1
|
Fang L, Song Y, Chen J, Ding Y. The dual role of neutrophils in sepsis-associated liver injury. Front Immunol 2025; 16:1538282. [PMID: 40092997 PMCID: PMC11906405 DOI: 10.3389/fimmu.2025.1538282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Sepsis is often accompanied by liver injury and is associated with an increase in the number of circulating and hepatic neutrophils. In sepsis-associated liver injury, neutrophils exhibit phenotypic heterogeneity and perform both pro- and anti-inflammatory functions. Moreover, neutrophil dysfunction and neutrophil-associated immunosuppression are also involved in the pathogenesis of sepsis. Given the complex functionality of this cell type, the aim of this review was to describe the possible mechanistic role of neutrophils in sepsis-associated liver injury, with a brief introduction to neutrophil recruitment and subsequent discussion of the potential contributions of neutrophils to different subtypes of sepsis-associated liver injury.
Collapse
Affiliation(s)
- Lexin Fang
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yu Song
- Department of Hepatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiangtao Chen
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yueping Ding
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Chen H, Ling X, Zhao B, Chen J, Sun X, Yang J, Li P. Mesenchymal stem cells from different sources for sepsis treatment: prospects and limitations. Braz J Med Biol Res 2024; 57:e13457. [PMID: 39417448 PMCID: PMC11484354 DOI: 10.1590/1414-431x2024e13457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
Sepsis is a systemic inflammatory response syndrome in which the host response to infection is dysregulated, leading to circulatory dysfunction and multi-organ damage. It has a high mortality rate and its incidence is increasing year by year, posing a serious threat to human life and health. Mesenchymal stem cells (MSC) have the following properties: hematopoietic support, provision of nutrients, activation of endogenous stem/progenitor cells, repair of tissue damage, elimination of inflammation, immunomodulation, promotion of neovascularization, chemotaxis and migration, anti-apoptosis, anti-oxidation, anti-fibrosis, homing, and many other effects. A large number of studies have confirmed that MSC from different sources have their own characteristics. This article reviews the pathogenesis of sepsis, the biological properties of MSC, and the advantages and disadvantages of different sources of MSC for the treatment of sepsis and their characteristics.
Collapse
Affiliation(s)
- Heng Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaosui Ling
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bo Zhao
- Department of Intensive Care Unit, The First Rehabilitation Hospital of Shandong, Linyi, Shandong, China
| | - Jing Chen
- Department of Forensic Medicine, Yuancheng District Public Security Bureau, Heyuan, Guangdong, China
| | - XianYi Sun
- Department of Intensive Care Unit, The First Rehabilitation Hospital of Shandong, Linyi, Shandong, China
| | - Jing Yang
- Department of Pharmacy, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Pharmacy, Shandong Medical College, Jinan, Shandong, China
| | - Pibao Li
- Department of Intensive Care Unit, The First Rehabilitation Hospital of Shandong, Linyi, Shandong, China
| |
Collapse
|
3
|
Wen F, Yang G, Yu S, Liu H, Liao N, Liu Z. Mesenchymal stem cell therapy for liver transplantation: clinical progress and immunomodulatory properties. Stem Cell Res Ther 2024; 15:320. [PMID: 39334441 PMCID: PMC11438256 DOI: 10.1186/s13287-024-03943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Although liver transplantation (LT) is an effective strategy for end-stage liver diseases, the shortage of donor organs and the immune rejection hinder its widespread implementation in clinical practice. Mesenchymal stem cells (MSCs) transplantation offers a promising approach for patients undergoing liver transplantation due to their immune regulatory capabilities, hepatic protection properties, and multidirectional differentiation potential. In this review, we summarize the potential applications of MSCs transplantation in various LT scenarios. MSCs transplantation has demonstrated effectiveness in alleviating hepatic ischemia-reperfusion injury, enhancing the viability of liver grafts, preventing acute graft-versus-host disease, and promoting liver regeneration in split LT therapy. We also discuss the clinical progress, and explore the immunomodulatory functions of MSCs in response to both adaptive and innate immune responses. Furthermore, we emphasize the interactions between MSCs and different immune cells, including T cells, B cells, plasma cells, natural killer cells, dendritic cells, Kupffer cells, and neutrophils, to provide new insights into the immunomodulatory properties of MSCs in adoptive cell therapy.
