1
|
Zhang Y, Wang T, Wang Y, Cao J. Knowledge discovery of diseases symptoms and rehabilitation measures in Q&A communities. Sci Rep 2025; 15:13593. [PMID: 40253551 PMCID: PMC12009415 DOI: 10.1038/s41598-025-98300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/10/2025] [Indexed: 04/21/2025] Open
Abstract
Rehabilitation-related diseases have long recovery times, making frequent hospital visits impractical for patients. There is a high demand for online rehabilitation advice, but valuable Q&A information in online health communities remains largely untapped, leading to wasted medical resources. This study developed a BERT-BiGRU-attention model to extract three types of entity relationships: disease symptoms, appropriate rehabilitation measures, and inappropriate rehabilitation measures. This model achieved optimal knowledge extraction results. We then used a clustering analysis model to group disease-related knowledge, helping to uncover useful information for rehabilitation patients, assist in medical diagnosis, and enhance health education.
Collapse
Affiliation(s)
- Yanli Zhang
- College of Business Administration, Henan Finance University, Zhengzhou, 451464, China
| | - Tao Wang
- Information Technology Office, Henan Finance University, Zhengzhou, 451464, China
| | - Yan Wang
- School of Politics and Law, Hubei University of Arts and Science, Xiangyang, 441053, China.
| | - Jingyu Cao
- Global Cooperation Division, China Development Bank Qinghai Branch, Xining, 810001, China
| |
Collapse
|
2
|
Meier TA, Refahi MS, Hearne G, Restifo DS, Munoz-Acuna R, Rosen GL, Woloszynek S. The Role and Applications of Artificial Intelligence in the Treatment of Chronic Pain. Curr Pain Headache Rep 2024; 28:769-784. [PMID: 38822995 DOI: 10.1007/s11916-024-01264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 06/03/2024]
Abstract
PURPOSE OF REVIEW This review aims to explore the interface between artificial intelligence (AI) and chronic pain, seeking to identify areas of focus for enhancing current treatments and yielding novel therapies. RECENT FINDINGS In the United States, the prevalence of chronic pain is estimated to be upwards of 40%. Its impact extends to increased healthcare costs, reduced economic productivity, and strain on healthcare resources. Addressing this condition is particularly challenging due to its complexity and the significant variability in how patients respond to treatment. Current options often struggle to provide long-term relief, with their benefits rarely outweighing the risks, such as dependency or other side effects. Currently, AI has impacted four key areas of chronic pain treatment and research: (1) predicting outcomes based on clinical information; (2) extracting features from text, specifically clinical notes; (3) modeling 'omic data to identify meaningful patient subgroups with potential for personalized treatments and improved understanding of disease processes; and (4) disentangling complex neuronal signals responsible for pain, which current therapies attempt to modulate. As AI advances, leveraging state-of-the-art architectures will be essential for improving chronic pain treatment. Current efforts aim to extract meaningful representations from complex data, paving the way for personalized medicine. The identification of unique patient subgroups should reveal targets for tailored chronic pain treatments. Moreover, enhancing current treatment approaches is achievable by gaining a more profound understanding of patient physiology and responses. This can be realized by leveraging AI on the increasing volume of data linked to chronic pain.
Collapse
Affiliation(s)
| | - Mohammad S Refahi
- Ecological and Evolutionary Signal-Processing and Informatics (EESI) Laboratory, Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | - Gavin Hearne
- Ecological and Evolutionary Signal-Processing and Informatics (EESI) Laboratory, Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | | | - Ricardo Munoz-Acuna
- Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Gail L Rosen
- Ecological and Evolutionary Signal-Processing and Informatics (EESI) Laboratory, Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | - Stephen Woloszynek
- Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
3
|
Wei CH, Allot A, Lai PT, Leaman R, Tian S, Luo L, Jin Q, Wang Z, Chen Q, Lu Z. PubTator 3.0: an AI-powered literature resource for unlocking biomedical knowledge. Nucleic Acids Res 2024; 52:W540-W546. [PMID: 38572754 PMCID: PMC11223843 DOI: 10.1093/nar/gkae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/02/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
PubTator 3.0 (https://www.ncbi.nlm.nih.gov/research/pubtator3/) is a biomedical literature resource using state-of-the-art AI techniques to offer semantic and relation searches for key concepts like proteins, genetic variants, diseases and chemicals. It currently provides over one billion entity and relation annotations across approximately 36 million PubMed abstracts and 6 million full-text articles from the PMC open access subset, updated weekly. PubTator 3.0's online interface and API utilize these precomputed entity relations and synonyms to provide advanced search capabilities and enable large-scale analyses, streamlining many complex information needs. We showcase the retrieval quality of PubTator 3.0 using a series of entity pair queries, demonstrating that PubTator 3.0 retrieves a greater number of articles than either PubMed or Google Scholar, with higher precision in the top 20 results. We further show that integrating ChatGPT (GPT-4) with PubTator APIs dramatically improves the factuality and verifiability of its responses. In summary, PubTator 3.0 offers a comprehensive set of features and tools that allow researchers to navigate the ever-expanding wealth of biomedical literature, expediting research and unlocking valuable insights for scientific discovery.
