1
|
Zhu B, Cai B, Xue K, Zhou S, Yin G, Fang J. FKBP5 Induces Senescence in BMSCs and Inhibits Osteogenic Differentiation Through the Canonical WNT/β-Catenin Signalling Pathway in Senile Osteoporosis. J Cell Mol Med 2025; 29:e70552. [PMID: 40254776 PMCID: PMC12009754 DOI: 10.1111/jcmm.70552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/22/2025] Open
Abstract
Senile osteoporosis and its associated fractures significantly contribute to increased morbidity, mortality, and healthcare costs among older adults. Further research is needed to elucidate the molecular mechanisms underlying senile osteoporosis. This study found that FKBP5 expression in bone marrow mesenchymal stem cells (BMSCs) increases with age and is inversely correlated with patients' bone mineral density and CT values. Functional analyses revealed that FKBP5 plays a crucial regulatory role in BMSC osteogenic differentiation, acting through the canonical WNT/β-catenin signalling pathway. FKBP5 binds to β-catenin, promoting its ubiquitination and degradation. Importantly, administration of SAFit2, a selective FKBP5 inhibitor, enhanced bone mineral density in an animal model of senile osteoporosis. These findings suggest that FKBP5 may represent a novel therapeutic target and provide new insights into the treatment of senile osteoporosis.
Collapse
Affiliation(s)
- Bin Zhu
- Department of OrthopedicsThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsuChina
| | - Bowen Cai
- Department of OrthopedicsThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsuChina
| | - Kaixiao Xue
- Department of OrthopedicsThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsuChina
| | - Shumin Zhou
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Guoyong Yin
- Department of OrthopedicsThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsuChina
| | - Jiahu Fang
- Department of OrthopedicsThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
2
|
Shi K, Wei J, Chen J. MiR-223-3p Promotes Osteoporosis Progression by Repressing Osteogenic Differentiation via Targeting FHL1/Wnt/β-catenin Signaling. Cell Biochem Biophys 2024:10.1007/s12013-024-01579-0. [PMID: 39613991 DOI: 10.1007/s12013-024-01579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 12/01/2024]
Abstract
The aim of this research was to unveil the potential along with potential mechanism of miR-223-3p in osteoporosis. RT-qPCR together with western blot was implemented to examine miR-223-3p, FHL1, along with osteogenic markers levels during bone marrow mesenchymal stem cells (BMSCs) differentiation. The ALP activity staining along with alizarin red staining (ARS) were implemented to assess ALP activity as well as the mineralization ability of BMSCs. Binding sequences for miR-223-3p and FHL1 from starBase website were validated through dual-luciferase reporter gene assay. MiR-223-3p was down-regulated in BMSCs during osteoblasts differentiation, and miR-223-3p elevation hindered BMSCs' osteogenic differentiation. FHL1 belonged to the target mRNA of miR-223-3p. FHL1 presented up-regulation in BMSCs during osteoblasts differentiation. More importantly, FHL1 expression was negative modulated by miR-223-3p in BMSCs during osteoblasts differentiation, and FHL1 elevation could inverse the inhibited BMSCs' osteogenic differentiation modulated by miR-223-3p elevation. Furthermore, miR-223-3p elevation repressed the Wnt/β-catenin pathway activity in lithium chloride-treated BMSCs, and FHL1 overexpression counteracted the inhibitory effect of the Wnt/β-catenin pathway caused by miR-223-3p up-regulation. Collectively, miR-223-3p accelerates osteoporosis progression by repressing osteogenic differentiation through targeting FHL1/Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Kairi Shi
- Department of Orthopedic Surgery, Ningbo No.6 Hospital, Ningbo, Zhejiang, 315040, China
| | - Junyu Wei
- Department of Orthopedic Surgery, Ningbo No.6 Hospital, Ningbo, Zhejiang, 315040, China
| | - Jianming Chen
- Department of Orthopedic Surgery, Ningbo No.6 Hospital, Ningbo, Zhejiang, 315040, China.
