1
|
Xu J, Dong L, Xie X, Geng BD, Lu J, Dong Y, Hu Y, Liu C, Mao Y, Ge G, Ren Z. Human umbilical cord-derived mesenchymal stem cells improve thymus and spleen functions in D-galactose-induced aged mice. Sci Rep 2025; 15:9470. [PMID: 40108399 PMCID: PMC11923087 DOI: 10.1038/s41598-025-94364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
As aging progresses, the structures and functions of immune organs such as the thymus and spleen deteriorate, leading to impaired immune function and immune senescence. This study investigated the potential of umbilical cord mesenchymal stem cells (UC-MSCs) to mitigate D-galactose-induced immune senescence by enhancing the structural and functional integrity of aging immune organs and regulating the gut microbiota. The findings show that UC-MSCs treatment significantly delayed thymus and spleen atrophy and reduced the number of senescence-associated β-galactosidase (SA-β-gal) positive cells. At the molecular level, UC-MSCs treatment downregulated the expression of aging-related genes, including p16, p53, p21, and RB. It also boosted antioxidant enzyme activity, increasing the levels of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px), while decreasing serum malondialdehyde (MDA) levels by activating the Nrf2/HO-1 pathway. Additionally, UC-MSCs treatment restored the balance of the gut microbiota. These results demonstrate that UC-MSCs significantly improve the structural and functional integrity of immune organs and enhance the composition of the gut microbiome, offering a potential strategy for delaying immune senescence.
Collapse
Affiliation(s)
- Jianwei Xu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Li Dong
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Xiaofen Xie
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Bill D Geng
- School of Natural Science, University of Texas at Austin, Austin, USA
| | - Junhou Lu
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Yongxi Dong
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yang Hu
- Children's Medical Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Can Liu
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
- Guizhong Biotechnology Co., Ltd., Guiyang, China
| | - Yuanhu Mao
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Guo Ge
- Key Laboratory of Medical Biology, Guizhou Medical University, Ankang Avenue, Gui'an New District, China.
- Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, China.
| | - Zhenkui Ren
- Clinical Laboratory, Second People's Hospital of Guizhou Province, 206 South Section of Xintian Avenue, Guiyang City, China.
| |
Collapse
|
2
|
Ye J, Xu S, Liu X, Zhang Q, Li X, Zhang H, Ma J, Leng L, Zhang S. Effect and mechanism of T lymphocytes on human induced pluripotent stem cell-derived cardiomyocytes via Proteomics. Stem Cell Res Ther 2024; 15:236. [PMID: 39075540 PMCID: PMC11288085 DOI: 10.1186/s13287-024-03791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/08/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Abnormalities in T cell activation play an important role in the pathogenesis of myocarditis, and persistent T cell responses can lead to autoimmunity and chronic cardiac inflammation, as well as even dilated cardiomyopathy. Although previous work has examined the role of T cells in myocarditis in animal models, the specific mechanism for human cardiomyocytes has not been investigated. METHODS In this study, we constructed the human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and established the T cell-mediated cardiac injury model by co-culturing with activated CD4 + T or CD8 + T cells that were isolated from peripheral mononuclear blood to elucidate the pathogenesis of myocardial cell injury caused by inflammation. RESULTS By combination of quantitative proteomics with tissue and cell immunofluorescence examination, we established a proteome profile of inflammatory myocardia from hiPSC-CMs with obvious cardiomyocyte injury and increased levels of lactate dehydrogenase content, creatine kinase isoenzyme MB and cardiac troponin. A series of molecular dysfunctions of hiPSC-CMs was observed and indicated that CD4 + cells could produce direct cardiomyocyte injury by activating the NOD-like receptor signals pathway. CONCLUSIONS The data presented in our study established a proteome map of inflammatory myocardial based on hiPSC-CMs injury model. These results can provide guidance in the discovery of improved clinical treatments for myocarditis.
Collapse
Affiliation(s)
- Jin Ye
- Stem cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Sichi Xu
- Stem cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoqing Liu
- Stem cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Qiyu Zhang
- Stem cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiao Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Hui Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jie Ma
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Ling Leng
- Stem cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Wei Q, Su J, Meng S, Wang Y, Ma K, Li B, Chu Z, Huang Q, Hu W, Wang Z, Tian L, Liu X, Li T, Fu X, Zhang C. MiR-17-5p-engineered sEVs Encapsulated in GelMA Hydrogel Facilitated Diabetic Wound Healing by Targeting PTEN and p21. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307761. [PMID: 38286650 PMCID: PMC10987139 DOI: 10.1002/advs.202307761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Indexed: 01/31/2024]
Abstract
Delayed wound healing is a major complication of diabetes, and is associated with impaired cellular functions. Current treatments are unsatisfactory. Based on the previous reports on microRNA expression in small extracellular vesicles (sEVs), miR-17-5p-engineered sEVs (sEVs17-OE) and encapsulated them in gelatin methacryloyl (GelMA) hydrogel for diabetic wounds treatment are fabricated. SEVs17-OE are successfully fabricated with a 16-fold increase in miR-17-5p expression. SEVs17-OE inhibited senescence and promoted the proliferation, migration, and tube formation of high glucose-induced human umbilical vein endothelial cells (HG-HUVECs). Additionally, sEVs17-OE also performs a promotive effect on high glucose-induced human dermal fibroblasts (HG-HDFs). Mechanism analysis showed the expressions of p21 and phosphatase and tensin homolog (PTEN), as the target genes of miR-17-5p, are downregulated significantly by sEVs17-OE. Accordingly, the downstream genes and pathways of p21 and PTEN, are activated. Next, sEVs17-OE are loaded in GelMA hydrogel to fabricate a novel bioactive wound dressing and to evaluate their effects on diabetic wound healing. Gel-sEVs17-OE effectively accelerated wound healing by promoting angiogenesis and collagen deposition. The cellular mechanism may be associated with local cell proliferation. Therefore, a novel bioactive wound dressing by loading sEVs17-OE in GelMA hydrogel, offering an option for chronic wound management is successfully fabricated.