Collapse
Affiliation(s)
- Chih-Hsuan Wei
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Alexis Allot
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Po-Ting Lai
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Robert Leaman
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Shubo Tian
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Ling Luo
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Qiao Jin
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Zhizheng Wang
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Qingyu Chen
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| |
Collapse
|
4
|
Yoon W, Yi S, Jackson R, Kim H, Kim S, Kang J. Biomedical relation extraction with knowledge base-refined weak supervision. Database (Oxford) 2023; 2023:baad054. [PMID: 37551911 PMCID: PMC10407973 DOI: 10.1093/database/baad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2023] [Accepted: 07/04/2023] [Indexed: 08/09/2023]
Abstract
Biomedical relation extraction (BioRE) is the task of automatically extracting and classifying relations between two biomedical entities in biomedical literature. Recent advances in BioRE research have largely been powered by supervised learning and large language models (LLMs). However, training of LLMs for BioRE with supervised learning requires human-annotated data, and the annotation process often accompanies challenging and expensive work. As a result, the quantity and coverage of annotated data are limiting factors for BioRE systems. In this paper, we present our system for the BioCreative VII challenge-DrugProt track, a BioRE system that leverages a language model structure and weak supervision. Our system is trained on weakly labelled data and then fine-tuned using human-labelled data. To create the weakly labelled dataset, we combined two approaches. First, we trained a model on the original dataset to predict labels on external literature, which will become a model-labelled dataset. Then, we refined the model-labelled dataset using an external knowledge base. Based on our experiment, our approach using refined weak supervision showed significant performance gain over the model trained using standard human-labelled datasets. Our final model showed outstanding performance at the BioCreative VII challenge, achieving 3rd place (this paper focuses on our participating system in the BioCreative VII challenge). Database URL: http://wonjin.info/biore-yoon-et-al-2022.
Collapse
Affiliation(s)
- Wonjin Yoon
- Department of Computer Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Sean Yi
- Department of Computer Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Richard Jackson
- AstraZeneca UK, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, UK
| | - Hyunjae Kim
- Department of Computer Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Sunkyu Kim
- Department of Computer Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
- AIGEN Sciences Inc., 25 Ttukseom-ro 1-gil, Seongdong-gu, Seoul 04778, South Korea
| | - Jaewoo Kang
- Department of Computer Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
- AIGEN Sciences Inc., 25 Ttukseom-ro 1-gil, Seongdong-gu, Seoul 04778, South Korea
| |
Collapse
|
5
|
Sun Y, Wang J, Lin H, Zhang Y, Yang Z. Knowledge Guided Attention and Graph Convolutional Networks for Chemical-Disease Relation Extraction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:489-499. [PMID: 34962873 DOI: 10.1109/tcbb.2021.3135844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The automatic extraction of the chemical-disease relation (CDR) from the text becomes critical because it takes a lot of time and effort to extract valuable CDR manually. Studies have shown that prior knowledge from the biomedical knowledge base is important for relation extraction. The method of combining deep learning models with prior knowledge is worthy of our study. In this paper, we propose a new model called Knowledge Guided Attention and Graph Convolutional Networks (KGAGN) for CDR extraction. First, to make full advantage of domain knowledge, we train entity embedding as a feature representation of input sequence, and relation embedding to capture weighted contextual information further through the attention mechanism. Then, to make full advantage of syntactic dependency information in cross-sentence CDR extraction, we construct document-level syntactic dependency graphs and encode them using a graph convolution network (GCN). Finally, the chemical-induced disease (CID) relation is extracted by using weighted context features and long-range dependency features both of which contain additional knowledge information We evaluated our model on the CDR dataset published by the BioCreative-V community and achieves an F1-score of 73.3%, surpassing other state-of-the-art methods. the code implemented by PyTorch 1.7.0 deep learning library can be downloaded from Github: https://github.com/sunyi123/cdr.
Collapse
|
6
|
Zhang Y, Li X, Yang Y, Wang T. Disease- and Drug-Related Knowledge Extraction for Health Management from Online Health Communities Based on BERT-BiGRU-ATT. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16590. [PMID: 36554472 PMCID: PMC9779596 DOI: 10.3390/ijerph192416590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Knowledge extraction from rich text in online health communities can supplement and improve the existing knowledge base, supporting evidence-based medicine and clinical decision making. The extracted time series health management data of users can help users with similar conditions when managing their health. By annotating four relationships, this study constructed a deep learning model, BERT-BiGRU-ATT, to extract disease-medication relationships. A Chinese-pretrained BERT model was used to generate word embeddings for the question-and-answer data from online health communities in China. In addition, the bidirectional gated recurrent unit, combined with an attention mechanism, was employed to capture sequence context features and then to classify text related to diseases and drugs using a softmax classifier and to obtain the time series data provided by users. By using various word embedding training experiments and comparisons with classical models, the superiority of our model in relation to extraction was verified. Based on the knowledge extraction, the evolution of a user's disease progression was analyzed according to the time series data provided by users to further analyze the evolution of the user's disease progression. BERT word embedding, GRU, and attention mechanisms in our research play major roles in knowledge extraction. The knowledge extraction results obtained are expected to supplement and improve the existing knowledge base, assist doctors' diagnosis, and help users with dynamic lifecycle health management, such as user disease treatment management. In future studies, a co-reference resolution can be introduced to further improve the effect of extracting the relationships among diseases, drugs, and drug effects.