| |
Collapse
|
3
|
Du J, Wang Y, Wu C, Zhang X, Zhang X, Xu X. Targeting bone homeostasis regulation: potential of traditional Chinese medicine flavonoids in the treatment of osteoporosis. Front Pharmacol 2024; 15:1361864. [PMID: 38628649 PMCID: PMC11018902 DOI: 10.3389/fphar.2024.1361864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Osteoporosis is a systemic metabolic disease characterized by disrupted bone formation/resorption and homeostasis. Flavonoids extracted from traditional Chinese medicinal plants regulate bone homeostasis by intervening in differentiating bone marrow mesenchymal stem cells, balancing the bone immune system, inhibiting oxidative stress response, and reversing iron overload. The target molecules and signaling pathways, such as Wnt/β-catenin and OPG/RANKL/RANK, directly affect osteoblast/osteoclast activity, exhibiting significant potential in the treatment of OP. Therefore, this study presents a systematic review of the recent literature to provide comprehensive information on the traditional Chinese medicine flavonoids involved in the regulation of bone homeostasis. Also, the molecular mechanisms and pharmacological uses of these metabolites are summarized, and their clinical translation and development potential are discussed.
Collapse
Affiliation(s)
- Jiazhe Du
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yincang Wang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Chengliang Wu
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyu Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiaofeng Zhang
- Teaching and Research Section of Orthopedics and Traumatology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xilin Xu
- Department of Orthopedics, The Third Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Jin C, Zheng J, Yang Q, Jia Y, Li H, Liu X, Xu Y, Chen Z, He L. Morusin Inhibits RANKL-induced Osteoclastogenesis and Ovariectomized Osteoporosis. Comb Chem High Throughput Screen 2024; 27:1358-1370. [PMID: 37807416 DOI: 10.2174/0113862073252310230925062415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a classic type of osteoporosis that has gradually become a significant health problem worldwide. There is an urgent need for a safe alternative therapeutic agent considering the poor therapeutic strategies currently available for this disease. The roots and bark of the Morus australis tree (Moraceae) are used to make a traditional Chinese medicine known as "Morusin", and accumulating evidence has demonstrated its multiple activities, such as anti-inflammatory and anti-tumor effects. OBJECTIVE In this study, we aim to explore the effect of Morusin on mouse osteoclasts and its mechanism. METHODS In this study, we explored the inhibitory effects of Morusin on murine osteoclasts in vitro and its mechanism, and the protective effect of Morusin on an ovariectomy (OVX)-induced osteoporosis model in vivo. RESULTS The results showed that Morusin prevented OVX-induced bone loss and dramatically decreased RANKL-induced osteoclastogenesis. Morusin interfered with RANKL-activated NF- κB, MAPK, and PI3K/AKT signaling pathways. The expression of three master factors that control osteoclast differentiation, c-Fos, NFATc1, and c-Jun, was reduced by Morusin treatment. Collectively, in vitro results indicated that Morusin has a protective effect on OVX-induced bone loss in a mouse model. CONCLUSION Our data provide encouraging evidence that Morusin may be an effective treatment for PMOP.