Collapse
Affiliation(s)
- Fuli Wen
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Guokai Yang
- Department of Nephrology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, P. R. China
| | - Saihua Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China
| | - Haiyan Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China.
| | - Zhengfang Liu
- Department of Traditional Chinese Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China.
| |
Collapse
|
4
|
da Silva MDV, Piva M, Martelossi-Cebinelli G, Stinglin Rosa Ribas M, Hoffmann Salles Bianchini B, K Heintz O, Casagrande R, Verri WA. Stem cells and pain. World J Stem Cells 2023; 15:1035-1062. [PMID: 38179216 PMCID: PMC10762525 DOI: 10.4252/wjsc.v15.i12.1035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Pain can be defined as an unpleasant sensory and emotional experience caused by either actual or potential tissue damage or even resemble that unpleasant experience. For years, science has sought to find treatment alternatives, with minimal side effects, to relieve pain. However, the currently available pharmacological options on the market show significant adverse events. Therefore, the search for a safer and highly efficient analgesic treatment has become a priority. Stem cells (SCs) are non-specialized cells with a high capacity for replication, self-renewal, and a wide range of differentiation possibilities. In this review, we provide evidence that the immune and neuromodulatory properties of SCs can be a valuable tool in the search for ideal treatment strategies for different types of pain. With the advantage of multiple administration routes and dosages, therapies based on SCs for pain relief have demonstrated meaningful results with few downsides. Nonetheless, there are still more questions than answers when it comes to the mechanisms and pathways of pain targeted by SCs. Thus, this is an evolving field that merits further investigation towards the development of SC-based analgesic therapies, and this review will approach all of these aspects.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Maiara Piva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Mariana Stinglin Rosa Ribas
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Beatriz Hoffmann Salles Bianchini
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Olivia K Heintz
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, State University of Londrina, Londrina 86038-440, Paraná, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Paraná, Brazil.
| |
Collapse
|
5
|
Medina JP, Bermejo-Álvarez I, Pérez-Baos S, Yáñez R, Fernández-García M, García-Olmo D, Mediero A, Herrero-Beaumont G, Largo R. MSC therapy ameliorates experimental gouty arthritis hinting an early COX-2 induction. Front Immunol 2023; 14:1193179. [PMID: 37533852 PMCID: PMC10391650 DOI: 10.3389/fimmu.2023.1193179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Objective The specific effect of Adipose-Derived Mesenchymal Stem Cells (Ad-MSC) on acute joint inflammation, where the response mostly depends on innate immunity activation, remains elusive. The pathogenesis of gouty arthritis, characterized by the deposition of monosodium urate (MSU) crystals in the joints, associated to acute flares, has been associated to NLRP3 inflammasome activation and subsequent amplification of the inflammatory response. Our aim was to study the effect of human Ad-MSC administration in the clinical inflammatory response of rabbits after MSU injection, and the molecular mechanisms involved. Methods Ad-MSC were administered by intraarterial route shortly after intraarticular MSU crystal injections. Joint and systemic inflammation was sequentially studied, and the mechanisms involved in NLRP3 inflammasome activation, and the synthesis of inflammatory mediators were assessed in the synovial membranes 72h after insult. Ad-MSC and THP-1-derived macrophages stimulated with MSU were co-cultured in transwell system. Results A single systemic dose of Ad-MSC accelerated the resolution of local and systemic inflammatory response. In the synovial membrane, Ad-MSC promoted alternatively M2 macrophage presence, inhibiting NLRP3 inflammasome and inducing the production of anti-inflammatory cytokines, such as IL-10 or TGF-β, and decreasing nuclear factor-κB activity. Ad-MSC induced a net anti-inflammatory balance in MSU-stimulated THP-1 cells, with a higher increase in IL-10 and IDO expression than that observed for IL-1β and TNF. Conclusion Our in vivo and in vitro results showed that a single systemic dose of Ad-MSC decrease the intensity and duration of the inflammatory response by an early local COX-2 upregulation and PGE2 release. Ad-MSCs suppressed NF-kB activity, NLRP3 inflammasome, and promoted the presence of M2 alternative macrophages in the synovium. Therefore, this therapeutic approach could be considered as a pharmacological alternative in patients with comorbidities that preclude conventional treatment.