Collapse
Affiliation(s)
- Yanli Zhang
- College of Business Administration, Henan Finance University, Zhengzhou 451464, China
- Business School, Henan University, Kaifeng 475004, China
| | - Xinmiao Li
- School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai 200433, China
| | - Yu Yang
- School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai 200433, China
- China Banking and Insurance Regulatory Commission Neimengu Office, Hohhot 010019, China
| | - Tao Wang
- College of Business Administration, Henan Finance University, Zhengzhou 451464, China
| |
Collapse
|
7
|
Foksinska A, Crowder CM, Crouse AB, Henrikson J, Byrd WE, Rosenblatt G, Patton MJ, He K, Tran-Nguyen TK, Zheng M, Ramsey SA, Amin N, Osborne J, Might M. The precision medicine process for treating rare disease using the artificial intelligence tool mediKanren. Front Artif Intell 2022; 5:910216. [PMID: 36248623 PMCID: PMC9562701 DOI: 10.3389/frai.2022.910216] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
There are over 6,000 different rare diseases estimated to impact 300 million people worldwide. As genetic testing becomes more common practice in the clinical setting, the number of rare disease diagnoses will continue to increase, resulting in the need for novel treatment options. Identifying treatments for these disorders is challenging due to a limited understanding of disease mechanisms, small cohort sizes, interindividual symptom variability, and little commercial incentive to develop new treatments. A promising avenue for treatment is drug repurposing, where FDA-approved drugs are repositioned as novel treatments. However, linking disease mechanisms to drug action can be extraordinarily difficult and requires a depth of knowledge across multiple fields, which is complicated by the rapid pace of biomedical knowledge discovery. To address these challenges, The Hugh Kaul Precision Medicine Institute developed an artificial intelligence tool, mediKanren, that leverages the mechanistic insight of genetic disorders to identify therapeutic options. Using knowledge graphs, mediKanren enables an efficient way to link all relevant literature and databases. This tool has allowed for a scalable process that has been used to help over 500 rare disease families. Here, we provide a description of our process, the advantages of mediKanren, and its impact on rare disease patients.
Collapse
Affiliation(s)
- Aleksandra Foksinska
- The Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Camerron M. Crowder
- The Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew B. Crouse
- The Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - William E. Byrd
- The Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gregory Rosenblatt
- The Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael J. Patton
- The Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kaiwen He
- The Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Thi K. Tran-Nguyen
- The Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marissa Zheng
- Department of Molecular and Cellular Biology, Harvard College, Cambridge, MA, United States
| | - Stephen A. Ramsey
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, United States
| | - Nada Amin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - John Osborne
- Department of Medicine, Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matthew Might
- The Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
8
|
Zhao W, Zhang J, Yang J, Jiang X, He T. Document-Level Chemical-Induced Disease Relation Extraction via Hierarchical Representation Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2782-2793. [PMID: 34077368 DOI: 10.1109/tcbb.2021.3086090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Over the past decades, Chemical-induced Disease (CID) relations have attracted extensive attention in biomedical community, reflecting wide applications in biomedical research and healthcare field. However, prior efforts fail to make full use of the interaction between local and global contexts in biomedical document, and the derived performance needs to be improved accordingly. In this paper, we propose a novel framework for document-level CID relation extraction. More specifically, a stacked Hypergraph Aggregation Neural Network (HANN) layers are introduced to model the complicated interaction between local and global contexts, based on which better contextualized representations are obtained for CID relation extraction. In addition, the CID Relation Heterogeneous Graph is constructed to capture the information with different granularities and improve further the performance of CID relation classification. Experiments on a real-world dataset demonstrate the effectiveness of the proposed framework.
Collapse
|
9
|
Li Z, Wang M, Peng D, Liu J, Xie Y, Dai Z, Zou X. Identification of Chemical-Disease Associations Through Integration of Molecular Fingerprint, Gene Ontology and Pathway Information. Interdiscip Sci 2022; 14:683-696. [PMID: 35391615 DOI: 10.1007/s12539-022-00511-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The identification of chemical-disease association types is helpful not only to discovery lead compounds and study drug repositioning, but also to treat disease and decipher pathomechanism. It is very urgent to develop computational method for identifying potential chemical-disease association types, since wet methods are usually expensive, laborious and time-consuming. In this study, molecular fingerprint, gene ontology and pathway are utilized to characterize chemicals and diseases. A novel predictor is proposed to recognize potential chemical-disease associations at the first layer, and further distinguish whether their relationships belong to biomarker or therapeutic relations at the second layer. The prediction performance of current method is assessed using the benchmark dataset based on ten-fold cross-validation. The practical prediction accuracies of the first layer and the second layer are 78.47% and 72.07%, respectively. The recognition ability for lead compounds, new drug indications, potential and true chemical-disease association pairs has also been investigated and confirmed by constructing a variety of datasets and performing a series of experiments. It is anticipated that the current method can be considered as a powerful high-throughput virtual screening tool for drug researches and developments.
Collapse
Affiliation(s)
- Zhanchao Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Mengru Wang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Dongdong Peng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yun Xie
- HuiZhou University, Huizhou, 516007, People's Republic of China
| | - Zong Dai
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
10
|
Luo L, Lai PT, Wei CH, Lu Z. A sequence labeling framework for extracting drug-protein relations from biomedical literature. Database (Oxford) 2022; 2022:baac058. [PMID: 35856889 PMCID: PMC9297941 DOI: 10.1093/database/baac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Automatic extracting interactions between chemical compound/drug and gene/protein are significantly beneficial to drug discovery, drug repurposing, drug design and biomedical knowledge graph construction. To promote the development of the relation extraction between drug and protein, the BioCreative VII challenge organized the DrugProt track. This paper describes the approach we developed for this task. In addition to the conventional text classification framework that has been widely used in relation extraction tasks, we propose a sequence labeling framework to drug-protein relation extraction. We first comprehensively compared the cutting-edge biomedical pre-trained language models for both frameworks. Then, we explored several ensemble methods to further improve the final performance. In the evaluation of the challenge, our best submission (i.e. the ensemble of models in two frameworks via major voting) achieved the F1-score of 0.795 on the official test set. Further, we realized the sequence labeling framework is more efficient and achieves better performance than the text classification framework. Finally, our ensemble of the sequence labeling models with majority voting achieves the best F1-score of 0.800 on the test set. DATABASE URL https://github.com/lingluodlut/BioCreativeVII_DrugProt.
