1
|
Dominici FP, Gironacci MM, Narvaez Pardo JA. Therapeutic opportunities in targeting the protective arm of the renin-angiotensin system to improve insulin sensitivity: a mechanistic review. Hypertens Res 2024; 47:3397-3408. [PMID: 39363004 DOI: 10.1038/s41440-024-01909-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/04/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
In recent years, the knowledge of the physiological and pathophysiological roles of the renin-angiotensin system (RAS) in glucose metabolism has advanced significantly. It is now well-established that blockade of the angiotensin AT1 receptor (AT1R) improves insulin sensitivity. Activation of the AT2 receptor (AT2R) and the MAS receptor are significant contributors to this beneficial effect. Elevated availability of angiotensin (Ang) II) for interaction with the AT2R and increased Ang-(1-7) formation during AT1R blockade mediate these effects. The ongoing development of selective AT2R agonists, such as compound 21 and the novel Ang III peptidomimetics, has significantly advanced the exploration of the role of AT2R in metabolism and its potential as a therapeutic target. These agents show promise, particularly when RAS inhibition is contraindicated. Additionally, other RAS peptides, including Ang IV, des-Asp-Ang I, Ang-(1-9), and alamandine, hold therapeutic capability for addressing metabolic disturbances linked to type 2 diabetes. The possibility of AT2R heteromerization with either AT1R or MAS receptor offers an exciting area for future research, particularly concerning therapeutic strategies to improve glycemic control. This review focuses on therapeutic opportunities to improve insulin sensitivity, taking advantage of the protective arm of the RAS.
Collapse
Affiliation(s)
- Fernando P Dominici
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Mariela M Gironacci
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge A Narvaez Pardo
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Croft AJ, Kelly C, Chen D, Haw TJ, Balachandran L, Murtha LA, Boyle AJ, Sverdlov AL, Ngo DTM. Sex-based differences in short- and longer-term diet-induced metabolic heart disease. Am J Physiol Heart Circ Physiol 2024; 326:H1219-H1251. [PMID: 38363215 PMCID: PMC11381029 DOI: 10.1152/ajpheart.00467.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Sex-based differences in the development of obesity-induced cardiometabolic dysfunction are well documented, however, the specific mechanisms are not completely understood. Obesity has been linked to dysregulation of the epitranscriptome, but the role of N6-methyladenosine (m6A) RNA methylation has not been investigated in relation to the sex differences during obesity-induced cardiac dysfunction. In the current study, male and female C57BL/6J mice were subjected to short- and long-term high-fat/high-sucrose (HFHS) diet to induce obesogenic stress. Cardiac echocardiography showed males developed systolic and diastolic dysfunction after 4 mo of diet, but females maintained normal cardiac function despite both sexes being metabolically dysfunctional. Cardiac m6A machinery gene expression was differentially regulated by duration of HFHS diet in male, but not female mice, and left ventricular ejection fraction correlated with RNA machinery gene levels in a sex- and age-dependent manner. RNA-sequencing of cardiac transcriptome revealed that females, but not males may undergo protective cardiac remodeling early in the course of obesogenic stress. Taken together, our study demonstrates for the first time that cardiac RNA methylation machinery genes are regulated early during obesogenic stress in a sex-dependent manner and may play a role in the sex differences observed in cardiometabolic dysfunction.NEW & NOTEWORTHY Sex differences in obesity-associated cardiomyopathy are well documented but incompletely understood. We show for the first time that RNA methylation machinery genes may be regulated in response to obesogenic diet in a sex- and age-dependent manner and levels may correspond to cardiac systolic function. Our cardiac RNA-seq analysis suggests female, but not male mice may be protected from cardiac dysfunction by a protective cardiac remodeling response early during obesogenic stress.