Collapse
Affiliation(s)
- Cong Jin
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Jiewen Zheng
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
- Shaoxing University School of Medicine, Shaoxing, Zhejiang, 312000, China
| | - Qichang Yang
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yewei Jia
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Haibo Li
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Xuewen Liu
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China China
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yangjun Xu
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
- Shaoxing University School of Medicine, Shaoxing, Zhejiang, 312000, China
| | - Zhuolin Chen
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310000, China
| | - Lei He
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| |
Collapse
|
5
|
Ruan H, Zhang H, Feng J, Luo H, Fu F, Yao S, Zhou C, Zhang Z, Bian Y, Jin H, Zhang Y, Wu C, Tong P. Inhibition of Caspase-1-mediated pyroptosis promotes osteogenic differentiation, offering a therapeutic target for osteoporosis. Int Immunopharmacol 2023; 124:110901. [PMID: 37839278 DOI: 10.1016/j.intimp.2023.110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/20/2023] [Accepted: 09/03/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Pyroptosis, an emerging inflammatory form of cell death, has been previously demonstrated to stimulate a massive inflammatory response, thus hindering the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Nevertheless, the impact of pyroptosis in thwarting osteogenic differentiation and exacerbating the advancement of osteoporosis (OP) remains enigmatic. METHODS We evaluated the expression levels of pyroptosis-associated indicators, including NOD-like receptor family pyrin domain-containing protein 3 (NLRP3), CASPASE-1, IL-1β, and IL-18, in specimens obtained from femoral heads of OP patients, as well as in an ovariectomy-induced mouse model of OP. Subsequently, the precise roles of pyroptosis in osteogenic differentiation were investigated using bioinformatics analysis, alongside morphological and biochemical assessments. RESULTS The pivotal pyroptotic proteins, including NLRP3, Caspase-1, IL-1β, and IL-18, exhibited significant upregulation within the bone tissue samples of clinical OP cases, as well as in the femoral tissues of ovariectomy (OVX)-induced mouse OP model, displaying a negatively associated with compromised osteogenic capacity, as represented by lessened bone mass, suppressed expression of osteogenic proteins such as Runt-related transcription factor 2 (RUNX2), Alkaline phosphatase (ALP), Osterix (OSX), and Osteopontin (OPN), and increased lipid droplets. Moreover, bioinformatics analysis substantiated shared gene expression patterns between pyroptosis and OP pathology, encompassing NLRP3, Caspase-1, IL-1β, IL-18, etc. Furthermore, our in vitro investigation using ST2 cells revealed that dexamethasone treatment prominently induced pyroptosis while impeding osteogenic differentiation. Notably, gene silencing of Caspase-1 effectively counteracted the inhibitory effects of dexamethasone on osteogenic differentiation, as manifested by increased ALP activity and enhanced expression of RUNX2, ALP, OSX, and OPN. CONCLUSION Our findings unequivocally underscore that inhibition of Caspase-1-mediated pyroptosis promotes osteogenic differentiation, providing a promising therapeutic target for managing OP.
Collapse
Affiliation(s)
- Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huihao Zhang
- Department of Orthopaedics, First Hospital of Wuhan, Wuhan, Hubei, China; Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Jing Feng
- Department of Orthopaedics, First Hospital of Wuhan, Wuhan, Hubei, China
| | - Huan Luo
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Sai Yao
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chengcong Zhou
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhiguo Zhang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yishan Bian
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuliang Zhang
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China.
| | - Chengliang Wu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Hafeez A, Khan Z, Armaghan M, Khan K, Sönmez Gürer E, Abdull Razis AF, Modu B, Almarhoon ZM, Setzer WN, Sharifi-Rad J. Exploring the therapeutic and anti-tumor properties of morusin: a review of recent advances. Front Mol Biosci 2023; 10:1168298. [PMID: 37228582 PMCID: PMC10203489 DOI: 10.3389/fmolb.2023.1168298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Morusin is a natural product that has been isolated from the bark of Morus alba, a species of mulberry tree. It belongs to the flavonoid family of chemicals, which is abundantly present in the plant world and is recognized for its wide range of biological activities. Morusin has a number of biological characteristics, including anti-inflammatory, anti-microbial, neuro-protective, and antioxidant capabilities. Morusin has exhibited anti-tumor properties in many different forms of cancer, including breast, prostate, gastric, hepatocarcinoma, glioblastoma, and pancreatic cancer. Potential of morusin as an alternative treatment method for resistant malignancies needs to be explored in animal models in order to move toward clinical trials. In the recent years several novel findings regarding the therapeutic potential of morusin have been made. This aim of this review is to provide an overview of the present understanding of morusin's beneficial effects on human health as well as provide a comprehensive and up-to-date discussion of morusin's anti-cancer properties with a special focus on in vitro and in vivo studies. This review will aid future research on the creation of polyphenolic medicines in the prenylflavone family, for the management and treatment of cancers.