Collapse
Affiliation(s)
- Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionChinese PLA General HospitalBeijing100048P. R. China
- Research Unit of Trauma CareTissue Repair and RegenerationChinese Academy of Medical Sciences2019RU051Beijing100048P. R. China
| | - Jianlong Su
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionChinese PLA General HospitalBeijing100048P. R. China
- Chinese PLA Medical SchoolBeijing100853P. R. China
| | - Sheng Meng
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionChinese PLA General HospitalBeijing100048P. R. China
- Chinese PLA Medical SchoolBeijing100853P. R. China
| | - Yaxi Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionChinese PLA General HospitalBeijing100048P. R. China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionChinese PLA General HospitalBeijing100048P. R. China
- Research Unit of Trauma CareTissue Repair and RegenerationChinese Academy of Medical Sciences2019RU051Beijing100048P. R. China
| | - Bingmin Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionChinese PLA General HospitalBeijing100048P. R. China
| | - Ziqiang Chu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionChinese PLA General HospitalBeijing100048P. R. China
| | - Qilin Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionChinese PLA General HospitalBeijing100048P. R. China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionChinese PLA General HospitalBeijing100048P. R. China
| | - Zihao Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionChinese PLA General HospitalBeijing100048P. R. China
- Chinese PLA Medical SchoolBeijing100853P. R. China
| | - Lige Tian
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionChinese PLA General HospitalBeijing100048P. R. China
| | - Xi Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionChinese PLA General HospitalBeijing100048P. R. China
- Research Unit of Trauma CareTissue Repair and RegenerationChinese Academy of Medical Sciences2019RU051Beijing100048P. R. China
| | - Tanshi Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionChinese PLA General HospitalBeijing100048P. R. China
- Research Unit of Trauma CareTissue Repair and RegenerationChinese Academy of Medical Sciences2019RU051Beijing100048P. R. China
- Department of EmergencyThe First Medical CenterChinese PLA General HospitalBeijing100853P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and RegenerationBeijing100048P. R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionChinese PLA General HospitalBeijing100048P. R. China
- Research Unit of Trauma CareTissue Repair and RegenerationChinese Academy of Medical Sciences2019RU051Beijing100048P. R. China
- Chinese PLA Medical SchoolBeijing100853P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and RegenerationBeijing100048P. R. China
- Innovation Center for Wound RepairWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionChinese PLA General HospitalBeijing100048P. R. China
- Research Unit of Trauma CareTissue Repair and RegenerationChinese Academy of Medical Sciences2019RU051Beijing100048P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and RegenerationBeijing100048P. R. China
- Innovation Center for Wound RepairWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| |
Collapse
|
4
|
Zhang H, Han K, Li H, Zhang J, Zhao Y, Wu Y, Wang B, Ma J, Luan X. hPMSCs Regulate the Level of TNF-α and IL-10 in Th1 Cells and Improve Hepatic Injury in a GVHD Mouse Model via CD73/ADO/Fyn/Nrf2 Axis. Inflammation 2024; 47:244-263. [PMID: 37833615 DOI: 10.1007/s10753-023-01907-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Mesenchymal stem cells (MSCs) ameliorate graft-versus-host disease (GVHD)-induced tissue damage by exerting immunosuppressive effects. However, the related mechanism remains unclear. Here, we explored the therapeutic effect and mechanism of action of human placental-derived MSCs (hPMSCs) on GVHD-induced mouse liver tissue damage, which shows association with inflammatory responses, fibrosis accompanied by hepatocyte tight junction protein loss, the upregulation of Bax, and the downregulation of Bcl-2. It was observed in GVHD mice and Th1 cell differentiation system that hPMSCs treatment increased IL-10 levels and decreased TNF-α levels in the Th1 subsets via CD73. Moreover, hPMSCs treatment reduced tight junction proteins loss and inhibited hepatocyte apoptosis in the livers of GVHD mice via CD73. ADO level analysis in GVHD mice and the Th1 cell differentiation system showed that hPMSCs could also upregulate ADO levels via CD73. Moreover, hPMSCs enhanced Nrf2 expression and diminished Fyn expression via the CD73/ADO pathway in Th1, TNF-α+, and IL-10+ cells. These results indicated that hPMSCs promoted and inhibited the secretion of IL-10 and TNF-α, respectively, during Th1 cell differentiation through the CD73/ADO/Fyn/Nrf2 axis signaling pathway, thereby alleviating liver tissue injury in GVHD mice.