Collapse
Affiliation(s)
- Amanda J Croft
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Conagh Kelly
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Dongqing Chen
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Tatt Jhong Haw
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Lohis Balachandran
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Lucy A Murtha
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Andrew J Boyle
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Hunter New England Local Health District, Newcastle, New South Wales, Australia
| | - Aaron L Sverdlov
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Hunter New England Local Health District, Newcastle, New South Wales, Australia
| | - Doan T M Ngo
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
3
|
Mkhize BC, Mosili P, Ngubane PS, Sibiya NH, Khathi A. The Relationship between Renin-Angiotensin-Aldosterone System (RAAS) Activity, Osteoporosis and Estrogen Deficiency in Type 2 Diabetes. Int J Mol Sci 2023; 24:11963. [PMID: 37569338 PMCID: PMC10419188 DOI: 10.3390/ijms241511963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Type 2 diabetes (T2D) is associated with a plethora of comorbidities, including osteoporosis, which occurs due to an imbalance between bone resorption and formation. Numerous mechanisms have been explored to understand this association, including the renin-angiotensin-aldosterone system (RAAS). An upregulated RAAS has been positively correlated with T2D and estrogen deficiency in comorbidities such as osteoporosis in humans and experimental studies. Therefore, research has focused on these associations in order to find ways to improve glucose handling, osteoporosis and the downstream effects of estrogen deficiency. Upregulation of RAAS may alter the bone microenvironment by altering the bone marrow inflammatory status by shifting the osteoprotegerin (OPG)/nuclear factor kappa-Β ligand (RANKL) ratio. The angiotensin-converting-enzyme/angiotensin II/Angiotensin II type 1 receptor (ACE/Ang II/AT1R) has been evidenced to promote osteoclastogenesis and decrease osteoblast formation and differentiation. ACE/Ang II/AT1R inhibits the wingless-related integration site (Wnt)/β-catenin pathway, which is integral in bone formation. While a lot of literature exists on the effects of RAAS and osteoporosis on T2D, the work is yet to be consolidated. Therefore, this review looks at RAAS activity in relation to osteoporosis and T2D. This review also highlights the relationship between RAAS activity, osteoporosis and estrogen deficiency in T2D.
Collapse
Affiliation(s)
- Bongeka Cassandra Mkhize
- Human Physiology, Health Science, Westville Campus, University of KwaZulu-Natal, Westville 4041, South Africa; (B.C.M.); (P.M.); (P.S.N.)
| | - Palesa Mosili
- Human Physiology, Health Science, Westville Campus, University of KwaZulu-Natal, Westville 4041, South Africa; (B.C.M.); (P.M.); (P.S.N.)
| | - Phikelelani Sethu Ngubane
- Human Physiology, Health Science, Westville Campus, University of KwaZulu-Natal, Westville 4041, South Africa; (B.C.M.); (P.M.); (P.S.N.)
| | | | - Andile Khathi
- Human Physiology, Health Science, Westville Campus, University of KwaZulu-Natal, Westville 4041, South Africa; (B.C.M.); (P.M.); (P.S.N.)
| |
Collapse
|
4
|
Daniel JM, Lindsey SH, Mostany R, Schrader LA, Zsombok A. Cardiometabolic health, menopausal estrogen therapy and the brain: How effects of estrogens diverge in healthy and unhealthy preclinical models of aging. Front Neuroendocrinol 2023; 70:101068. [PMID: 37061205 PMCID: PMC10725785 DOI: 10.1016/j.yfrne.2023.101068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Research in preclinical models indicates that estrogens are neuroprotective and positively impact cognitive aging. However, clinical data are equivocal as to the benefits of menopausal estrogen therapy to the brain and cognition. Pre-existing cardiometabolic disease may modulate mechanisms by which estrogens act, potentially reducing or reversing protections they provide against cognitive decline. In the current review we propose mechanisms by which cardiometabolic disease may alter estrogen effects, including both alterations in actions directly on brain memory systems and actions on cardiometabolic systems, which in turn impact brain memory systems. Consideration of mechanisms by which estrogen administration can exert differential effects dependent upon health phenotype is consistent with the move towards precision or personalized medicine, which aims to determine which treatment interventions will work for which individuals. Understanding effects of estrogens in both healthy and unhealthy models of aging is critical to optimizing the translational link between preclinical and clinical research.
