety risks to cosmetics, but they benefit people at the same time. The skin can become red, swollen, itchy, chronically toxic, and senescent due to the misuse of cosmetics, triggering skin injuries, with contact dermatitis being the most common. Therefore, there is an urgent need for a system that can scientifically and rationally detect the composition and perform a toxicological assessment of cosmetic products. Traditional detection methods rely on instrumentation and method selection, which are less sensitive and more complex to perform. Engineered skin tissue has emerged with the advent of tissue engineering technology as an emerging bioengineering technology. The ideal engineered skin tissue is the basis for building good in vitro structures and physiological functions in this field. This review introduces the existing cosmetic testing and toxicological evaluation methods, the current development status, and the types and characteristics of engineered skin tissue. The application of engineered skin tissue in the field of cosmetic composition detection and toxicological evaluation, as well as the different types of tissue engineering scaffold materials and three-dimensional (3D) organoid preparation approaches, is highlighted in this review to provide methods and ideas for constructing the next engineered skin tissue for cosmetic raw material component analysis and toxicological evaluation.
Collapse
Affiliation(s)
- Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Linfeng Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Haojie Hao
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Muyang Yan
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Ziying Zhu
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
8
|
Gupta P, Sharma S, Jabin S, Jadoun S. Chitosan nanocomposite for tissue engineering and regenerative medicine: A review. Int J Biol Macromol 2024; 254:127660. [PMID: 37907176 DOI: 10.1016/j.ijbiomac.2023.127660] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
Regenerative medicine and tissue engineering have emerged as a multidisciplinary promising field in the quest to address the limitations of traditional medical approaches. One of the key aspects of these fields is the development of such types of biomaterials that can mimic the extracellular matrix and provide a conducive environment for tissue regeneration. In this regard, chitosan has played a vital role which is a naturally derived linear bi-poly-aminosaccharide, and has gained significant attention due to its biocompatibility and unique properties. Chitosan possesses many unique physicochemical properties, making it a significant polysaccharide for different applications such as agriculture, nutraceutical, biomedical, food, nutraceutical, packaging, etc. as well as significant material for developing next-generation hydrogel and bio-scaffolds for regenerative medicinal applications. Moreover, chitosan can be easily modified to incorporate desirable properties, such as improved mechanical strength, enhanced biodegradability, and controlled release of bioactive molecules. Blending chitosan with other polymers or incorporating nanoparticles into its matrix further expands its potential in tissue engineering applications. This review summarizes the most recent studies of the last 10 years based on chitosan, blends, and nanocomposites and their application in bone tissue engineering, hard tissue engineering, dental implants, dental tissue engineering, dental fillers, and cartilage tissue engineering.
Collapse
Affiliation(s)
- Priti Gupta
- Department of Chemistry, Manav Rachna University, Faridabad, Haryana 121001, India.
| | - Shilpa Sharma
- Department of Chemistry, Manav Rachna University, Faridabad, Haryana 121001, India.
| | - Shagufta Jabin
- Department of Chemistry, Faculty of Engineering, Manav Rachna International Institute of Research & Studies, Faridabad, India.
| | - Sapana Jadoun
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avda. General Velásquez, 1775 Arica, Chile.
| |
Collapse
|
9
|
Downer M, Berry CE, Parker JB, Kameni L, Griffin M. Current Biomaterials for Wound Healing. Bioengineering (Basel) 2023; 10:1378. [PMID: 38135969 PMCID: PMC10741152 DOI: 10.3390/bioengineering10121378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Wound healing is the body's process of injury recovery. Skin healing is divided into four distinct overlapping phases: hemostasis, inflammation, proliferation, and remodeling. Cell-to-cell interactions mediated by both cytokines and chemokines are imperative for the transition between these phases. Patients can face difficulties in the healing process due to the wound being too large, decreased vascularization, infection, or additional burdens of a systemic illness. The field of tissue engineering has been investigating biomaterials as an alternative for skin regeneration. Biomaterials used for wound healing may be natural, synthetic, or a combination of both. Once a specific biomaterial is selected, it acts as a scaffold for skin regeneration. When the scaffold is applied to a wound, it allows for the upregulation of distinct molecular signaling pathways important for skin repair. Although tissue engineering has made great progress, more research is needed in order to support the use of biomaterials for wound healing for clinical translation.