Collapse
Affiliation(s)
- Hengchao Zhang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Kaiyue Han
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Heng Li
- Traditional Chinese Medicine Hospital of Muping District of Yantai City, Yantai, 264100, Shandong Province, China
| | - Jiashen Zhang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Yaxuan Zhao
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Yunhua Wu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Bin Wang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Junjie Ma
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong Province, China.
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.
| |
Collapse
|
5
|
Pantiya P, Thonusin C, Chunchai T, Pintana H, Ongnok B, Nawara W, Arunsak B, Kongkaew A, Chattipakorn N, Chattipakorn SC. Long-term lifestyle intervention is superior to transient modification for neuroprotection in D-galactose-induced aging rats. Life Sci 2023; 334:122248. [PMID: 37940069 DOI: 10.1016/j.lfs.2023.122248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
AIMS To investigate whether transient dietary restriction or aerobic exercise in young adulthood exert long-lasting protection against brain aging later in life. MAIN METHODS Seven-week-old male Wistar rats were divided into 2 groups and given either normal saline as a vehicle (n = 8) or 150 mg/kg/day of D-galactose (n = 40) for 28 weeks, the D-galactose being used to induce aging. At week 13 of the experiment, D-galactose-treated rats were further divided into 5 groups, 1) no intervention, 2) transient dietary restriction for 6 weeks (week 13-18), 3) transient exercise for 6 weeks (week 13-18), 4) long-term dietary restriction for 16 weeks (week 13-28), and 5) long-term exercise for 16 weeks (week 13-28). At the end of week 28, cognitive function was examined, followed by molecular studies in the hippocampus. KEY FINDINGS Our results showed that either long-term dietary restriction or aerobic exercise effectively attenuated cognitive function in D-galactose-treated rats via the attenuation of oxidative stress, cellular senescence, Alzheimer's-like pathology, neuroinflammation, and improvements in mitochondria, brain metabolism, adult neurogenesis, and synaptic integrity. Although transient interventions provided benefits in some brain parameters in D-galactose-treated rats, an improvement in cognitive function was not observed. SIGNIFICANCE Our findings suggested that transient lifestyle interventions failed to exert a long-lasting protective effect against brain aging. Hence, novel drugs mimicking the neuroprotective effect of long-term dietary restriction or exercise and the combination of the two since young age appear to be more appropriate treatments for the elderly who are unable to engage in long-term dietary restriction or exercise.
Collapse
Affiliation(s)
- Patcharapong Pantiya
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Hiranya Pintana
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Benjamin Ongnok
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Wichwara Nawara
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
6
|
Zhong X, Chen J, Wen B, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Shen J, Xiao Z. Potential role of mesenchymal stem cells in T cell aging. J Mol Med (Berl) 2023; 101:1365-1378. [PMID: 37750918 DOI: 10.1007/s00109-023-02371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
Immunosenescence occurs with progressive age. T cell aging is manifested by immunodeficiency and inflammation. The main mechanisms are thymic involution, mitochondrial dysfunction, genetic and epigenetic alterations, loss of protein stability, reduction of T cell receptor (TCR) repertoire, naïve-memory T cell ratio imbalance, T cell senescence, and lack of effector plasticity. Mesenchymal stem cells (MSCs) are thought to hold great potential as anti-aging therapy. However, the role of MCSs in T cell aging remains elusive. This review makes a tentative summary of the potential role of MSCs in the protection against T cell aging. It might provide a new idea to intervene in the aging of the immune system.
Collapse
Affiliation(s)
- Xianmei Zhong
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- Department of Pharmacy, People's Hospital of Nanbu County, Nanchong, 637300, China
| | - Jie Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Bo Wen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
7
|
Wu Y, Shi H, Zheng J, Yang Y, Lei X, Qian X, Zhu J. Overexpression of FSP1 Ameliorates ferroptosis via PI3K/ AKT /GSK3β pathway in PC12 cells with Oxygen-Glucose Deprivation/Reoxygenation. Heliyon 2023; 9:e18449. [PMID: 37529339 PMCID: PMC10388168 DOI: 10.1016/j.heliyon.2023.e18449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
After ischemia and reperfusion (I/R), nerve cell damage is a pathogenic process that involves numerous molecular processes. In the last ten years, one new classification of programmed cell death is ferroptosis. More recent research has demonstrated that ferroptosis has a role in a variety of neurological disorders, including stroke, cancer, and neurodegenerative illnesses. Ferroptosis suppressor protein 1 (FSP1) plays a significant role in inhibiting ferroptosis. The purpose of this work is to determine how overexpression of FSP1 affects the ferroptosis of PC12 cells under the condition of oxygen-glucose deprivation/reoxygenation (OGD/R). The expression of FSP1 was regulated by lentivirus transfection technology. Western blot and immunofluorescence were used to measure protein levels related to ferroptosis and the PI3K/AKT/GSK3β signal pathway. Determine cell viability using the appropriate kit. Mitochondrial structural morphology was checked by transmission electron microscopy in PC12 cells. Reactive oxygen species (ROS) and Malondialdehyde (MDA) were quantified using the relevant kits. OGD/R induced ferroptosis in PC12 cells, however, FSP1 overexpression reverses ferroptosis and promotes cell viability, lowering ROS and MDA content. The expression of FSP1 decreased in OGD/R0h and OGD/R6h and rebounded in OGD/R24h and OGD/R48h. During the processes of OGD/R-induced ferroptosis, FSP1 overexpression significantly stimulated PI3K/AKT/GSK3β pathway, but LY294002 weakens the protective effect of FSP1 overexpression. Our outcomes demonstrate that overexpression of FSP1 markedly enhances the ability to resist ferroptosis via the PI3K/AKT/GSK3β pathway. The above results may provide a new preliminary lead for the treatment of the cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yonghui Wu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Haoyu Shi