Collapse
Affiliation(s)
- Amna Hafeez
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zeeshan Khan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Armaghan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Zainab M. Almarhoon
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT, United States
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, United States
| | | |
Collapse
|
7
|
Zhang Q, Hu S, Wu J, Sun P, Zhang Q, Wang Y, Zhao Q, Han T, Qin L, Zhang Q. Nystose attenuates bone loss and promotes BMSCs differentiation to osteoblasts through BMP and Wnt/β-catenin pathway in ovariectomized mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Gu H, Wei J. Peiminine regulates bone-fat balance by canonical Wnt/β-catenin pathway in an ovariectomized rat model. Phytother Res 2023. [PMID: 36799485 DOI: 10.1002/ptr.7780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/19/2022] [Accepted: 01/29/2023] [Indexed: 02/18/2023]
Abstract
Peiminine is a major biologically active component of Fritillaria thunbergii Miq that exhibits good anticancer, antiinflammatory, and anti-osteoclast effects. However, its effects on osteoporosis (OP) remain unknown. This study aimed to explore whether Peiminine was able to regulate osteogenesis and adipogenesis in ovariectomized (OVX) rat. The effects on the differentiation of bone marrow stem cells (BMSCs), function of Wnt/β-catenin pathway, ALP activity, calcium nodule deposition, as well as adipocyte formation in vitro by Peiminine at different concentrations, were detected. The curative effects of Peiminine on the ovariectomy-induced osteoporosis model by micro-CT and bone histomorphology assays were analyzed. The promotion of osteogenic differentiation and inhibition of adipogenic differentiation by Peiminine (5-40 μg/mL) was detected and the optimum concentration was 20 μg/mL. Mechanistically, Peiminine regulated the fate of BMSCs in vitro, and activated Wnt/β-catenin signaling pathway by restraining phosphorylation of β-catenin and promoting the nuclear translocation of β-catenin. Moreover, Peiminine prevented ovariectomy-induced osteoporosis by alleviating trabecular bone loss and inhibiting adipose formation. Our data suggested that Peiminine could attenuate ovariectomy-induced osteoporosis by alleviating trabecular bone loss and inhibiting adipose formation. These encouraging discoveries could lay the foundation for Peiminine to be a promising preventive treatment strategy for skeletal diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Hanwen Gu
- Department of Joint Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian Wei
- Department of Joint Orthopedics, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, China
| |
Collapse
|
9
|
Dincel AS, Jørgensen NR. New Emerging Biomarkers for Bone Disease: Sclerostin and Dickkopf-1 (DKK1). Calcif Tissue Int 2023; 112:243-257. [PMID: 36165920 DOI: 10.1007/s00223-022-01020-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023]
Abstract
A healthy skeleton depends on a continuous renewal and maintenance of the bone tissue. The process of bone remodeling is highly controlled and consists of a fine-tuned balance between bone formation and bone resorption. Biochemical markers of bone turnover are already in use for monitoring diseases and treatment involving the skeletal system, but novel biomarkers reflecting specific biological processes in bone and interacting tissues may prove useful for diagnostic, prognostic, and monitoring purposes. The Wnt-signaling pathway is one of the most important pathways controlling bone metabolism and consequently the action of inhibitors of the pathway such as sclerostin and Dickkopf-related protein 1 (DKK1) have crucial roles in controlling bone formation and resorption. Thus, they might be potential markers for clinical use as they reflect a number of physiological and pathophysiological events in bone and in the cross-talk with other tissues in the human body. This review focuses on the clinical utility of measurements of circulating sclerostin and DKK1 levels based on preanalytical and analytical considerations and on evidence obtained from published clinical studies. While accumulating evidence points to clear associations with a number of disease states for the two markers, and thus, the potential for especially sclerostin as a biochemical marker that may be used clinically, the lack of standardization or harmonization of the assays still hampers the clinical utility of the markers.
Collapse
Affiliation(s)
- Aylin Sepinci Dincel
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
- Department of Clinical Biochemistry, Rigshospitalet, Valdemar Hansens Vej 13 Glostrup, 2600, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey.
- Department of Clinical Biochemistry, Rigshospitalet, Valdemar Hansens Vej 13 Glostrup, 2600, Copenhagen, Denmark.