Collapse
Affiliation(s)
- Mauricio Downer
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.D.); (C.E.B.); (J.B.P.); (L.K.)
| | - Charlotte E. Berry
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.D.); (C.E.B.); (J.B.P.); (L.K.)
| | - Jennifer B. Parker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.D.); (C.E.B.); (J.B.P.); (L.K.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lionel Kameni
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.D.); (C.E.B.); (J.B.P.); (L.K.)
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.D.); (C.E.B.); (J.B.P.); (L.K.)
- Hagey Laboratory for Pediatric Regenerative Medicine, 257 Campus Drive, MC 5148, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Zhang G, Zhang Z, Cao G, Jin Q, Xu L, Li J, Liu Z, Xu C, Le Y, Fu Y, Ju J, Li B, Hou R. Engineered dermis loaded with confining forces promotes full-thickness wound healing by enhancing vascularisation and epithelialisation. Acta Biomater 2023; 170:464-478. [PMID: 37657662 DOI: 10.1016/j.actbio.2023.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Tissue-engineered skin is ideal for clinical wound repair. Restoration of skin tissue defects using tissue-engineered skin remains a challenge owing to insufficient vascularisation. In our previous study, we developed a 3D bioprinted model with confined force loading and demonstrated that the confined force can affect vascular branching, which is regulated by the YAP signalling pathway. The mechanical properties of the model must be optimised to suture the wound edges. In this study, we explored the ability of a GelMA-HAMA-fibrin scaffold to support the confined forces created by 3D bioprinting and promote vascularisation and wound healing. The shape of the GelMA-HAMA-fibrin scaffold containing 3% GelMA was affected by the confined forces produced by the embedded cells. The GelMA-HAMA-fibrin scaffold was easy to print, had optimal mechanical properties, and was biocompatible. The constructs were successfully sutured together after 14 d of culture. Scaffolds seeded with cells were transplanted into skin tissue defects in nude mice, demonstrating that the cell-seeded GelMA-HAMA-fibrin scaffold, under confined force loading, promoted neovascularisation and wound restoration by enhancing blood vessel connections, creating a patterned surface, growth factors, and collagen deposition. These results provide further insights into the production of hydrogel composite materials as tissue-engineered scaffolds under an internal mechanical load that can enhance vascularisation and offer new treatment methods for wound healing. STATEMENT OF SIGNIFICANCE: Tissue-engineered skin is ideal for use in clinical wound repair. However, treatment of tissue defects using synthetic scaffolds remains challenging, mainly due to slow and insufficient vascularization. Our previous study developed a 3D bioprinted model with confined force loading, and demonstrated that confined force can affect vascular branching regulated by the YAP signal pathway. The mechanical properties of the construct need to be optimized for suturing to the edges of wounds. Here, we investigated the ability of a GelMA-HAMA-fibrin scaffold to support the confined forces created by 3D bioprinting and promote vascularization in vitro and wound healing in vivo. Our findings provide new insight into the development of degradable macroporous composite materials with mechanical stimulation as tissue-engineered scaffolds with enhanced vascularization, and also provide new treatment options for wound healing.