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China
| | - Jie Zheng
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China
| | - Yang Yang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xuejiao Lei
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiao Qian
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China
| | - Jie Zhu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China
| |
Collapse
|
8
|
Lou Q, Meng XE, Wei C, Tong J, Chen Y, Li M, Wang Q, Guo S, Duan JA, Shang EX, Zhu Y. Jian-Yan-Ling capsules ameliorate cognitive impairment in mice with D-galactose-induced senescence and inhibit the oxidation-induced apoptosis of HT22 hippocampal cells by regulating the Nrf2-HO1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116356. [PMID: 36924864 DOI: 10.1016/j.jep.2023.116356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Jian-Yan-Ling (JYL) capsule is a famous anti-aging Chinese patent medicine. It is applied mainly to delay senescence to improve cognition in aging individuals. However, the action mechanisms of JYL for improving cognition have not been determined. AIM OF THE STUDY We will evaluate the effect of the JYL capsule at improving the cognition of aging mice by improving oxidative stress in the hippocampus and exploring its action mechanism. MATERIALS AND METHODS A senescence mouse model was developed via intraperitoneal injection of D-galactose. The effect of the JYL capsule at improving the learning and memory abilities of mice was evaluated using the Morris water maze and novel object recognition tests. The apotosis of model mice hippocampus' were determined by TUNEL analysis. The antioxidant capacity of the JYL capsule was evaluated by determining the activities of antioxidant enzymes and expressions of oxidative products. The regulation of the Nrf2/HO-1 signaling pathway of the JYL capsule was evaluated by determining the expressions of related proteins via western blotting analysis. In vitro, H2O2-treated mouse hippocampal HT22 cells were used to evaluate the antioxidant capacity of JYL-containing rat serum by determining the cell viability, apoptotic level and expressions of related proteins. RESULTS JYL capsules enhanced the learning and memory abilities of model mice according to behavioral tests. The results of TUNEL analysis showed that the JYL capsule ameliorated hippocampal apoptosis in model mice. JYL capsules also exerted significant antioxidant capacity by increasing the activities of antioxidant enzymes while decreasing the levels of oxidative products both in the hippocampus and serum. The regulation of Nrf2/HO-1 pathway might contribute to the antioxidant function. In vitro, JYL-containing rat serum protected HT22 cells from H2O2 induced oxidative stress. The apoptosis of HT22 cells was also attenuated by regulating the caspase and Nrf2/HO-1 signaling pathways. CONCLUSIONS The amelioration of neuronal oxidative stress of hippocampus might contribute to the D-galactose-induced cognition impairment of senescence mice. These findings provide evidence for the application of JYL capsules to enhance cognition in aging individuals.
Collapse
Affiliation(s)
- Qianyin Lou
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Xue-Er Meng
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Chongqi Wei
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Jiaxiang Tong
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Yang Chen
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Mengting Li
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Qingqing Wang
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Sheng Guo
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Jin-Ao Duan
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Er-Xin Shang
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Yue Zhu
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| |
Collapse
|
9
|
Tian S, Zhao H, Guo H, Feng W, Jiang C, Jiang Y. Propolis Ethanolic Extract Attenuates D-gal-induced C2C12 Cell Injury by Modulating Nrf2/HO-1 and p38/p53 Signaling Pathways. Int J Mol Sci 2023; 24:ijms24076408. [PMID: 37047379 PMCID: PMC10094417 DOI: 10.3390/ijms24076408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Previous study has shown that propolis ethanolic extract (PEE) has a protective effect on aging skeletal muscle atrophy. However, the exact molecular mechanism remains unclear. This study aimed to investigate the effect of PEE on D-galactose (D-gal)-induced damage in mouse C2C12 cells. The results revealed that PEE increased the viability of senescent C2C12 cells, decreased the number of senescence-associated β-galactosidase (SA-β-Gal)-positive cells and promoted the differentiation of C2C12 cells. PEE resisted oxidative stress caused by D-gal by activating the Nrf2/HO-1 signaling pathway and maintained the differentiation ability of C2C12 cells. PEE inhibited apoptosis by suppressing p38 phosphorylation and reducing p53 expression. In summary, our findings reveal the molecular mechanism by which PEE protects D-gal-induced C2C12 cells, providing a theoretical basis for the development of PEE for the alleviation of muscle atrophy.