Collapse
Affiliation(s)
- Juan Pablo Medina
- Bone and Joint Research Unit, Rheumatology Dept, IIS-Fundación Jiménez Díaz Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Ismael Bermejo-Álvarez
- Bone and Joint Research Unit, Rheumatology Dept, IIS-Fundación Jiménez Díaz Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Sandra Pérez-Baos
- Bone and Joint Research Unit, Rheumatology Dept, IIS-Fundación Jiménez Díaz Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Rosa Yáñez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain
- Advanced Therapies Dept, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - María Fernández-García
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain
- Advanced Therapies Dept, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Damián García-Olmo
- New Therapies Laboratory, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
- Department of Surgery, Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Department of Surgery, School of Medicine UAM, Madrid, Spain
| | - Aránzazu Mediero
- Bone and Joint Research Unit, Rheumatology Dept, IIS-Fundación Jiménez Díaz Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Gabriel Herrero-Beaumont
- Bone and Joint Research Unit, Rheumatology Dept, IIS-Fundación Jiménez Díaz Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Raquel Largo
- Bone and Joint Research Unit, Rheumatology Dept, IIS-Fundación Jiménez Díaz Universidad Autonoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
6
|
Drobiova H, Sindhu S, Ahmad R, Haddad D, Al-Mulla F, Al Madhoun A. Wharton's jelly mesenchymal stem cells: a concise review of their secretome and prospective clinical applications. Front Cell Dev Biol 2023; 11:1211217. [PMID: 37440921 PMCID: PMC10333601 DOI: 10.3389/fcell.2023.1211217] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulating evidence indicates that most primary Wharton's jelly mesenchymal stem cells (WJ-MSCs) therapeutic potential is due to their paracrine activity, i.e., their ability to modulate their microenvironment by releasing bioactive molecules and factors collectively known as secretome. These bioactive molecules and factors can either be released directly into the surrounding microenvironment or can be embedded within the membrane-bound extracellular bioactive nano-sized (usually 30-150 nm) messenger particles or vesicles of endosomal origin with specific route of biogenesis, known as exosomes or carried by relatively larger particles (100 nm-1 μm) formed by outward blebbing of plasma membrane called microvesicles (MVs); exosomes and MVs are collectively known as extracellular vesicles (EVs). The bioactive molecules and factors found in secretome are of various types, including cytokines, chemokines, cytoskeletal proteins, integrins, growth factors, angiogenic mediators, hormones, metabolites, and regulatory nucleic acid molecules. As expected, the secretome performs different biological functions, such as immunomodulation, tissue replenishment, cellular homeostasis, besides possessing anti-inflammatory and anti-fibrotic effects. This review highlights the current advances in research on the WJ-MSCs' secretome and its prospective clinical applications.
Collapse
Affiliation(s)
- Hana Drobiova
- Human Genetics Unit, Department of Pathology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | - Sardar Sindhu
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
7
|
Edström D, Niroomand A, Stenlo M, Uvebrant K, Bölükbas DA, Hirdman G, Broberg E, Lim HC, Hyllén S, Lundgren-Åkerlund E, Pierre L, Olm F, Lindstedt S. Integrin α10β1-selected mesenchymal stem cells reduced hypercoagulopathy in a porcine model of acute respiratory distress syndrome. Respir Res 2023; 24:145. [PMID: 37259141 PMCID: PMC10230488 DOI: 10.1186/s12931-023-02459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been studied for their potential benefits in treating acute respiratory distress syndrome (ARDS) and have reported mild effects when trialed within human clinical trials. MSCs have been investigated in preclinical models with efficacy when administered at the time of lung injury. Human integrin α10β1-selected adipose tissue-derived MSCs (integrin α10β1-MSCs) have shown immunomodulatory and regenerative effects in various disease models. We hypothesized that integrin α10β1 selected-MSCs can be used to treat a sepsis-induced ARDS in a porcine model when administering cells after established injury rather than simultaneously. This was hypothesized to reflect a clinical picture of treatment with MSCs in human ARDS. 12 pigs were randomized to the treated or placebo-controlled group prior to the induction of mild to moderate ARDS via lipopolysaccharide administration. The treated group received 5 × 106 cells/kg integrin α10β1-selected MSCs and both groups were followed for 12 h. ARDS was confirmed with blood gases and retrospectively with histological changes. After intervention, the treated group showed decreased need for inotropic support, fewer signs of histopathological lung injury including less alveolar wall thickening and reduction of the hypercoagulative disease state. The MSC treatment was not associated with adverse events over the monitoring period. This provides new opportunities to investigate integrin α10β1-selected MSCs as a treatment for a disease which does not yet have any definitive therapeutic options.
Collapse
Affiliation(s)
- Dag Edström
- Department of Cardiothoracic Anaesthesia and Intensive Care, Lund University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anna Niroomand
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Rutgers Robert University, New Brunswick, NJ USA
| | - Martin Stenlo
- Department of Cardiothoracic Anaesthesia and Intensive Care, Lund University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Deniz A. Bölükbas
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Experimental Medical Sciences, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
| | - Gabriel Hirdman
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ellen Broberg
- Department of Cardiothoracic Anaesthesia and Intensive Care, Lund University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Snejana Hyllén
- Department of Cardiothoracic Anaesthesia and Intensive Care, Lund University Hospital, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Leif Pierre
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Lund University Hospital, 22242 Lund, Sweden
| | - Franziska Olm
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Lund University Hospital, 22242 Lund, Sweden
| | - Sandra Lindstedt
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Lund University Hospital, 22242 Lund, Sweden
| |
Collapse
|
8
|
Linnemann C, Nussler AK, Histing T, Ehnert S. Febrile-Range Hyperthermia Can Prevent Toxic Effects of Neutrophil Extracellular Traps on Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:16208. [PMID: 36555846 PMCID: PMC9786713 DOI: 10.3390/ijms232416208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Fracture healing is characterized by an inflammatory phase directly after fracture which has a strong impact on the healing outcome. Neutrophils are strong contributors here and can release neutrophil extracellular traps (NETs). NETs are found after trauma, originally thought to capture pathogens. However, they can lead to tissue damage and impede wound healing processes. Their role in fracture healing remains unclear. In this study, the effect of isolated NETs on the function of bone-forming mesenchymal stem cells (SCP-1 cells) was examined. NETs were isolated from stimulated healthy neutrophils and viability, migration, and differentiation of SCP-1 cells were analyzed after the addition of NETs. NETs severely impaired the viability of SCP-1 cells, induced necrosis and already nontoxic concentrations reduced migration significantly. Short-term incubation with NETs had a persistent negative effect on osteogenic differentiation, as measured by AP activity and matrix formation. The addition of DNase or protease inhibitors failed to reverse the negative effect of NETs, whereas a short febrile-range temperature treatment successfully reduced the toxicity and membrane destruction. Thus, the possible modification of the negative effects of NETs in fracture hematomas could be an interesting new target to improve bone healing, particularly in patients with chronic diseases such as diabetes.