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
10
|
Wei Q, Hao X, Lau BWM, Wang S, Li Y. Baicalin regulates stem cells as a creative point in the treatment of climacteric syndrome. Front Pharmacol 2022; 13:986436. [DOI: 10.3389/fphar.2022.986436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Graphical AbstractThis review summarizes the regulatory role of Baicalin on the diverse behaviors of distinct stem cell populations and emphasizes the potential applications of Baicalin and stem cell therapy in climacteric syndrome.
Collapse
|
11
|
Wu T, Tang H, Yang J, Yao Z, Bai L, Xie Y, Li Q, Xiao J. METTL3-m 6 A methylase regulates the osteogenic potential of bone marrow mesenchymal stem cells in osteoporotic rats via the Wnt signalling pathway. Cell Prolif 2022; 55:e13234. [PMID: 35470497 PMCID: PMC9136513 DOI: 10.1111/cpr.13234] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Bone marrow mesenchymal stem cells (BMSCs) hold a high osteogenic differentiation potential, but the mechanisms that control the osteogenic ability of BMSCs from osteoporosis (OP-BMSCs) need further research. The purpose of this experiment is to discuss the osteogenic effect of Mettl3 on OP-BMSCs and explore new therapeutic target that can enhance the bone formation ability of OP-BMSCs. MATERIALS AND METHODS The bilateral ovariectomy (OVX) method was used to establish the SD rat OP model. Dot blots were used to reveal the different methylation levels of BMSCs and OP-BMSCs. Lentiviral-mediated overexpression of Mettl3 was applied in OP-BMSCs. QPCR and WB detected the molecular changes of osteogenic-related factors and Wnt signalling pathway in vitro experiment. The staining of calcium nodules and alkaline phosphatase detected the osteogenic ability of OP-BMSCs. Micro-CT and histological examination evaluated the osteogenesis of Mettl3 in OP rats in vivo. RESULTS The OP rat model was successfully established by OVX. Methylation levels and osteogenic potential of OP-BMSCs were decreased in OP-BMSCs. In vitro experiment, overexpression of Mettl3 could upregulate the osteogenic-related factors and activate the Wnt signalling pathway in OP-BMSCs. However, osteogenesis of OP-BMSCs was weakened by treatment with the canonical Wnt inhibitor Dickkopf-1. Micro-CT showed that the Mettl3(+) group had an increased amount of new bone formation at 8 weeks. Moreover, the results of histological staining were the same as the micro-CT results. CONCLUSIONS Taken together, the methylation levels and osteogenic potential of OP-BMSCs were decreased in OP-BMSCs. In vitro and in vivo studies, overexpression of Mettl3 could partially rescue the decreased bone formation ability of OP-BMSCs by the canonical Wnt signalling pathway. Therefore, Mettl3 may be a key targeted gene for bone generation and therapy of bone defects in OP patients.
Collapse
Affiliation(s)
- Tianli Wu
- Department of Oral ImplantologyThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
- Department of Oral and Maxillofacial SurgeryThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Hui Tang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Jianghua Yang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
- Department of Medical Technology, Faculty of Associated Medical SciencesChiang Mai UniversityChiang MaiThailand
| | - Zhihao Yao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Long Bai
- Department of Oral ImplantologyThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Yuping Xie
- Department of Oral ImplantologyThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Qing Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Jingang Xiao
- Department of Oral ImplantologyThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
- Department of Oral and Maxillofacial SurgeryThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
12
|
Xu T, Zhou P, Li H, Ding Q, Hua F. MicroRNA-577 aggravates bone loss and bone remodeling by targeting thyroid stimulating hormone receptor in hyperthyroid-associated osteoporosis. ENVIRONMENTAL TOXICOLOGY 2022; 37:539-548. [PMID: 34821002 DOI: 10.1002/tox.23419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/09/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Traditionally, hyperthyroid-associated osteoporosis has been considered to be the result of increased thyroid hormone levels. The pathogenesis of hyperthyroid-associated osteoporosis remains unclear. Thyroid stimulating hormone receptor (TSHR) is closely associated with osteoporosis. Our study aimed to explore the role of TSHR and its upstream microRNA (miRNA) in hyperthyroid-associated osteoporosis. Bioinformatics analysis (starBase and Targetscan) and a wide range of experiments including reverse-transcription quantitative polymerase chain reaction, luciferase reporter, western blot analysis of osteogenic differentiation markers including OSX, OCN, ALP, OPN, and COL1, hematoxylin and eosin staining, Alizarin Red staining assays were used to explore the function and mechanism of TSHR in hyperthyroid-associated osteoporosis. First, we observed that TSHR was downregulated in bone marrow mesenchymal stem cells (BMSCs) isolated from rats after culture in osteogenic medium for 7 days. Functionally, overexpression of TSHR accelerates BMSC osteogenic differentiation. Mechanistically, we predicted four potential miRNAs for TSHR. MiR-577 was validated to bind with TSHR. Rescue assays showed that miR-577 overexpression inhibited BMSC osteogenic differentiation via targeting TSHR. In vivo experiments showed that miR-577 aggravated bone loss and bone remodeling and our data showed that it is achieved by targeting TSHR in hyperthyroid-associated osteoporosis. This finding may deep our understanding of the pathogenesis of hyperthyroid-associated osteoporosis.