Collapse
Affiliation(s)
- Songhao Tian
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
- Department of Medical Laboratory, Fenyang College of Shanxi Medical University, Fenyang 032200, China
| | - Huiting Zhao
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Hongru Guo
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Wei Feng
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Conglin Jiang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Yusuo Jiang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
- Correspondence:
| |
Collapse
|
10
|
Irisin ameliorates D-galactose-induced skeletal muscle fibrosis via the PI3K/Akt pathway. Eur J Pharmacol 2023; 939:175476. [PMID: 36539073 DOI: 10.1016/j.ejphar.2022.175476] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Primary sarcopenia is a multicausal skeletal muscle disease associated with muscle strength and mass loss. Skeletal muscle fibrosis is one of the significant pathological manifestations associated with the development of age-related sarcopenia. Irisin, which is cleaved by the extracellular domain of fibronectin type Ⅲ domain-containing protein 5 (FNDC5), has previously been reported to exert antifibrotic effects on the heart, liver, and pancreas, but whether it can rescue skeletal muscle fibrosis remains unknown. In this study, we examined the effects of irisin on D-galactose (D-gal)-induced skeletal muscle fibroblasts. We found that D-gal-induced senescence, fibrosis, and redox imbalance were inhibited by irisin treatment. Mechanistically, irisin or FNDC5 overexpression attenuated D-gal-induced senescence, redox imbalance, and fibrosis by regulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. Overall, irisin might be a promising therapeutic candidate for age-related skeletal muscle fibrosis.
Collapse
|
11
|
Wang Y, Han K, Li Z, Tang X, Wang C, Zhao Y, Zhang H, Geng Z, Kong J, Luan X, Xiong Y. Protective effect of hydroxysafflor yellow A on renal ischemia‑-reperfusion injury by targeting the Akt‑Nrf2 axis in mice. Exp Ther Med 2022; 24:741. [PMID: 36478883 PMCID: PMC9716340 DOI: 10.3892/etm.2022.11677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023] Open
Abstract
Ischemic/reperfusion (I/R) injury is the primary cause of acute kidney injury (AKI). Hydroxysafflor yellow A (HSYA), a natural compound isolated from Carthamus tinctorius L., has been found to possess anti-inflammatory and antioxidant properties. However, the protective effects and potential mechanism of HSYA on I/R-induced AKI remains unclear. In the present study, the in vitro hypoxia/reoxygenation (H/R) and in vivo renal I/R models were employed to investigate the renal protective effects and molecular mechanisms of HSYA on I/R-induced AKI. The present results indicated that HSYA pretreatment significantly ameliorated renal damage and dysfunction in the I/R injury mice via enhancing the antioxidant capacity and suppressing the oxidative stress injury, inflammatory response, and apoptosis. Mechanistic studies showed that HSYA could upregulate Akt/GSK-3β/Fyn-Nrf2 axis-mediated antioxidant gene expression both in vitro and in vivo. Moreover, HSYA-mediated improvement in antioxidant, anti-inflammatory, and anti-apoptotic effects in H/R-treated HK-2 cells was abrogated by Akt inhibitor LY294002 supplementation. In summary, the present results demonstrated that HSYA attenuated kidney oxidative stress, inflammation response, and apoptosis induced by I/R, at least in part, via activating the Akt/GSK-3β/Fyn-Nrf2 axis pathway. These findings provided evidence that HSYA may be applied as a potential therapeutic agent in the treatment of I/R induced AKI.
Collapse
Affiliation(s)
- Yueming Wang
- Department of Pathogen Biology, School of Basic Medicine, Binzhou Medical University, Yantai 264003, P.R. China
| | - Kaiyue Han
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai 264003, P.R. China
| | - Zile Li
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai 264003, P.R. China
| | - Xiaoxuan Tang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai 264003, P.R. China
| | - Chen Wang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai 264003, P.R. China
| | - Yaxuan Zhao
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai 264003, P.R. China
| | - Hengchao Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai 264003, P.R. China
| | - Ziran Geng
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai 264003, P.R. China
| | - Jie Kong
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai 264003, P.R. China
| | - Xiying Luan
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai 264003, P.R. China,Correspondence to: Professor Xiying Luan or Professor Yanlian Xiong, Department of Immunology, School of Basic Medicine, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, P.R. China
| | - Yanlian Xiong
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai 264003, P.R. China,Correspondence to: Professor Xiying Luan or Professor Yanlian Xiong, Department of Immunology, School of Basic Medicine, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
12
|
Alejandro SP. ER stress in cardiac aging, a current view on the D-galactose model. Exp Gerontol 2022; 169:111953. [PMID: 36116694 DOI: 10.1016/j.exger.2022.111953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022]
Abstract
Longitudinal studies are mandatory to study aging, however, they have certain drawbacks, for example, they require strict maintenance that is expensive given the breeding time (approximately 2 years) and with a low survival rate, having some animals to study very limitedly. In vitro studies provide useful and invaluable information on the cellular and molecular mechanisms that help understand the aging process to overcome these aspects. In particular, the model of premature aging induced by chronic exposure to D-galactose (D-Gal) offers a very similar picture to that which occurs in natural aging. This model mimics most of the old animals' cellular processes, such as oxidative stress, mitochondrial dysfunction, increased advanced glycation end products (AGEs), inflammation, and senescence-associated secretory phenotype (SASP). However, the information related to the endoplasmic reticulum (ER) stress and, subsequently, the unfolded protein response (UPR) is not fully elucidated. Therefore, this review brings together the most current information on this response in the D-Gal-induced aging model and its effect on cardiac structure and function.