Collapse
Affiliation(s)
- Jill M Daniel
- Department of Psychology and Brain Institute, Tulane University, New Orleans, LA, United States.
| | - Sarah H Lindsey
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Ricardo Mostany
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Laura A Schrader
- Department of Cell & Molecular Biology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Andrea Zsombok
- Department of Physiology and Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
5
|
Coker CR, White M, Singal A, Bingaman SS, Paul A, Arnold AC, Silberman Y. Minocycline Reduces Hypothalamic Microglia Activation and Improves Metabolic Dysfunction in High Fat Diet-Induced Obese Mice. Front Physiol 2022; 13:933706. [PMID: 35784876 PMCID: PMC9244633 DOI: 10.3389/fphys.2022.933706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity is associated with insulin resistance, glucose intolerance, inflammation, and altered neuronal activity in brain regions controlling metabolic functions including food intake, energy expenditure, and glucose homeostasis, such as the hypothalamus. In this study, we tested the hypothesis that inhibiting inflammation with minocycline could reduce adverse metabolic consequences associated with high-fat diet (HFD)-induced obesity in mice and sought to determine if metabolic improvements were associated with reduced hypothalamic microglia activity. Male C57Bl/6J mice were placed on 60% HFD for 12 weeks, with minocycline (40 mg/kg, p.o.) or normal tap water given during the last 6 weeks of diet. Age-matched mice maintained on control diet were used as an additional comparator group. Metabolic function was assessed during the last week of treatment. Ramified (resting) and non-ramified (active) microglia were quantified in the hypothalamus following immunohistochemical staining of ionized calcium-binding adaptor 1 (Iba-1) and further assessed by RNAseq. In HFD fed mice, minocycline attenuated body mass and adiposity without altering food intake suggesting enhanced energy expenditure. Minocycline also attenuated hyperinsulinemia and improved insulin sensitivity in HFD mice. Increased microglial activation and autophagy gene network changes were observed in the paraventricular nucleus (PVN) of the hypothalamus of HFD mice, which was prevented by minocycline treatment. Contrary to PVN findings, there were no significant effects of either HFD or minocycline on microglia activation in the hypothalamic arcuate nucleus or central amygdala. Together, these findings suggest that minocycline improves HFD-induced weight gain and insulin resistance in part by reducing inflammatory processes in the PVN, a key hypothalamic region regulating metabolic function.
Collapse
Affiliation(s)
- Caitlin R. Coker
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, United States
| | - Melissa White
- Department of Comparative Medicine, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Aneesh Singal
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Sarah S. Bingaman
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Anirban Paul
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Amy C. Arnold
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Yuval Silberman
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
6
|
Miller AJ, Arnold AC. The renin-angiotensin system and cardiovascular autonomic control in aging. Peptides 2022; 150:170733. [PMID: 34973286 PMCID: PMC8923940 DOI: 10.1016/j.peptides.2021.170733] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022]
Abstract
Aging is the greatest independent risk factor for developing hypertension and cardiovascular-related diseases including systolic hypertension, vascular disease, ischemic events, arrhythmias, and heart failure. Age-related cardiovascular risk is associated with dysfunction of peripheral organ systems, such as the heart and vasculature, as well as an imbalance in the autonomic nervous system characterized by increased sympathetic and decreased parasympathetic neurotransmission. Given the increasing prevalence of aged individuals worldwide, it is critical to better understand mechanisms contributing to impaired cardiovascular autonomic control in this population. In this regard, the renin-angiotensin system has emerged as an important hormonal modulator of cardiovascular function in aging, in part through modulation of autonomic pathways controlling sympathetic and parasympathetic outflow to cardiovascular end organs. This review will summarize the role of the RAS in cardiovascular autonomic control during aging, with a focus on current knowledge of angiotensin II versus angiotensin-(1-7) pathways in both rodent models and humans, pharmacological treatment strategies targeting the renin-angiotensin system, and unanswered questions for future research.