Collapse
Affiliation(s)
- Ling Luo
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Po-Ting Lai
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Chih-Hsuan Wei
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Zhiyong Lu
- *Corresponding author: Tel: 301 594 7089; Fax: 301 480 2288;
| |
Collapse
|
11
|
Le HQ, Can DC, Collier N. Exploiting document graphs for inter sentence relation extraction. J Biomed Semantics 2022; 13:15. [PMID: 35659292 PMCID: PMC9166375 DOI: 10.1186/s13326-022-00267-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Most previous relation extraction (RE) studies have focused on intra sentence relations and have ignored relations that span sentences, i.e. inter sentence relations. Such relations connect entities at the document level rather than as relational facts in a single sentence. Extracting facts that are expressed across sentences leads to some challenges and requires different approaches than those usually applied in recent intra sentence relation extraction. Despite recent results, there are still limitations to be overcome. Results We present a novel representation for a sequence of consecutive sentences, namely document subgraph, to extract inter sentence relations. Experiments on the BioCreative V Chemical-Disease Relation corpus demonstrate the advantages and robustness of our novel system to extract both intra- and inter sentence relations in biomedical literature abstracts. The experimental results are comparable to state-of-the-art approaches and show the potential by demonstrating the effectiveness of graphs, deep learning-based model, and other processing techniques. Experiments were also carried out to verify the rationality and impact of various additional information and model components. Conclusions Our proposed graph-based representation helps to extract ∼50% of inter sentence relations and boosts the model performance on both precision and recall compared to the baseline model. Supplementary Information The online version contains supplementary material available at (10.1186/s13326-022-00267-3).
Collapse
Affiliation(s)
- Hoang-Quynh Le
- Faculty of Information Technology, VNU University of Engineering and Technology, Hanoi, Vietnam.
| | - Duy-Cat Can
- Faculty of Information Technology, VNU University of Engineering and Technology, Hanoi, Vietnam
| | - Nigel Collier
- Department of Theoretical and Applied Linguistics, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Chen J, Hu B, Peng W, Chen Q, Tang B. Biomedical relation extraction via knowledge-enhanced reading comprehension. BMC Bioinformatics 2022; 23:20. [PMID: 34991458 PMCID: PMC8734165 DOI: 10.1186/s12859-021-04534-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/13/2021] [Indexed: 12/01/2022] Open
Abstract
Background In biomedical research, chemical and disease relation extraction from unstructured biomedical literature is an essential task. Effective context understanding and knowledge integration are two main research problems in this task. Most work of relation extraction focuses on classification for entity mention pairs. Inspired by the effectiveness of machine reading comprehension (RC) in the respect of context understanding, solving biomedical relation extraction with the RC framework at both intra-sentential and inter-sentential levels is a new topic worthy to be explored. Except for the unstructured biomedical text, many structured knowledge bases (KBs) provide valuable guidance for biomedical relation extraction. Utilizing knowledge in the RC framework is also worthy to be investigated. We propose a knowledge-enhanced reading comprehension (KRC) framework to leverage reading comprehension and prior knowledge for biomedical relation extraction. First, we generate questions for each relation, which reformulates the relation extraction task to a question answering task. Second, based on the RC framework, we integrate knowledge representation through an efficient knowledge-enhanced attention interaction mechanism to guide the biomedical relation extraction. Results The proposed model was evaluated on the BioCreative V CDR dataset and CHR dataset. Experiments show that our model achieved a competitive document-level F1 of 71.18% and 93.3%, respectively, compared with other methods. Conclusion Result analysis reveals that open-domain reading comprehension data and knowledge representation can help improve biomedical relation extraction in our proposed KRC framework. Our work can encourage more research on bridging reading comprehension and biomedical relation extraction and promote the biomedical relation extraction.
Collapse
Affiliation(s)
- Jing Chen
- Intelligent Computing Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Baotian Hu
- Intelligent Computing Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Weihua Peng
- Baidu International Technology (Shenzhen) Co., Ltd, Shenzhen, China
| | - Qingcai Chen
- Intelligent Computing Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen, China. .,Peng Cheng Laboratory, Shenzhen, China.