Collapse
Affiliation(s)
- Silva-Palacios Alejandro
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City, Mexico.
| |
Collapse
|
13
|
Liu Y, Yuan Y, Zhou Z, Cui Y, Teng Y, Huang H, Yuan H, Zhang Y, Yang L, Zhao G. Mettl14-mediated m6A modification enhances the function of Foxp3 + regulatory T cells and promotes allograft acceptance. Front Immunol 2022; 13:1022015. [PMID: 36341394 PMCID: PMC9629694 DOI: 10.3389/fimmu.2022.1022015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/30/2022] [Indexed: 01/07/2023] Open
Abstract
N6-methyladenosine (m6A), the most prevalent form of internal mRNA modification, is extensively involved in Treg cells differentiation and function. However, the involvement of m6A in functional Treg cells for transplantation tolerance remains to be elucidated. By using an experimental transplantation mouse model, we found that m6A levels in Treg cells were altered during the induction of transplant tolerance by performing a dot blotting assay. Subsequently, we used the heterogenic Treg-specific Mettl14 knockout mice (Foxp3-Mettl14f/+ cKO) to reduce METTL14 expression and performed islets allograft transplantation. Our result revealed that reduced expression of METTL14 prevented Treg cells expansion and promoted the infiltration of CD4+ and CD8+ T cells around the allograft, which led to rapid allograft rejection in Foxp3-Mettl14 f/+ cKO mice. The expression of regulatory cytokines including IL-10 and TGF-β was significantly decreased in Foxp3-Mettl14 f/+ cKO mice, and the suppressive function of Treg cells was also abrogated. In addition, an analysis of RNA-seq data revealed that the SOCS family (SOCS1, SOCS2 and SOCS3) is the subsequent signaling pathway affected by the METTL14 mediated m6A modification in Treg cells to modulate the suppressive function after transplantation. Taken together, our study showed for the first time that the METTL14-mediated m6A modification is essential for the suppressive function of Treg cells in transplantation and may serve as a regulatory element of Treg cell-based therapy in transplant medicine.
Collapse
Affiliation(s)
- Yanzhuo Liu
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yinglin Yuan
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zili Zhou
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanyuan Cui
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Teng
- Institute of Neurology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Huang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Yuan
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanling Zhang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Yang
- Institute of Neurology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Lu Yang, ; Gaoping Zhao,
| | - Gaoping Zhao
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Lu Yang, ; Gaoping Zhao,
| |
Collapse
|
14
|
Chen S, Li Y, Fu S, Li Y, Wang C, Sun P, Li H, Tian J, Du GQ. Melatonin alleviates arginine vasopressin-induced cardiomyocyte apoptosis via increasing Mst1-Nrf2 pathway activity to reduce oxidative stress. Biochem Pharmacol 2022; 206:115265. [DOI: 10.1016/j.bcp.2022.115265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
|
15
|
Ru M, Wang W, Zhai Z, Wang R, Li Y, Liang J, Kothari D, Niu K, Wu X. Nicotinamide mononucleotide supplementation protects the intestinal function in aging mice and D-galactose induced senescent cells. Food Funct 2022; 13:7507-7519. [PMID: 35678708 DOI: 10.1039/d2fo00525e] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nicotinamide adenine dinucleotide (NAD+) level shows a temporal decrease during the aging process, which has been deemed as an aging hallmark. Nicotinamide mononucleotide (NMN), a key NAD+ precursor, shows the potential to retard the age-associated functional decline in organs. In the current study, to explore whether NMN has an impact on the intestine during the aging process, the effects of NMN supplementation on the intestinal morphology, microbiota, and NAD+ content, as well as its anti-inflammatory, anti-oxidative and barrier functions were investigated in aging mice and D-galactose (D-gal) induced senescent IPEC-J2 cells. The results showed that 4 months of NMN administration had little impact on the colonic microbiota and NAD+ content in aging mice, while it significantly increased the jejunal NAD+ content and improved the jejunal structure including increasing the villus length and shortening the crypt. Moreover, NMN supplementation significantly up-regulated the mRNA expression of SIRT3, SIRT6, nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), the catalytic subunit of glutamate-cysteine ligase (GCLC), superoxide dismutase 2 (SOD2), occludin, and claudin-1, but down-regulated the mRNA expression of tumor necrosis factor alpha (TNF-α). Specifically, in the D-gal induced senescent IPEC-J2 cells, 500 μM NMN restored the increased mRNA expression of interleukin 6 (IL6ST), IL-1A, nuclear factor (NF-κB1), and claudin-1 to normal levels to some extent. Furthermore, NMN treatment significantly affected the mRNA expression of antioxidant enzymes including NQO1, GCLC, SOD 2 and 3, and GSH-PX1, 3 and 4. In addition, 200 μM NMN enhanced the cell viability and total antioxidant capacity and lowered the reactive oxygen species level of senescent IPEC-J2 cells. Notably, NMN restored the down-regulated protein expression of occludin and claudin-1 induced by D-gal. The above data demonstrated the potential of NMN in ameliorating the structural and functional decline in the intestine during aging.