Collapse
Affiliation(s)
- Tongdao Xu
- Department of Endocrine, The First People's Hospital of Changzhou (The Third Affiliated Hospital of Soochow University), Changzhou, China
- Department of Endocrine, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Ping Zhou
- Department of Endocrine, The First People's Hospital of Changzhou (The Third Affiliated Hospital of Soochow University), Changzhou, China
- Department of Endocrine, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Huihua Li
- Department of Endocrine, The First People's Hospital of Changzhou (The Third Affiliated Hospital of Soochow University), Changzhou, China
- Department of Endocrine, Tong Ren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qun Ding
- Department of Endocrine, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Fei Hua
- Department of Endocrine, The First People's Hospital of Changzhou (The Third Affiliated Hospital of Soochow University), Changzhou, China
| |
Collapse
|
13
|
Li H, Zhou W, Sun S, Zhang T, Zhang T, Huang H, Wang M. Microfibrillar-associated protein 5 regulates osteogenic differentiation by modulating the Wnt/β-catenin and AMPK signaling pathways. Mol Med 2021; 27:153. [PMID: 34865619 PMCID: PMC8647299 DOI: 10.1186/s10020-021-00413-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/20/2021] [Indexed: 12/18/2022] Open
Abstract
Background Dysfunctional osteogenesis of bone marrow mesenchymal stem cells (BMSCs) plays an important role in osteoporosis occurrence and development. However, the molecular mechanisms of osteogenic differentiation remain unclear. This study explored whether microfibrillar-associated protein 5 (MFAP5) regulated BMSCs osteogenic differentiation. Methods We used shRNA or cDNA to knock down or overexpress MFAP5 in C3H10 and MC3T3-E1 cells. AR-S- and ALP-staining were performed to quantify cellular osteogenic differentiation. The mRNA levels of the classical osteogenic differentiation biomarkers Runx2, Col1α1, and OCN were quantified by qRT-PCR. Finally, we employed Western blotting to measure the levels of Wnt/β-catenin and AMPK signaling proteins. Results At days 0, 3, 7, and 14 after osteogenic induction, AR-S- and ALP-staining was lighter in MFAP5 knockdown compared to control cells, as were the levels of Runx2, Col1α1 and OCN. During osteogenesis, the levels of β-catenin, p-GSK-3β, AMPK, and p-AMPK were upregulated, while that of GSK-3β was downregulated, indicating that Wnt/β-catenin and AMPK signaling were activated. The relevant molecules were expressed at lower levels in the knockdown than control group; the opposite was seen for overexpressing cell lines. Conclusions MFAP5 regulates osteogenesis via Wnt/β‑catenin- and AMPK-signaling; MFAP5 may serve as a therapeutic target in patients with osteoporosis. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00413-0.