Collapse
Affiliation(s)
- Amanda J Miller
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
7
|
Smith C, Smith H, Roberts L, Coward L, Gorman G, Verma A, Li Q, Buford TW, Carter CS, Jumbo-Lucioni P. Probiotic Releasing Angiotensin (1-7) in a Drosophila Model of Alzheimer's Disease Produces Sex-Specific Effects on Cognitive Function. J Alzheimers Dis 2022; 85:1205-1217. [PMID: 34924372 PMCID: PMC9549527 DOI: 10.3233/jad-210464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND While extensive research on the brain has failed to identify effective therapies, using probiotics to target the gut microbiome has shown therapeutic potential in Alzheimer's disease (AD). Genetically modified probiotics (GMP) are a promising strategy to deliver key therapeutic peptides with high efficacy and tissue specificity. Angiotensin (Ang)-(1-7) levels inversely correlate to AD severity, but its administration is challenging. Our group has successfully established a GMP-based method of Ang-(1-7) delivery. OBJECTIVE Since Drosophila represents an excellent model to study the effect of probiotics on complex disorders in a high throughput manner, we tested whether oral supplementation with Lactobacillus paracasei releasing Ang-(1-7) (LP-A) delays memory loss in a Drosophila AD model. METHODS Flies overexpressing the human amyloid-β protein precursor and its β-site cleaving enzyme in neurons were randomized to receive four 24-h doses of Lactobacillus paracasei alone (LP), LP-A or sucrose over 14 days. Memory was assessed via an aversive phototaxic suppression assay. RESULTS Optimal dilution,1:2, was determined based on palatability. LP-A improved memory in trained AD males but worsened cognition in AD females. LP-supplementation experiments confirmed that Ang-(1-7) conferred additional cognitive benefits in males and was responsible for the deleterious cognitive effects in females. Sex-specific differences in the levels of angiotensin peptides and differential activation of the kynurenine pathway of tryptophan metabolism in response to supplementation may underlie this male-only therapeutic response. CONCLUSION In summary, LP-A ameliorated the memory deficits of a Drosophila AD model, but effects were sex-specific. Dosage optimization may be required to address this differential response.
Collapse
Affiliation(s)
- C.Aaron Smith
- McWhorter School of Pharmacy, Samford University, Birmingham, AL
| | - Haddon Smith
- McWhorter School of Pharmacy, Samford University, Birmingham, AL
| | - Lisa Roberts
- Department of Medicine; Division of Gerontology, Geriatrics, and Palliative Care, University of Alabama at Birmingham, Birmingham, AL
| | - Lori Coward
- Pharmaceutical Sciences Research Institute, Samford University, Birmingham, AL
| | - Gregory Gorman
- McWhorter School of Pharmacy, Samford University, Birmingham, AL,Pharmaceutical Sciences Research Institute, Samford University, Birmingham, AL
| | - Amrisha Verma
- Department of Ophthalmology, College of Medicine, University of Florida Gainesville, FL
| | - Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida Gainesville, FL
| | - Thomas W. Buford
- Department of Medicine; Division of Gerontology, Geriatrics, and Palliative Care, University of Alabama at Birmingham, Birmingham, AL,Geriatric Research Education and Clinical Center, Birmingham VA Medical Center, Birmingham, AL,Corresponding authors: Thomas W. Buford, Phone: (205) 975-9042; ; Patricia Jumbo-Lucioni, Phone: (205) 726-4170;
| | - Christy S. Carter
- Department of Medicine; Division of Gerontology, Geriatrics, and Palliative Care, University of Alabama at Birmingham, Birmingham, AL
| | - Patricia Jumbo-Lucioni
- McWhorter School of Pharmacy, Samford University, Birmingham, AL,Department of Biology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL.,Corresponding authors: Thomas W. Buford, Phone: (205) 975-9042; ; Patricia Jumbo-Lucioni, Phone: (205) 726-4170;
| |
Collapse
|
8
|