Collapse
Affiliation(s)
- Meng Ru
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Wanwan Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Zhenya Zhai
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Ruxia Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Yumeng Li
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China. .,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China.
| | - Jiang Liang
- ERA Biotechnology (Shenzhen) Co., Ltd, Shenzhen 518155, China
| | - Damini Kothari
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, South Korea
| | - Kaimin Niu
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China. .,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Xin Wu
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China. .,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China. .,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| |
Collapse
|
16
|
Du Y, Mao L, Wang Z, Yan K, Zhang L, Zou J. Osteopontin - The stirring multifunctional regulatory factor in multisystem aging. Front Endocrinol (Lausanne) 2022; 13:1014853. [PMID: 36619570 PMCID: PMC9813443 DOI: 10.3389/fendo.2022.1014853] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Osteopontin (OPN) is a multifunctional noncollagenous matrix phosphoprotein that is expressed both intracellularly and extracellularly in various tissues. As a growth regulatory protein and proinflammatory immunochemokine, OPN is involved in the pathological processes of many diseases. Recent studies have found that OPN is widely involved in the aging processes of multiple organs and tissues, such as T-cell senescence, atherosclerosis, skeletal muscle regeneration, osteoporosis, neurodegenerative changes, hematopoietic stem cell reconstruction, and retinal aging. However, the regulatory roles and mechanisms of OPN in the aging process of different tissues are not uniform, and OPN even has diverse roles in different developmental stages of the same tissue, generating uncertainty for the future study and utilization of OPN. In this review, we will summarize the regulatory role and molecular mechanism of OPN in different tissues and cells, such as the musculoskeletal system, central nervous system, cardiovascular system, liver, and eye, during senescence. We believe that a better understanding of the mechanism of OPN in the aging process will help us develop targeted and comprehensive therapeutic strategies to fight the spread of age-related diseases.
Collapse
|
17
|
Xiong Y, Xiong Y, Zhang H, Zhao Y, Han K, Zhang J, Zhao D, Yu Z, Geng Z, Wang L, Wang Y, Luan X. hPMSCs-Derived Exosomal miRNA-21 Protects Against Aging-Related Oxidative Damage of CD4 + T Cells by Targeting the PTEN/PI3K-Nrf2 Axis. Front Immunol 2021; 12:780897. [PMID: 34887868 PMCID: PMC8649962 DOI: 10.3389/fimmu.2021.780897] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs)-derived exosomes were considered a novel therapeutic approach in many aging-related diseases. This study aimed to clarify the protective effects of human placenta MSCs-derived exosomes (hPMSC-Exo) in aging-related CD4+ T cell senescence and identified the underlying mechanisms using a D-gal induced mouse aging model. Senescent T cells were detected SA-β-gal stain. The degree of DNA damage was evaluated by detecting the level of 8-OH-dG. The superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) activities were measured. The expression of aging-related proteins and senescence-associated secretory phenotype (SASP) were detected by Western blot and RT-PCR. We found that hPMSC-Exo treatment markedly decreased oxidative stress damage (ROS and 8-OH-dG), SA-β-gal positive cell number, aging-related protein expression (p53 and γ-H2AX), and SASP expression (IL-6 and OPN) in senescent CD4+ T cells. Additionally, hPMSC-Exo containing miR-21 effectively downregulated the expression of PTEN, increased p-PI3K and p-AKT expression, and Nrf2 nuclear translocation and the expression of downstream target genes (NQO1 and HO-1) in senescent CD4+ T cells. Furthermore, in vitro studies uncovered that hPMSC-Exo attenuated CD4+ T cell senescence by improving the PTEN/PI3K-Nrf2 axis by using the PTEN inhibitor bpV (HOpic). We also validated that PTEN was a target of miR-21 by using a luciferase reporter assay. Collectively, the obtained results suggested that hPMSC-Exo attenuates CD4+ T cells senescence via carrying miRNA-21 and activating PTEN/PI3K-Nrf2 axis mediated exogenous antioxidant defenses.