Collapse
Affiliation(s)
- Haoran Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Wuling Zhou
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Shiwei Sun
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Tianlong Zhang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Tieqi Zhang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Haitian Huang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Minghai Wang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Panek-Krzyśko A, Stompor-Gorący M. The Pro-Health Benefits of Morusin Administration-An Update Review. Nutrients 2021; 13:3043. [PMID: 34578920 PMCID: PMC8470188 DOI: 10.3390/nu13093043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/12/2023] Open
Abstract
Prenylflavonoids are widespread in nature. Plants are valuable sources of natural polyphenolic compounds with isoprenyl groups, which include flavones, flavanones, chalcones and aurones. They can be found in flowers, bark and stems. One of the most important compounds found in the bark of white mulberry (Morus alba) is morusin, a prenylated flavone with interesting pro-health properties. The research carried out so far revealed that morusin has antioxidant, antitumor, anti-inflammatory and anti-allergic activity. Moreover, its neuroprotective and antihyperglycemic properties have also been confirmed. Morusin suppresses the growth of different types of tumors, including breast cancer, glioblastoma, pancreatic cancer, hepatocarcinoma, prostate cancer, and gastric cancer. It also inhibits the inflammatory response by suppressing COX activity and iNOS expression. Moreover, an antimicrobial effect against Gram-positive bacteria was observed after treatment with morusin. The objective of this review is to summarize the current knowledge about the positive effects of morusin on human health in order to facilitate future study on the development of plant polyphenolic drugs and nutraceutics in the group of prenylflavones.
Collapse
Affiliation(s)
| | - Monika Stompor-Gorący
- Department of Human Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland;
| |
Collapse
|
15
|
Zhang H, Zhou C, Zhang Z, Yao S, Bian Y, Fu F, Luo H, Li Y, Yan S, Ge Y, Chen Y, Zhan K, Yue M, Du W, Tian K, Jin H, Li X, Tong P, Ruan H, Wu C. Integration of Network Pharmacology and Experimental Validation to Explore the Pharmacological Mechanisms of Zhuanggu Busui Formula Against Osteoporosis. Front Endocrinol (Lausanne) 2021; 12:841668. [PMID: 35154014 PMCID: PMC8831245 DOI: 10.3389/fendo.2021.841668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis (OP) is a common skeletal disease, characterized by decreased bone formation and increased bone resorption. As a novel Chinese medicine formula, Zhuanggu Busui formula (ZGBSF) has been proved to be an effective prescription for treating OP in clinic, however, the pharmacological mechanisms underlying the beneficial effects remain obscure. In this study, we explored the pharmacological mechanisms of ZGBSF against OP via network pharmacology analysis coupled with in vivo experimental validation. The results of the network pharmacology analysis showed that a total of 86 active ingredients and 164 targets of ZGBSF associated with OP were retrieved from the corresponding databases, forming an ingredient-target-disease network. The protein-protein interaction (PPI) network manifested that 22 core targets, including Caspase-3, BCL2L1, TP53, Akt1, etc, were hub targets. Moreover, functional enrichment analyses revealed that PI3K-Akt and apoptosis signalings were significantly enriched by multiple targets and served as the targets for in vivo experimental study validation. The results of animal experiments revealed that ZGBSF not only reversed the high expression of Caspase-3, Bax, Prap, and low expression of Bcl-2 in osteoblasts of the OP mouse model but also contributed to the phosphorylation of Akt1 and expression of PI3K, thereby promoting osteogenesis and ameliorating the progression of OP. In conclusion, this study systematically and intuitively illustrated that the possible pharmacological mechanisms of ZGBSF against OP through multiple ingredients, targets, and signalings, and especially the inhibition of the apoptosis and the activation of PI3K-Akt signaling.
Collapse
Affiliation(s)
- Huihao Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengcong Zhou
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiguo Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Sai Yao
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yishan Bian
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Li
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuxin Yan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuying Ge
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuying Chen
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kunyu Zhan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ming Yue
- Department of Physiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weibin Du
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Research Institute of Orthopedics, The Affiliated Jiang Nan Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kun Tian
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Li
- Department of Orthopedics and Traumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hongfeng Ruan, ; Peijian Tong, ; Xiaofeng Li,
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Hongfeng Ruan, ; Peijian Tong, ; Xiaofeng Li,
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Hongfeng Ruan, ; Peijian Tong, ; Xiaofeng Li,
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|