| | - Buzhou Tang
- Intelligent Computing Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen, China.,Peng Cheng Laboratory, Shenzhen, China
| |
Collapse
|
13
|
Li Z, Chen H, Qi R, Lin H, Chen H. DocR-BERT: Document-level R-BERT for Chemical-induced Disease Relation Extraction via Gaussian Probability Distribution. IEEE J Biomed Health Inform 2021; 26:1341-1352. [PMID: 34591774 DOI: 10.1109/jbhi.2021.3116769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chemical-induced disease (CID) relation extraction from biomedical articles plays an important role in disease treatment and drug development. Existing methods are insufficient for capturing complete document level semantic information due to ignoring semantic information of entities in different sentences. In this work, we proposed an effective document-level relation extraction model to automatically extract intra-/inter-sentential CID relations from articles. Firstly, our model employed BERT to generate contextual semantic representations of the title, abstract and shortest dependency paths (SDPs). Secondly, to enhance the semantic representation of the whole document, cross attention with self-attention (named cross2self-attention) between abstract, title and SDPs was proposed to learn the mutual semantic information. Thirdly, to distinguish the importance of the target entity in different sentences, the Gaussian probability distribution was utilized to compute the weights of the co-occurrence sentence and its adjacent entity sentences. More complete semantic information of the target entity is collected from all entities occurring in the document via our presented document-level R-BERT (DocR-BERT). Finally, the related representations were concatenated and fed into the softmax function to extract CIDs. We evaluated the model on the CDR corpus provided by BioCreative V. The proposed model without external resources is superior in performance as compared with other state-of-the-art models (our model achieves 53.5%, 70%, and 63.7% of the F1-score on inter-/intra-sentential and overall CDR dataset). The experimental results indicate that cross2self-attention, the Gaussian probability distribution and DocR-BERT can effectively improve the CID extraction performance. Furthermore, the mutual semantic information learned by the cross self-attention from abstract towards title can significantly influence the extraction performance of document-level biomedical relation extraction tasks.
Collapse
|
14
|
Kanjirangat V, Rinaldi F. Enhancing Biomedical Relation Extraction with Transformer Models using Shortest Dependency Path Features and Triplet Information. J Biomed Inform 2021; 122:103893. [PMID: 34481058 DOI: 10.1016/j.jbi.2021.103893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
Entity relation extraction plays an important role in the biomedical, healthcare, and clinical research areas. Recently, pre-trained models based on transformer architectures and their variants have shown remarkable performances in various natural language processing tasks. Most of these variants were based on slight modifications in the architectural components, representation schemes and augmenting data using distant supervision methods. In distantly supervised methods, one of the main challenges is pruning out noisy samples. A similar situation can arise when the training samples are not directly available but need to be constructed from the given dataset. The BioCreative V Chemical Disease Relation (CDR) task provides a dataset that does not explicitly offer mention-level gold annotations and hence replicates the above scenario. Selecting the representative sentences from the given abstract or document text that could convey a potential entity relationship becomes essential. Most of the existing methods in literature propose to either consider the entire text or all the sentences which contain the entity mentions. This could be a computationally expensive and time consuming approach. This paper presents a novel approach to handle such scenarios, specifically in biomedical relation extraction. We propose utilizing the Shortest Dependency Path (SDP) features for constructing data samples by pruning out noisy information and selecting the most representative samples for model learning. We also utilize triplet information in model learning using the biomedical variant of BERT, viz., BioBERT. The problem is represented as a sentence pair classification task using the sentence and the entity-relation pair as input. We analyze the approach on both intra-sentential and inter-sentential relations in the CDR dataset. The proposed approach that utilizes the SDP and triplet features presents promising results, specifically on the inter-sentential relation extraction task. We make the code used for this work publicly available on Github.1.
Collapse
Affiliation(s)
- Vani Kanjirangat
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale USI/SUPSI, Lugano, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Fabio Rinaldi
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale USI/SUPSI, Lugano, Switzerland; Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
15
|
Document-level relation extraction via graph transformer networks and temporal convolutional networks. Pattern Recognit Lett 2021. [DOI: 10.1016/j.patrec.2021.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Full-Abstract Biomedical Relation Extraction with Keyword-Attentive Domain Knowledge Infusion. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Relation extraction (RE) is an essential task in natural language processing. Given a context, RE aims to classify an entity-mention pair into a set of pre-defined relations. In the biomedical field, building an efficient and accurate RE system is critical for the construction of a domain knowledge base to support upper-level applications. Recent advances have witnessed a focus shift from sentence to document-level RE problems, which are more challenging due to the need for inter- and intra-sentence semantic reasoning. This type of distant dependency is difficult to understand and capture for a learning algorithm. To address the challenge, prior efforts either attempted to improve the cross sentence text representation or infuse domain or local knowledge into the model. Both strategies demonstrated efficacy on various datasets. In this paper, a keyword-attentive knowledge infusion strategy is proposed and integrated into BioBERT. A domain keyword collection mechanism is developed to discover the most relation-suggestive word tokens for bio-entities in a given context. By manipulating the attention masks, the model can be guided to focus on the semantic interaction between bio-entities linked by the keywords. We validated the proposed method on the Biocreative V Chemical Disease Relation dataset with an F1 of 75.6%, outperforming the state-of-the-art by 5.6%.
Collapse
|
17
|
Zeng D, Zhao C, Quan Z. CID-GCN: An Effective Graph Convolutional Networks for Chemical-Induced Disease Relation Extraction. Front Genet 2021; 12:624307. [PMID: 33643385 PMCID: PMC7902761 DOI: 10.3389/fgene.2021.624307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/18/2021] [Indexed: 11/26/2022] Open
Abstract
Automatic extraction of chemical-induced disease (CID) relation from unstructured text is of essential importance for disease treatment and drug development. In this task, some relational facts can only be inferred from the document rather than single sentence. Recently, researchers investigate graph-based approaches to extract relations across sentences. It iteratively combines the information from neighbor nodes to model the interactions in entity mentions that exist in different sentences. Despite their success, one severe limitation of the graph-based approaches is the over-smoothing problem, which decreases the model distinguishing ability. In this paper, we propose CID-GCN, an effective Graph Convolutional Networks (GCNs) with gating mechanism, for CID relation extraction. Specifically, we construct a heterogeneous graph which contains mention, sentence and entity nodes. Then, the graph convolution operation is employed to aggregate interactive information on the constructed graph. Particularly, we combine gating mechanism with the graph convolution operation to address the over-smoothing problem. The experimental results demonstrate that our approach significantly outperforms the baselines.