Collapse
Affiliation(s)
- Guangliang Zhang
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China.
| | - Zhiqiang Zhang
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Gaobiao Cao
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China
| | - Qianheng Jin
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Lei Xu
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Jiaying Li
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Zhe Liu
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Chi Xu
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Fu
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Jihui Ju
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China; Teaching Hospital of Medical College of Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Bin Li
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China.
| | - Ruixing Hou
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China; Teaching Hospital of Medical College of Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
11
|
Kacvinská K, Pavliňáková V, Poláček P, Michlovská L, Blahnová VH, Filová E, Knoz M, Lipový B, Holoubek J, Faldyna M, Pavlovský Z, Vícenová M, Cvanová M, Jarkovský J, Vojtová L. Accelular nanofibrous bilayer scaffold intrapenetrated with polydopamine network and implemented into a full-thickness wound of a white-pig model affects inflammation and healing process. J Nanobiotechnology 2023; 21:80. [PMID: 36882867 PMCID: PMC9990222 DOI: 10.1186/s12951-023-01822-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Treatment of complete loss of skin thickness requires expensive cellular materials and limited skin grafts used as temporary coverage. This paper presents an acellular bilayer scaffold modified with polydopamine (PDA), which is designed to mimic a missing dermis and a basement membrane (BM). The alternate dermis is made from freeze-dried collagen and chitosan (Coll/Chit) or collagen and a calcium salt of oxidized cellulose (Coll/CaOC). Alternate BM is made from electrospun gelatin (Gel), polycaprolactone (PCL), and CaOC. Morphological and mechanical analyzes have shown that PDA significantly improved the elasticity and strength of collagen microfibrils, which favorably affected swelling capacity and porosity. PDA significantly supported and maintained metabolic activity, proliferation, and viability of the murine fibroblast cell lines. The in vivo experiment carried out in a domestic Large white pig model resulted in the expression of pro-inflammatory cytokines in the first 1-2 weeks, giving the idea that PDA and/or CaOC trigger the early stages of inflammation. Otherwise, in later stages, PDA caused a reduction in inflammation with the expression of the anti-inflammatory molecule IL10 and the transforming growth factor β (TGFβ1), which could support the formation of fibroblasts. Similarities in treatment with native porcine skin suggested that the bilayer can be used as an implant for full-thickness skin wounds and thus eliminate the use of skin grafts.
Collapse
Affiliation(s)
- Katarína Kacvinská
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Veronika Pavliňáková
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Petr Poláček
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Lenka Michlovská
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Veronika Hefka Blahnová
- Institute of Experimental Medicine of the Czech Academy of Sciences, Vídeňská142 20, 1083, Prague 4, Czech Republic
| | - Eva Filová
- Institute of Experimental Medicine of the Czech Academy of Sciences, Vídeňská142 20, 1083, Prague 4, Czech Republic
| | - Martin Knoz
- Department of Burns and Plastic Surgery, Faculty of Medicine, Institution Shared With University Hospital Brno, Masaryk University, Jihlavská, 20, 625 00, Brno, Czech Republic.,Department of Plastic and Aesthetic Surgery, Faculty of Medicine, St. Anne's University Hospital, Masaryk University, Pekařská, 664/53, 602 00, Brno, Czech Republic
| | - Břetislav Lipový
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic.,Department of Burns and Plastic Surgery, Faculty of Medicine, Institution Shared With University Hospital Brno, Masaryk University, Jihlavská, 20, 625 00, Brno, Czech Republic
| | - Jakub Holoubek
- Department of Burns and Plastic Surgery, Faculty of Medicine, Institution Shared With University Hospital Brno, Masaryk University, Jihlavská, 20, 625 00, Brno, Czech Republic
| | - Martin Faldyna
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Zdeněk Pavlovský
- Institute of Pathology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, 625 00, Czech Republic
| | - Monika Vícenová
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Michaela Cvanová
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jiří Jarkovský
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lucy Vojtová
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic.