Collapse
Affiliation(s)
| | | | | | - Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
9
|
Ferroptotic MSCs protect mice against sepsis via promoting macrophage efferocytosis. Cell Death Dis 2022; 13:825. [PMID: 36163182 PMCID: PMC9512818 DOI: 10.1038/s41419-022-05264-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 01/23/2023]
Abstract
The therapeutic effect of mesenchymal stem cells (MSCs) on sepsis has been well-known. However, a comprehensive understanding of the relationship between MSCs and macrophages remains elusive. Superparamagnetic iron oxide (SPIO) is one of the most commonly used tracers for MSCs. Our previous study has shown that SPIO enhanced the therapeutic effect of MSCs in a macrophage-dependent manner. However, the fate of SPIO-labeled MSCs (MSCSPIO) after infusion remains unknown and the direct interaction between MSCSPIO and macrophages remains unclear. Mice were injected intravenously with MSCSPIO at 2 h after Escherichia coli infection and sacrificed at different times to investigate their distribution and therapeutic effect. We found that MSCSPIO homed to lungs rapidly after infusion and then trapped in livers for more than 10 days. Only a few MSCSPIO homed to the spleen and there was no MSCSPIO detectable in the brain, heart, kidney, colon, and uterus. MSCSPIO tended to stay longer in injured organs compared with healthy organs and played a long-term protective role in sepsis. The mRNA expression profiles between MSCs and MSCSPIO were rather different, genes related to lipid metabolism, inflammation, and oxidative stress were changed. The levels of ROS and lipid peroxide were elevated in MSCSPIO, which confirmed that SPIO-induced ferroptosis in MSCSPIO. Ferroptosis of MSCSPIO induced by SPIO enhanced the efferocytosis of macrophages and thus enhanced the protective effect on septic mice, while the benefits were impaired after MSCSPIO were treated with Ferrostatin-1 (Fer-1) or Liproxtatin-1 (Lip-1), the inhibitors of ferroptosis. SPIO-induced ferroptosis in MSCs contributes to better therapeutic effects in sepsis by enhancing the efferocytosis of macrophages. Our data showed the efficacy and advantage of MSCSPIO as a therapeutic tool and the cell states exert different curative effects on sepsis.
Collapse
|
10
|
Liu J, Gao J, Liang Z, Gao C, Niu Q, Wu F, Zhang L. Mesenchymal stem cells and their microenvironment. STEM CELL RESEARCH & THERAPY 2022; 13:429. [PMID: 35987711 PMCID: PMC9391632 DOI: 10.1186/s13287-022-02985-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022]
Abstract
Mesenchymal stem cells (MSCs), coming from a wide range of sources, have multi-directional differentiation ability. MSCs play vital roles in immunomodulation, hematopoiesis and tissue repair. The microenvironment of cells often refers to the intercellular matrix, other cells, cytokines and humoral components. It is also the place for cells’ interaction. The stability of the microenvironment is pivotal for maintaining cell proliferation, differentiation, metabolism and functional activities. Abnormal changes in microenvironment components can interfere cell functions. In some diseases, MSCs can interact with the microenvironment and accelerate disease progression. This review will discuss the characteristics of MSCs and their microenvironment, as well as the interaction between MSCs and microenvironment in disease.