Anti-Obesity Effects of Combined Cornus officinalis and Ribes fasciculatum Extract in High-Fat Diet-Induced Obese Male Mice. Animals (Basel) 2021; 11:ani11113187. [PMID: 34827919 PMCID: PMC8614376 DOI: 10.3390/ani11113187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Obesity is a general health problem representing a high risk factor for a low-quality lifestyle. Various Food and Drug Administration-approved pharmacological medications have been established for the treatment and prevention of obesity. However, some pharmacotherapies present adverse effects and limited long-term use. Natural herbal medicines as alternative cures have shown low side-effects and suitability for long-term treatment. Cornus officinalis and Ribes fasciculatum (CR) are well-known oriental plants used for health dietary supplements and herbal medicine. This study examined the anti-obesity effect of CR in high-fat diet (HFD)-induced obese male mice. Treatment of CR extract prevented body weight gain through the downregulation of adipogenic inducible genes and recovered the dysregulated energy metabolism in HFD-induced obese male mice. Therefore, CR reduced elevated biochemical obesity parameters in plasma, as well as inhibited hepatic steatosis in the liver and adipocyte size increase in fat tissue. These findings of the study reveal the potential anti-obesity effects of CR as an herbal medicine. Abstract Medicinal plants are widely used as supplements for the treatment of various diseases because of their few side-effects. Here, we examined the anti-obesity effects of a mixture extract of Cornus officinalis and Ribes fasciculatum (CR) in high-fat diet (HFD)-induced obese male mice. Four week old male C57BL/6J mice were fed a normal diet (ND) or 60% high-fat diet (HFD) with different concentrations of CR extracts (75, 150, and 300 mg/kg/day) by oral administration for 12 weeks. CR extract administration prevented HFD-induced weight gain, hepatic steatosis, and adipocyte enlargement through the downregulation of adipogenesis-associated genes in obese male mice. In addition, CR administration improved the impaired glucose metabolism, insulin action, biochemical obesity parameters, and metabolic profiles in HFD-induced male mice. Consequently, the CR extract exhibited beneficial effects on HFD-induced systemic metabolic challenges. Taken together, our findings suggest that CR extract may be a potent therapeutic supplement for the treatment and prevention of obesity.
Collapse
|
9
|
Mehay D, Silberman Y, Arnold AC. The Arcuate Nucleus of the Hypothalamus and Metabolic Regulation: An Emerging Role for Renin-Angiotensin Pathways. Int J Mol Sci 2021; 22:7050. [PMID: 34208939 PMCID: PMC8268643 DOI: 10.3390/ijms22137050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/02/2022] Open
Abstract
Obesity is a chronic state of energy imbalance that represents a major public health problem and greatly increases the risk for developing hypertension, hyperglycemia, and a multitude of related pathologies that encompass the metabolic syndrome. The underlying mechanisms and optimal treatment strategies for obesity, however, are still not fully understood. The control of energy balance involves the actions of circulating hormones on a widely distributed network of brain regions involved in the regulation of food intake and energy expenditure, including the arcuate nucleus of the hypothalamus. While obesity is known to disrupt neurocircuits controlling energy balance, including those in the hypothalamic arcuate nucleus, the pharmacological targeting of these central mechanisms often produces adverse cardiovascular and other off-target effects. This highlights the critical need to identify new anti-obesity drugs that can activate central neurocircuits to induce weight loss without negatively impacting blood pressure control. The renin-angiotensin system may provide this ideal target, as recent studies show this hormonal system can engage neurocircuits originating in the arcuate nucleus to improve energy balance without elevating blood pressure in animal models. This review will summarize the current knowledge of renin-angiotensin system actions within the arcuate nucleus for control of energy balance, with a focus on emerging roles for angiotensin II, prorenin, and angiotensin-(1-7) pathways.