Collapse
Affiliation(s)
- Yanlian Xiong
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yanlei Xiong
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hengchao Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yaxuan Zhao
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Kaiyue Han
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Jiashen Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Dongmei Zhao
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Zhenhai Yu
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Ziran Geng
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Longfei Wang
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yueming Wang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Xiying Luan
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
18
|
Yu J, Yang Y, Li S, Meng P. Salinomycin triggers prostate cancer cell apoptosis by inducing oxidative and endoplasmic reticulum stress via suppressing Nrf2 signaling. Exp Ther Med 2021; 22:946. [PMID: 34306210 PMCID: PMC8281384 DOI: 10.3892/etm.2021.10378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Salinomycin is a polyether antiprotozoal antibiotic that is widely used as an animal food additive. Some antifungal, antiparasitic, antiviral and anti-inflammatory activities have been reported for salinomycin. Recently, the anti-cancer effect of salinomycin has been demonstrated in breast cancer; however, the underlying mechanism remains unknown. The present study aimed to investigate the functional roles of salinomycin in the progression of prostate cancer cells using the DU145 and PC-3 cell lines. Western blotting and reverse transcription-quantitative polymerase chain reaction were performed to detect the expression of oxidative stress and endoplasmic reticulum stress-related molecules, and flow cytometry was performed to detect the apoptosis rate of DU145 and PC-3 cells after salinomycin treatment. The results demonstrated that salinomycin inhibited the viability and induced the apoptosis of PC-3 and DU145 cells in a dose-dependent manner. Furthermore, salinomycin increased the production of reactive oxygen species (ROS) and 8-hydroxy-2'-deoxyguanosine (8-OH-dG) and the lipid peroxidation. In addition, salinomycin induced the activation of unfolded protein response and endoplasmic reticulum stress in DU145 and PC-3 cells, as indicated by the elevated expression of binding immunoglobulin protein, activating transcription factor 4, phosphorylated eukaryotic initiation factor 2α, phosphorylated protein kinase RNA-like endoplasmic reticulum kinase and C/EBP homologous protein. In addition, salinomycin significantly downregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1, NAD(P)H quinone dehydrogenase 1 and glutamate-cysteine ligase catalytic subunit and decreased the activity of the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase in PC-3 and DU145 cells. Furthermore, the Nrf2 activator, tert-butylhydroquinone, significantly reversed the therapeutic effects of salinomycin by stimulating the Nrf2 pathway and increasing the activity of antioxidant enzymes. Taken together, these findings demonstrated that salinomycin may trigger apoptosis by inducing oxidative and ER stress in prostate cancer cells via suppressing Nrf2 signaling.
Collapse
Affiliation(s)
- Jianyong Yu
- Department of Urology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264001, P.R. China
| | - Yang Yang
- Department of Urology, Haiyang People's Hospital, Yantai, Shandong 264001, P.R. China
| | - Shan Li
- The Fourth Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264001, P.R. China
| | - Peng Meng
- The Fourth Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264001, P.R. China
| |
Collapse
|
19
|
Lu J, Liu Z, Shu M, Zhang L, Xia W, Tang L, Li J, Huang B, Li H. Human placental mesenchymal stem cells ameliorate chemotherapy-induced damage in the testis by reducing apoptosis/oxidative stress and promoting autophagy. Stem Cell Res Ther 2021; 12:199. [PMID: 33743823 PMCID: PMC7981860 DOI: 10.1186/s13287-021-02275-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 01/18/2023] Open
Abstract
Background The side effects of busulfan on male reproduction are serious, so fertility preservation in children undergoing busulfan treatment is a major worldwide concern. Human placental mesenchymal stem cells (hPMSCs) have advantages such as stable proliferation and lower immunogenicity that make them an ideal material for stimulating tissue repair, especially restoring spermatogenesis. The protective effects of hPMSCs in busulfan-induced Sertoli cells and in busulfan-treated mouse testes have not been determined. Our study aimed to elaborate the protective effect and potential mechanisms of hPMSCs in busulfan-treated testes and Sertoli cells. Methods First, we developed a mouse model of busulfan-induced testicular toxicity in vivo and a mouse Sertoli cell line treated with busulfan in vitro to assess the protective effect and mechanisms of hPMSC treatment on spermatogenesis. Then, the length, width, and weight of the testes were monitored using Vernier calipers. Furthermore, at 1 week and 4 weeks after the transplantation of hPMSCs, histological sections of testes were stained with hematoxylin-eosin, and the seminiferous tubules with fluid-filled cavities were counted. Through ELISA analysis, testosterone levels and MDA, SOD, LDH, and CAT activities, which are associated with ROS, were detected. Markers of ROS, proliferation (Ki67), and apoptosis (Annexin V) were evaluated by FACS. Next, the fluorescence intensity of proliferation markers (BrdU and SCP3), an antioxidant marker (SIRT1), a spermatogenesis marker (PLZF), and autophagy-related genes (P62 and LC3AB) were detected by fluorescence microscopy. The mRNA expression of γ-H2AX, BRCA1, PARP1, PCNA, Ki67, P62, and LC3 was determined by qRT-PCR. Results hPMSCs restored disrupted spermatogenesis, promoted improved semen parameters, and increased testosterone levels, testis size, and autophagy in the testis toxicity mouse model induced by busulfan. hPMSCs suppressed the apoptosis of Sertoli cells and enhanced their rate of proliferation in vitro. Additionally, hPMSCs protected against oxidative stress and decreased oxidative damage in the testis toxicity mouse model induced by busulfan. Furthermore, hPMSCs increased the expression of proliferation genes (PCNA and KI67) and decreased the mRNA levels of apoptotic genes such as γ-H2AX, BRCA1, and PARP1. Conclusions This research showed that hPMSC injection ameliorated busulfan-induced damage in the testis by reducing apoptosis/oxidative stress and promoting autophagy. The present study offers an idea for a new method for clinical treatment of chemotherapy-induced spermatogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02275-z.
Collapse
Affiliation(s)
- Jiafeng Lu
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China
| | - Zhenxing Liu
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China
| | - Mingkai Shu
- Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Liya Zhang
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China
| | - Wenjuan Xia
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China
| | - Liuna Tang
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China
| | - Jincheng Li
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China
| | - Boxian Huang
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China.
| | - Hong Li
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|