Collapse
|
11
|
Aru B, Gürel G, Yanikkaya Demirel G. Mesenchymal Stem Cells: History, Characteristics and an Overview of Their Therapeutic Administration. TURKISH JOURNAL OF IMMUNOLOGY 2022. [DOI: 10.4274/tji.galenos.2022.18209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Krasilnikova OA, Baranovskii DS, Lyundup AV, Shegay PV, Kaprin AD, Klabukov ID. Stem and Somatic Cell Monotherapy for the Treatment of Diabetic Foot Ulcers: Review of Clinical Studies and Mechanisms of Action. Stem Cell Rev Rep 2022; 18:1974-1985. [PMID: 35476187 DOI: 10.1007/s12015-022-10379-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
Diabetic foot ulcer (DFU) is one of the most severe complications of diabetes mellitus, often resulting in a limb amputation. A cell-based therapy is a highly promising approach for an effective DFU treatment. However, there is no consensus regarding the most effective cell type for DFU treatment. Various cell types contribute to chronic wound healing via different mechanisms. For example, application of keratinocytes can stimulate migration of native keratinocytes from the wound edge, while mesenchymal stem cells can correct limb ischemia. To assess the effectiveness of a certain cell type, it should be administered as a monotherapy without other substances and procedures that have additional therapeutic effects. In the present review, we described therapeutic effects of various cells and provided an overview of clinical studies in which stem and somatic cell-based therapy was administered as a monotherapy. Topical application of somatic cells contributes to DFU healing only, while injection of mesenchymal stem cells and mononuclear cells can break a pathophysiological chain leading from insufficient blood supply to DFU development. At the same time, the systemic use of mesenchymal stem cells carries greater risks. Undoubtedly, cell therapy is a potent tool for the treatment of DFU. However, it is vital to conduct further high-quality clinical research to determine the most effective cell type, dosage and way of administration for DFU treatment. Ischemia, neuropathy and neuro-ischemia are underlying factors of diabetic foot ulcer. Stem and somatic cells monotherapy can improve chronic wound healing via different mechanisms.
Collapse
Affiliation(s)
- O A Krasilnikova
- A. Tsyb Medical Radiological Research Center - branch of the National Medical Research Radiological Center, Obninsk, Russia
| | - D S Baranovskii
- A. Tsyb Medical Radiological Research Center - branch of the National Medical Research Radiological Center, Obninsk, Russia
- Research and Educational Resource Center for Cellular Technologies, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - A V Lyundup
- Research and Educational Resource Center for Cellular Technologies, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - P V Shegay
- Department of Regenerative Medicine, National Medical Research Radiological Center, Obninsk, Russia
| | - A D Kaprin
- Research and Educational Resource Center for Cellular Technologies, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Regenerative Medicine, National Medical Research Radiological Center, Obninsk, Russia
| | - I D Klabukov
- Research and Educational Resource Center for Cellular Technologies, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
- Department of Regenerative Medicine, National Medical Research Radiological Center, Obninsk, Russia.
- Obninsk Institute for Nuclear Power Engineering of the National Research Nuclear University MEPhI, Obninsk, Russia.
| |
Collapse
|
13
|
Jeong S, Kim B, Byun DJ, Jin S, Seo BS, Shin MH, Leem AY, Choung JJ, Park MS, Hyun YM. Lysophosphatidylcholine Alleviates Acute Lung Injury by Regulating Neutrophil Motility and Neutrophil Extracellular Trap Formation. Front Cell Dev Biol 2022; 10:941914. [PMID: 35859904 PMCID: PMC9289271 DOI: 10.3389/fcell.2022.941914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022] Open
Abstract
Sepsis is predominantly initiated by bacterial infection and can cause systemic inflammation, which frequently leads to rapid death of the patient. However, this acute systemic inflammatory response requires further investigation from the perspectives of clinical judgment criteria and early treatment strategies for the relief of symptoms. Lysophosphatidylcholine (LPC) 18:0 may relieve septic symptoms, but the relevant mechanism is not clearly understood. Therefore, we aimed to assess the effectiveness of LPC as a therapeutic treatment for acute inflammation in the lung induced by lipopolysaccharide in mice. Systemic inflammation of mice was induced by lipopolysaccharide (LPS) inoculation to investigate the role of LPC in the migration and the immune response of neutrophils during acute lung injury. By employing two-photon intravital imaging of the LPS-stimulated LysM-GFP mice and other in vitro and in vivo assays, we examined whether LPC alleviates the inflammatory effect of sepsis. We also tested the effect of LPC to human neutrophils from healthy control and sepsis patients. Our data showed that LPC treatment reduced the infiltration of innate immune cells into the lung. Specifically, LPC altered neutrophil migratory patterns and enhanced phagocytic efficacy in the damaged lung. Moreover, LPC treatment reduced the release of neutrophil extracellular trap (NET), which can damage tissue in the inflamed organ and exacerbate disease. It also reduced human neutrophil migration under inflammatory environment. Our results suggest that LPC can alleviate sepsis-induced lung inflammation by regulating the function of neutrophils. These findings provide evidence for the beneficial application of LPC treatment as a potential therapeutic strategy for sepsis.