Collapse
Affiliation(s)
| | | | - Amy C. Arnold
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.M.); (Y.S.)
| |
Collapse
|
10
|
Coker CR, Keller BN, Arnold AC, Silberman Y. Impact of High Fat Diet and Ethanol Consumption on Neurocircuitry Regulating Emotional Processing and Metabolic Function. Front Behav Neurosci 2021; 14:601111. [PMID: 33574742 PMCID: PMC7870708 DOI: 10.3389/fnbeh.2020.601111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/28/2020] [Indexed: 01/12/2023] Open
Abstract
The prevalence of psychiatry disorders such as anxiety and depression has steadily increased in recent years in the United States. This increased risk for anxiety and depression is associated with excess weight gain, which is often due to over-consumption of western diets that are typically high in fat, as well as with binge eating disorders, which often overlap with overweight and obesity outcomes. This finding suggests that diet, particularly diets high in fat, may have important consequences on the neurocircuitry regulating emotional processing as well as metabolic functions. Depression and anxiety disorders are also often comorbid with alcohol and substance use disorders. It is well-characterized that many of the neurocircuits that become dysregulated by overconsumption of high fat foods are also involved in drug and alcohol use disorders, suggesting overlapping central dysfunction may be involved. Emerging preclinical data suggest that high fat diets may be an important contributor to increased susceptibility of binge drug and ethanol intake in animal models, suggesting diet could be an important aspect in the etiology of substance use disorders. Neuroinflammation in pivotal brain regions modulating metabolic function, food intake, and binge-like behaviors, such as the hypothalamus, mesolimbic dopamine circuits, and amygdala, may be a critical link between diet, ethanol, metabolic dysfunction, and neuropsychiatric conditions. This brief review will provide an overview of behavioral and physiological changes elicited by both diets high in fat and ethanol consumption, as well as some of their potential effects on neurocircuitry regulating emotional processing and metabolic function.
Collapse
Affiliation(s)
- Caitlin R. Coker
- Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC, United States
| | - Bailey N. Keller
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Amy C. Arnold
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Yuval Silberman
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
11
|
Angiotensin-(1-7) Improves Integrated Cardiometabolic Function in Aged Mice. Int J Mol Sci 2020; 21:ijms21145131. [PMID: 32698498 PMCID: PMC7403973 DOI: 10.3390/ijms21145131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 01/07/2023] Open
Abstract
Angiotensin (Ang)-(1-7) is a beneficial renin–angiotensin system (RAS) hormone that elicits protective cardiometabolic effects in young animal models of hypertension, obesity, and metabolic syndrome. The impact of Ang-(1-7) on cardiovascular and metabolic outcomes during aging, however, remains unexplored. This study tested the hypothesis that Ang-(1-7) attenuates age-related elevations in blood pressure and insulin resistance in mice. Young adult (two-month-old) and aged (16-month-old) male C57BL/6J mice received Ang-(1-7) (400 ng/kg/min) or saline for six-weeks via a subcutaneous osmotic mini-pump. Arterial blood pressure and metabolic function indices (body composition, insulin sensitivity, and glucose tolerance) were measured at the end of treatment. Adipose and cardiac tissue masses and cardiac RAS, sympathetic and inflammatory marker gene expression were also measured. We found that chronic Ang-(1-7) treatment decreased systolic and mean blood pressure, with a similar trend for diastolic blood pressure. Ang-(1-7) also improved insulin sensitivity in aged mice to levels in young mice, without effects on glucose tolerance or body composition. The blood pressure–lowering effects of Ang-(1-7) in aged mice were associated with reduced sympathetic outflow to the heart. These findings suggest Ang-(1-7) may provide a novel pharmacological target to improve age-related cardiometabolic risk.
Collapse
|