Collapse
Affiliation(s)
- Daojian Zeng
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China
| | - Chao Zhao
- School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China
| | - Zhe Quan
- College of Information Science and Engineering, Hunan University, Changsha, China
| |
Collapse
|
18
|
Mitra S, Saha S, Hasanuzzaman M. A Multi-View Deep Neural Network Model for Chemical-Disease Relation Extraction From Imbalanced Datasets. IEEE J Biomed Health Inform 2020; 24:3315-3325. [DOI: 10.1109/jbhi.2020.2983365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Quality Matters: Biocuration Experts on the Impact of Duplication and Other Data Quality Issues in Biological Databases. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:91-103. [PMID: 32652120 PMCID: PMC7646089 DOI: 10.1016/j.gpb.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 10/24/2018] [Accepted: 12/14/2018] [Indexed: 11/27/2022]
|
20
|
Kilicoglu H, Rosemblat G, Fiszman M, Shin D. Broad-coverage biomedical relation extraction with SemRep. BMC Bioinformatics 2020; 21:188. [PMID: 32410573 PMCID: PMC7222583 DOI: 10.1186/s12859-020-3517-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the era of information overload, natural language processing (NLP) techniques are increasingly needed to support advanced biomedical information management and discovery applications. In this paper, we present an in-depth description of SemRep, an NLP system that extracts semantic relations from PubMed abstracts using linguistic principles and UMLS domain knowledge. We also evaluate SemRep on two datasets. In one evaluation, we use a manually annotated test collection and perform a comprehensive error analysis. In another evaluation, we assess SemRep's performance on the CDR dataset, a standard benchmark corpus annotated with causal chemical-disease relationships. RESULTS A strict evaluation of SemRep on our manually annotated dataset yields 0.55 precision, 0.34 recall, and 0.42 F 1 score. A relaxed evaluation, which more accurately characterizes SemRep performance, yields 0.69 precision, 0.42 recall, and 0.52 F 1 score. An error analysis reveals named entity recognition/normalization as the largest source of errors (26.9%), followed by argument identification (14%) and trigger detection errors (12.5%). The evaluation on the CDR corpus yields 0.90 precision, 0.24 recall, and 0.38 F 1 score. The recall and the F 1 score increase to 0.35 and 0.50, respectively, when the evaluation on this corpus is limited to sentence-bound relationships, which represents a fairer evaluation, as SemRep operates at the sentence level. CONCLUSIONS SemRep is a broad-coverage, interpretable, strong baseline system for extracting semantic relations from biomedical text. It also underpins SemMedDB, a literature-scale knowledge graph based on semantic relations. Through SemMedDB, SemRep has had significant impact in the scientific community, supporting a variety of clinical and translational applications, including clinical decision making, medical diagnosis, drug repurposing, literature-based discovery and hypothesis generation, and contributing to improved health outcomes. In ongoing development, we are redesigning SemRep to increase its modularity and flexibility, and addressing weaknesses identified in the error analysis.
Collapse
Affiliation(s)
- Halil Kilicoglu
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, 8600 Rockville Pike, Bethesda, 20894 MD USA
- University of Illinois at Urbana-Champaign, School of Information Sciences, 501 E Daniel Street, Champaign, 61820 IL USA
| | - Graciela Rosemblat
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, 8600 Rockville Pike, Bethesda, 20894 MD USA
| | | | - Dongwook Shin
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, 8600 Rockville Pike, Bethesda, 20894 MD USA
| |
Collapse
|
21
|
Lai PT, Lu WL, Kuo TR, Chung CR, Han JC, Tsai RTH, Horng JT. Using a Large Margin Context-Aware Convolutional Neural Network to Automatically Extract Disease-Disease Association from Literature: Comparative Analytic Study. JMIR Med Inform 2019; 7:e14502. [PMID: 31769759 PMCID: PMC6913619 DOI: 10.2196/14502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/26/2019] [Accepted: 08/11/2019] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Research on disease-disease association (DDA), like comorbidity and complication, provides important insights into disease treatment and drug discovery, and a large body of the literature has been published in the field. However, using current search tools, it is not easy for researchers to retrieve information on the latest DDA findings. First, comorbidity and complication keywords pull up large numbers of PubMed studies. Second, disease is not highlighted in search results. Finally, DDA is not identified, as currently no disease-disease association extraction (DDAE) dataset or tools are available. OBJECTIVE As there are no available DDAE datasets or tools, this study aimed to develop (1) a DDAE dataset and (2) a neural network model for extracting DDA from the literature. METHODS In this study, we formulated DDAE as a supervised machine learning classification problem. To develop the system, we first built a DDAE dataset. We then employed two machine learning models, support vector machine and convolutional neural network, to extract DDA. Furthermore, we evaluated the effect of using the output layer as features of the support vector machine-based model. Finally, we implemented large margin context-aware convolutional neural network architecture to integrate context features and convolutional neural networks through the large margin function. RESULTS Our DDAE dataset consisted of 521 PubMed abstracts. Experiment results showed that the support vector machine-based approach achieved an F1 measure of 80.32%, which is higher than the convolutional neural network-based approach (73.32%). Using the output layer of convolutional neural network as a feature for the support vector machine does not further improve the performance of support vector machine. However, our large margin context-aware-convolutional neural network achieved the highest F1 measure of 84.18% and demonstrated that combining the hinge loss function of support vector machine with a convolutional neural network into a single neural network architecture outperforms other approaches. CONCLUSIONS To facilitate the development of text-mining research for DDAE, we developed the first publicly available DDAE dataset consisting of disease mentions, Medical Subject Heading IDs, and relation annotations. We developed different conventional machine learning models and neural network architectures and evaluated their effects on our DDAE dataset. To further improve DDAE performance, we propose an large margin context-aware-convolutional neural network model for DDAE that outperforms other approaches.