Collapse
Affiliation(s)
- Soi Jeong
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Bora Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Da Jeong Byun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sunmin Jin
- R&D Center, AriBio Co., Ltd., Sengnam, South Korea
| | - Bo Seung Seo
- R&D Center, AriBio Co., Ltd., Sengnam, South Korea
| | - Mi Hwa Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Ah Young Leem
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Moo Suk Park, ; Young-Min Hyun,
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Moo Suk Park, ; Young-Min Hyun,
| |
Collapse
|
14
|
Liu Z, Yang J, Chen Y, Chen C, Wang J, Lee YM, Zheng W, Shang R, Tang Y, Zhang X, Hu X, Huang Y, Peng S, Liou YC, He W, Luo G. P311 Facilitates the Angiogenesis and Wound Healing Function of MSCs by Increasing VEGF Production. Front Immunol 2022; 13:821932. [PMID: 35154140 PMCID: PMC8831272 DOI: 10.3389/fimmu.2022.821932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 12/02/2022] Open
Abstract
As a potential clinical therapeutic cell for injured tissue repair, mesenchymal stem cells (MSCs) have attracted increasing attention. Enhancing the pro-healing function of MSCs has gradually become an essential topic in improving the clinical efficacy of MSCs. Recently, studies have shown that neuronal protein 3.1 (P311) plays a crucial role in promoting skin wound healing, suggesting P311 gene modification may improve the pro-healing function of MSCs. In this study, we demonstrated that increasing the in vivo expression of P311 could significantly enhance the ability of MSCs to lessen the number of inflammatory cells, increase the expression of IL10, reduce the levels of TNF-α and IFN-γ, increase collagen deposition, promote angiogenesis, and ultimately accelerate skin wound closure and improve the quality of wound healing. Importantly, we uncovered that P311 enhanced the pro-angiogenesis function of MSCs by increasing the production of vascular endothelial growth factor (VEGF) in vitro and in vivo. Mechanistically, we revealed that the mTOR signalling pathway was closely related to the regulation of P311 on VEGF production in MSCs. Together, our data displayed that P311 gene modification in MSCs augments their capabilities to promote skin wound closure, which might bring the dawn for its clinical application in the future.
Collapse
Affiliation(s)
- Zhihui Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yunxia Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Cheng Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Jue Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yew Mun Lee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.,National University of Singapore (NUS) Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Wenxia Zheng
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Ruoyu Shang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yuanyang Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Academy of Biological Engineering, Chongqing University, Chongqing, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yong Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Shiya Peng
- Department of Dermatology, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.,National University of Singapore (NUS) Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Disease Proteomics, Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| |
Collapse
|
15
|
Role of the Microenvironment in Mesenchymal Stem Cell-Based Strategies for Treating Human Liver Diseases. Stem Cells Int 2021; 2021:5513309. [PMID: 34824587 PMCID: PMC8610645 DOI: 10.1155/2021/5513309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
Liver disease is a severe health problem that endangers human health worldwide. Mesenchymal stem cell (MSC) therapy is a novel treatment for patients with different liver diseases due to its vast expansion potential and distinctive immunomodulatory properties. Despite several preclinical trials having confirmed the considerable efficacy of MSC therapy in liver diseases, the questionable safety and efficacy still limit its application. As a precursor cell, MSCs can adjust their characteristics in response to the surrounding microenvironment. The microenvironment provides physical and chemical factors essential for stem cell survival, proliferation, and differentiation. However, the mechanisms are still not completely understood. We, therefore, summarized the mechanisms underlying the MSC immune response, especially the interaction between MSCs and the liver microenvironment, discussing how to achieve better therapeutic effects.
Collapse
|
16
|
Ehnert S, Relja B, Schmidt-Bleek K, Fischer V, Ignatius A, Linnemann C, Rinderknecht H, Huber-Lang M, Kalbitz M, Histing T, Nussler AK. Effects of immune cells on mesenchymal stem cells during fracture healing. World J Stem Cells 2021; 13:1667-1695. [PMID: 34909117 PMCID: PMC8641016 DOI: 10.4252/wjsc.v13.i11.1667] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
In vertebrates, bone is considered an osteoimmune system which encompasses functions of a locomotive organ, a mineral reservoir, a hormonal organ, a stem cell pool and a cradle for immune cells. This osteoimmune system is based on cooperatively acting bone and immune cells, cohabitating within the bone marrow. They are highly interdependent, a fact that is confounded by shared progenitors, mediators, and signaling pathways. Successful fracture healing requires the participation of all the precursors, immune and bone cells found in the osteoimmune system. Recent evidence demonstrated that changes of the immune cell composition and function may negatively influence bone healing. In this review, first the interplay between different immune cell types and osteoprogenitor cells will be elaborated more closely. The separate paragraphs focus on the specific cell types, starting with the cells of the innate immune response followed by cells of the adaptive immune response, and the complement system as mediator between them. Finally, a brief overview on the challenges of preclinical testing of immune-based therapeutic strategies to support fracture healing will be given.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Berlin Institute of Health Center of Regenerative Therapies, Charité - University Medicine Berlin, Berlin 13353, Germany