| |
Collapse
|
12
|
Bioengineered Efficacy Models of Skin Disease: Advances in the Last 10 Years. Pharmaceutics 2022; 14:pharmaceutics14020319. [PMID: 35214050 PMCID: PMC8877988 DOI: 10.3390/pharmaceutics14020319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Models of skin diseases, such as psoriasis and scleroderma, must accurately recapitulate the complex microenvironment of human skin to provide an efficacious platform for investigation of skin diseases. Skin disease research has been shifting from less complex and less relevant 2D (two-dimensional) models to significantly more relevant 3D (three-dimensional) models. Three-dimensional modeling systems are better able to recapitulate the complex cell–cell and cell–matrix interactions that occur in vivo within skin. Three-dimensional human skin equivalents (HSEs) have emerged as an advantageous tool for the study of skin disease in vitro. These 3D HSEs can be highly complex, containing both epidermal and dermal compartments with integrated adnexal structures. The addition of adnexal structures to 3D HSEs has allowed researchers to gain more insight into the complex pathology of various hereditary and acquired skin diseases. One method of constructing 3D HSEs, 3D bioprinting, has emerged as a versatile and useful tool for generating highly complex HSEs. The development of commercially available 3D bioprinters has allowed researchers to create highly reproducible 3D HSEs with precise integration of multiple adnexal structures. While the field of bioengineered models for study of skin disease has made tremendous progress in the last decade, there are still significant efforts necessary to create truly biomimetic skin disease models. In future studies utilizing 3D HSEs, emphasis must be placed on integrating all adnexal structures relevant to the skin disease under investigation. Thorough investigation of the intricate pathology of skin diseases and the development of effective treatments requires use of highly efficacious models of skin diseases.
Collapse
|
13
|
Linares-Gonzalez L, Rodenas-Herranz T, Campos F, Ruiz-Villaverde R, Carriel V. Basic Quality Controls Used in Skin Tissue Engineering. Life (Basel) 2021; 11:1033. [PMID: 34685402 PMCID: PMC8541591 DOI: 10.3390/life11101033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Reconstruction of skin defects is often a challenging effort due to the currently limited reconstructive options. In this sense, tissue engineering has emerged as a possible alternative to replace or repair diseased or damaged tissues from the patient's own cells. A substantial number of tissue-engineered skin substitutes (TESSs) have been conceived and evaluated in vitro and in vivo showing promising results in the preclinical stage. However, only a few constructs have been used in the clinic. The lack of standardization in evaluation methods employed may in part be responsible for this discrepancy. This review covers the most well-known and up-to-date methods for evaluating the optimization of new TESSs and orientative guidelines for the evaluation of TESSs are proposed.
Collapse
Affiliation(s)
- Laura Linares-Gonzalez
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Teresa Rodenas-Herranz
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Fernando Campos
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Ricardo Ruiz-Villaverde
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Víctor Carriel
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| |
Collapse
|
14
|
Engineered Skin Substitute Regenerates the Skin with Hair Follicle Formation. Biomedicines 2021; 9:biomedicines9040400. [PMID: 33917746 PMCID: PMC8068101 DOI: 10.3390/biomedicines9040400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, engineered skin substitutes (ESS) are unable to regenerate cutaneous appendages. Recent studies have shown that skin-derived precursors (SKPs), which are extensively available, have the potential to induce hair follicle neogenesis. Here, we demonstrate that ESS consisting of culture-expanded SKPs and epidermal stem cells (Epi-SCs) reconstitute the skin with hair follicle regeneration after grafting into nude mice. SKPs seeded in a C-GAG matrix proliferated and expressed higher levels of hair induction signature genes—such as Akp2, Sox2, CD133 and Bmp6—compared to dermal fibroblasts. Moreover, when ESS prepared by seeding a mixture of culture-expanded murine SKPs and human adult Epi-SCs into a C-GAG matrix was grafted into full-thickness skin wounds in nude mice, black hairs were generated within 3 weeks. Immunofluorescence analysis showed that the SKPs were localized to the dermal papillae of the newly-formed hair follicle. Our results indicate that SKPs can serve as the hair-inductive cells in ESS to furnish it with hair genesis potential
Collapse
|