Collapse
Affiliation(s)
- Po-Ting Lai
- Department of Computer Science National Tsing Hua University, Hsinchu, Province of China Taiwan
| | - Wei-Liang Lu
- Department of Computer Science & Information Engineering, National Central University, Taoyuan, Province of China Taiwan
| | - Ting-Rung Kuo
- Department of Computer Science & Information Engineering, National Central University, Taoyuan, Province of China Taiwan
| | - Chia-Ru Chung
- Department of Computer Science & Information Engineering, National Central University, Taoyuan, Province of China Taiwan
| | - Jen-Chieh Han
- Department of Computer Science & Information Engineering, National Central University, Taoyuan, Province of China Taiwan
| | - Richard Tzong-Han Tsai
- Department of Computer Science & Information Engineering, National Central University, Taoyuan, Province of China Taiwan
| | - Jorng-Tzong Horng
- Department of Computer Science & Information Engineering, National Central University, Taoyuan, Province of China Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Province of China Taiwan
| |
Collapse
|
22
|
Zhou H, Li X, Yao W, Liu Z, Ning S, Lang C, Du L. Improving neural protein-protein interaction extraction with knowledge selection. Comput Biol Chem 2019; 83:107146. [PMID: 31707129 DOI: 10.1016/j.compbiolchem.2019.107146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 11/29/2022]
Abstract
Protein-protein interaction (PPI) extraction from published scientific literature provides additional support for precision medicine efforts. Meanwhile, knowledge bases (KBs) contain huge amounts of structured information of protein entities and their relations, which can be encoded in entity and relation embeddings to help PPI extraction. However, the prior knowledge of protein-protein pairs must be selectively used so that it is suitable for different contexts. This paper proposes a Knowledge Selection Model (KSM) to fuse the selected prior knowledge and context information for PPI extraction. Firstly, two Transformers encode the context sequence of a protein pair according to each protein embedding, respectively. Then, the two outputs are fed to a mutual attention to capture the important context features towards the protein pair. Next, the context features are used to distill the relation embedding by a knowledge selector. Finally, the selected relation embedding and the context features are concatenated for PPI extraction. Experiments on the BioCreative VI PPI dataset show that KSM achieves a new state-of-the-art performance (38.08 % F1-score) by adding knowledge selection.
Collapse
Affiliation(s)
- Huiwei Zhou
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Xuefei Li
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Weihong Yao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Zhuang Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Shixian Ning
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Chengkun Lang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Lei Du
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| |
Collapse
|
23
|
Zhou H, Yang Y, Ning S, Liu Z, Lang C, Lin Y, Huang D. Combining Context and Knowledge Representations for Chemical-Disease Relation Extraction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1879-1889. [PMID: 29994540 DOI: 10.1109/tcbb.2018.2838661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Automatically extracting the relationships between chemicals and diseases is significantly important to various areas of biomedical research and health care. Biomedical experts have built many large-scale knowledge bases (KBs) to advance the development of biomedical research. KBs contain huge amounts of structured information about entities and relationships, therefore plays a pivotal role in chemical-disease relation (CDR) extraction. However, previous researches pay less attention to the prior knowledge existing in KBs. This paper proposes a neural network-based attention model (NAM) for CDR extraction, which makes full use of context information in documents and prior knowledge in KBs. For a pair of entities in a document, an attention mechanism is employed to select important context words with respect to the relation representations learned from KBs. Experiments on the BioCreative V CDR dataset show that combining context and knowledge representations through the attention mechanism, could significantly improve the CDR extraction performance while achieve comparable results with state-of-the-art systems.