| | - Verena Fischer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm 89091, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm 89091, Germany
| | - Caren Linnemann
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Helen Rinderknecht
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology (ITI), University Hospital Ulm, Ulm 89091, Germany
| | - Miriam Kalbitz
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Tina Histing
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Andreas K Nussler
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
17
|
Wang X, Song H, Zhao S, Guan W, Gao Y. Gingival-Derived Mesenchymal Stem Cells Protect Against Sepsis and Its Complications. Infect Drug Resist 2021; 14:3341-3355. [PMID: 34456576 PMCID: PMC8390887 DOI: 10.2147/idr.s318304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Objective In the present study, we separated and characterized mouse gingival-derived mesenchymal stem cells (GMSCs) and investigated whether GMSCs can improve lipopolysaccharide (LPS)-induced sepsis and its complications. Methods Ninety-six ICR mice were randomly divided into the following groups: the control (Sham), LPS, and LPS + MSC groups. Mice received 5 mg/kg LPS intraperitoneally to induce sepsis. Histopathological micrographs illustrated organ injury. We detected systemic inflammation, blood glucose levels, and serum levels of high-mobility group box 1 (HMGB1) and lactate. In addition, pulmonary inflammation, lung permeability, and oxidative stress-related indicators in lung tissue were measured. Results We successfully separated a novel population of MSCs from mouse gingiva. These cells had MSC-associated properties, such as a typical fibroblast-like morphology, multiple differentiation potential, and certain phenotypes. Cell-based therapy using GMSCs significantly improved the survival rate, systemic inflammation, hypoglycemia, multiple organ dysfunction syndrome (MODS), and aortic injury during sepsis. GMSCs administration reduced pulmonary inflammation, lung permeability, and oxidative stress injury. GMSCs administration reduced neutrophil infiltration partly because GMSCs inhibited neutrophil chemoattractants tumor necrosis factor (TNF-α), C-X-C motif chemokine ligand (CXCL-1), and Interleukin (IL-8). GMSCs impaired LPS-induced HMGB1 and lactate release during sepsis. Conclusion GMSCs administration is a novel therapeutic strategy targeting aerobic glycolysis for the treatment of sepsis because GMSCs impair LPS-induced HMGB1 and lactate release. GMSCs alleviate lung injury partly because GMSCs exert immune effects, inhibit neutrophilic inflammation, and reduce oxidative stress injury.
Collapse
Affiliation(s)
- Xishuai Wang
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.,College of P.E and Sport, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Hanan Song
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Shiyu Zhao
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Weijun Guan
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yang Gao
- Institute of Physical Educational and Training, Capital University of Physical Education and Sport, Beijing, 100191, People's Republic of China
| |
Collapse
|
18
|
Mashayekhi K, Sankian M, Haftcheshmeh SM, Taheri RA, Hassanpour K, Farnoosh G. A cross-linked anti-TNF-α aptamer for neutralization of TNF-α-induced cutaneous Shwartzman phenomenon: A simple and novel approach for improving aptamers' affinity and efficiency. Biotechnol Prog 2021; 37:e3191. [PMID: 34218531 DOI: 10.1002/btpr.3191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/26/2021] [Accepted: 07/01/2021] [Indexed: 11/08/2022]
Abstract
To increase the efficiency of aptamers to their targets, a simple and novel method has been developed based on aptamer oligomerization. To this purpose, previously anti-human TNF-α aptamer named T1-T4 was trimerized through a trimethyl aconitate core for neutralization of in vitro and in vivo of TNF-α. At first, 54 mer T1-T4 aptamers with 5'-NH2 groups were covalently coupled to three ester residues in the trimethyl aconitate. In vitro activity of novel anti-TNF-α aptamer and its dissociation constant (Kd ) was done using the L929 cell cytotoxicity assay. In vivo anti-TNF-α activity of new oligomerized aptamer was assessed in a mouse model of cutaneous Shwartzman. Anchoring of three T1-T4 aptamers to trimethyl aconitate substituent results in formation of the 162 mer fragment, which was well revealed by gel electrophoresis. In vitro study indicated that the trimerization of T1-T4 aptamer significantly improved its anti-TNF-α activity compared to non-modified aptamers (P < 0.0001) from 40% to 60%. The determination of Kd showed that trimerization could effectively enhance Kd of aptamer from 67 nM to 36 nM. In vivo study showed that trimer aptamer markedly reduced mean scar size from 15.2 ± 1.2 mm to 1.6 ± 0.1 mm (P < 0.0001), which prevent the formation of skin lesions. In vitro and in vivo studies indicate that trimerization of anti-TNF-α aptamer with a novel approach could improve the anti-TNF-α activity and therapeutic efficacy. According to our findings, a new anti-TNF-α aptamer described here could be considered an appropriate therapeutic agent in treating several inflammatory diseases.
Collapse
Affiliation(s)
- Kazem Mashayekhi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mojtaba Sankian
- Immuno-Biochemistry lab, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kazem Hassanpour
- Medical School, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Gholamreza Farnoosh
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Kronstadt SM, Pottash AE, Levy D, Wang S, Chao W, Jay SM. Therapeutic Potential of Extracellular Vesicles for Sepsis Treatment. ADVANCED THERAPEUTICS 2021; 4:2000259. [PMID: 34423113 PMCID: PMC8378673 DOI: 10.1002/adtp.202000259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Sepsis is a deadly condition lacking a specific treatment despite decades of research. This has prompted the exploration of new approaches, with extracellular vesicles (EVs) emerging as a focal area. EVs are nanosized, cell-derived particles that transport bioactive components (i.e., proteins, DNA, and RNA) between cells, enabling both normal physiological functions and disease progression depending on context. In particular, EVs have been identified as critical mediators of sepsis pathophysiology. However, EVs are also thought to constitute the biologically active component of cell-based therapies and have demonstrated anti-inflammatory, anti-apoptotic, and immunomodulatory effects in sepsis models. The dual nature of EVs in sepsis is explored here, discussing their endogenous roles and highlighting their therapeutic properties and potential. Related to the latter component, prior studies involving EVs from mesenchymal stem/stromal cells (MSCs) and other sources are discussed and emerging producer cells that could play important roles in future EV-based sepsis therapies are identified. Further, how methodologies could impact therapeutic development toward sepsis treatment to enhance and control EV potency is described.
Collapse
Affiliation(s)
- Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Alex E Pottash
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Sheng Wang
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Steven M Jay
- Fischell Department of Bioengineering and Program in Molecular and, Cell Biology, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
20
|
Nesaragi N, Patidar S, Thangaraj V. A correlation matrix-based tensor decomposition method for early prediction of sepsis from clinical data. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Kim YR, Kim YM, Lee J, Park J, Lee JE, Hyun YM. Neutrophils Return to Bloodstream Through the Brain Blood Vessel After Crosstalk With Microglia During LPS-Induced Neuroinflammation. Front Cell Dev Biol 2020; 8:613733. [PMID: 33364241 PMCID: PMC7753044 DOI: 10.3389/fcell.2020.613733] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
The circulatory neutrophil and brain tissue-resident microglia are two important immune cells involved in neuroinflammation. Since neutrophils that infiltrate through the brain vascular vessel may affect the immune function of microglia in the brain, close investigation of the interaction between these cells is important in understanding neuroinflammatory phenomena and immunological aftermaths that follow. This study aimed to observe how morphology and function of both neutrophils and microglia are converted in the inflamed brain. To directly investigate cellular responses of neutrophils and microglia, LysMGFP/+ and CX3CR1GFP/+ mice were used for the observation of neutrophils and microglia, respectively. In addition, low-dose lipopolysaccharide (LPS) was utilized to induce acute inflammation in the central nervous system (CNS) of mice. Real-time observation on mice brain undergoing neuroinflammation via two-photon intravital microscopy revealed various changes in neutrophils and microglia; namely, neutrophil infiltration and movement within the brain tissue increased, while microglia displayed morphological changes suggesting an activated state. Furthermore, neutrophils seemed to not only actively interact with microglial processes but also exhibit reverse transendothelial migration (rTEM) back to the bloodstream. Thus, it may be postulated that, through crosstalk with neutrophils, macrophages are primed to initiate a neuroinflammatory immune response; also, during pathogenic events in the brain, neutrophils that engage in rTEM may deliver proinflammatory signals to peripheral organs outside the brain. Taken together, these results both show that neuroinflammation results in significant alterations in neutrophils and microglia and lay the pavement for further studies on the molecular mechanisms behind such changes.
Collapse
Affiliation(s)
- Yu Rim Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Min Kim
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jaeho Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Joohyun Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
22
|
Sukhanov YV, Vorotelyak EA, Lyadova IV, Vasiliev AV. Mesenchymal Stem Cell Therapy-Is the Vessel Half Full or Half Empty? Russ J Dev Biol 2020; 51:267-270. [PMID: 32904919 PMCID: PMC7462437 DOI: 10.1134/s1062360420040104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 11/23/2022]
Abstract
The urgency of the search and introduction into medical practice of the method for the therapy of severe forms of pneumonia COVID-19 is due to the lack of effective treatment methods that can destroy the pathogen. Expectations of a good clinical effect from the application of mesenchymal stem cells (MSCs) are not groundless: there is a scientific justification in using MSCs for the treatment of inflammatory diseases and of the proven mechanisms of their action. Along with this, there are very little reliable data about the mechanism of MSCs' action when they are systemically administrated to a human or on the distribution of cells in the body and the long-term consequences of such administration. Data from model experiments are contradictory both concerning the specific action of MSCs and their safety. If clinical studies show an acceptable risk/benefit ratio for the application of MSCs, countries in which such studies have been conducted can expect their introduction into medical practice. In Russia, it is necessary to initiate experimental verification of the specific action of MSCs and the risks of their use in COVID-19 conditions in a sufficient quantity, and, in parallel, to create a mechanism for accelerated but justified admission of biomedical cell products into practice.
Collapse
Affiliation(s)
- Yu V Sukhanov
- Koltzov Institute of Development Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - E A Vorotelyak
- Koltzov Institute of Development Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - I V Lyadova
- Koltzov Institute of Development Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - A V Vasiliev
- Koltzov Institute of Development Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|