Collapse
|
24
|
Zhang Y, Lu Z. Exploring semi-supervised variational autoencoders for biomedical relation extraction. Methods 2019; 166:112-119. [PMID: 30822516 PMCID: PMC6708455 DOI: 10.1016/j.ymeth.2019.02.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/28/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022] Open
Abstract
The biomedical literature provides a rich source of knowledge such as protein-protein interactions (PPIs), drug-drug interactions (DDIs) and chemical-protein interactions (CPIs). Biomedical relation extraction aims to automatically extract biomedical relations from biomedical text for various biomedical research. State-of-the-art methods for biomedical relation extraction are primarily based on supervised machine learning and therefore depend on (sufficient) labeled data. However, creating large sets of training data is prohibitively expensive and labor-intensive, especially so in biomedicine as domain knowledge is required. In contrast, there is a large amount of unlabeled biomedical text available in PubMed. Hence, computational methods capable of employing unlabeled data to reduce the burden of manual annotation are of particular interest in biomedical relation extraction. We present a novel semi-supervised approach based on variational autoencoder (VAE) for biomedical relation extraction. Our model consists of the following three parts, a classifier, an encoder and a decoder. The classifier is implemented using multi-layer convolutional neural networks (CNNs), and the encoder and decoder are implemented using both bidirectional long short-term memory networks (Bi-LSTMs) and CNNs, respectively. The semi-supervised mechanism allows our model to learn features from both the labeled and unlabeled data. We evaluate our method on multiple public PPI, DDI and CPI corpora. Experimental results show that our method effectively exploits the unlabeled data to improve the performance and reduce the dependence on labeled data. To our best knowledge, this is the first semi-supervised VAE-based method for (biomedical) relation extraction. Our results suggest that exploiting such unlabeled data can be greatly beneficial to improved performance in various biomedical relation extraction, especially when only limited labeled data (e.g. 2000 samples or less) is available in such tasks.
Collapse
Affiliation(s)
- Yijia Zhang
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA; School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA.
| |
Collapse
|
25
|
Gu J, Sun F, Qian L, Zhou G. Chemical-induced disease relation extraction via attention-based distant supervision. BMC Bioinformatics 2019; 20:403. [PMID: 31331263 PMCID: PMC6647285 DOI: 10.1186/s12859-019-2884-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 05/08/2019] [Indexed: 11/24/2022] Open
Abstract
Background Automatically understanding chemical-disease relations (CDRs) is crucial in various areas of biomedical research and health care. Supervised machine learning provides a feasible solution to automatically extract relations between biomedical entities from scientific literature, its success, however, heavily depends on large-scale biomedical corpora manually annotated with intensive labor and tremendous investment. Results We present an attention-based distant supervision paradigm for the BioCreative-V CDR extraction task. Training examples at both intra- and inter-sentence levels are generated automatically from the Comparative Toxicogenomics Database (CTD) without any human intervention. An attention-based neural network and a stacked auto-encoder network are applied respectively to induce learning models and extract relations at both levels. After merging the results of both levels, the document-level CDRs can be finally extracted. It achieves the precision/recall/F1-score of 60.3%/73.8%/66.4%, outperforming the state-of-the-art supervised learning systems without using any annotated corpus. Conclusion Our experiments demonstrate that distant supervision is promising for extracting chemical disease relations from biomedical literature, and capturing both local and global attention features simultaneously is effective in attention-based distantly supervised learning.
Collapse
Affiliation(s)
- Jinghang Gu
- Natural Language Processing Lab, School of Computer Science and Technology, Soochow University, 1 Shizi Street, Suzhou, China.,Big Data Group, Baidu Inc., Beijing, China
| | - Fuqing Sun
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Longhua Qian
- Natural Language Processing Lab, School of Computer Science and Technology, Soochow University, 1 Shizi Street, Suzhou, China.
| | - Guodong Zhou
- Natural Language Processing Lab, School of Computer Science and Technology, Soochow University, 1 Shizi Street, Suzhou, China
| |
Collapse
|
26
|
Zhou H, Lang C, Liu Z, Ning S, Lin Y, Du L. Knowledge-guided convolutional networks for chemical-disease relation extraction. BMC Bioinformatics 2019; 20:260. [PMID: 31113357 PMCID: PMC6528333 DOI: 10.1186/s12859-019-2873-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/02/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Automatic extraction of chemical-disease relations (CDR) from unstructured text is of essential importance for disease treatment and drug development. Meanwhile, biomedical experts have built many highly-structured knowledge bases (KBs), which contain prior knowledge about chemicals and diseases. Prior knowledge provides strong support for CDR extraction. How to make full use of it is worth studying. RESULTS This paper proposes a novel model called "Knowledge-guided Convolutional Networks (KCN)" to leverage prior knowledge for CDR extraction. The proposed model first learns knowledge representations including entity embeddings and relation embeddings from KBs. Then, entity embeddings are used to control the propagation of context features towards a chemical-disease pair with gated convolutions. After that, relation embeddings are employed to further capture the weighted context features by a shared attention pooling. Finally, the weighted context features containing additional knowledge information are used for CDR extraction. Experiments on the BioCreative V CDR dataset show that the proposed KCN achieves 71.28% F1-score, which outperforms most of the state-of-the-art systems. CONCLUSIONS This paper proposes a novel CDR extraction model KCN to make full use of prior knowledge. Experimental results demonstrate that KCN could effectively integrate prior knowledge and contexts for the performance improvement.
Collapse
Affiliation(s)
- Huiwei Zhou
- School of Computer Science and Technology, Dalian University of Technology, Chuangxinyuan Building, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, China.
| | - Chengkun Lang
- School of Computer Science and Technology, Dalian University of Technology, Chuangxinyuan Building, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, China
| | - Zhuang Liu
- School of Computer Science and Technology, Dalian University of Technology, Chuangxinyuan Building, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, China
| | - Shixian Ning
- School of Computer Science and Technology, Dalian University of Technology, Chuangxinyuan Building, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, China
| | - Yingyu Lin
- School of Foreign Languages, Dalian University of Technology, Arts Building, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, China
| | - Lei Du
- School of Mathematical Sciences, Dalian University of Technology, Chuangxinyuan Building, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, China
| |
Collapse
|
27
|
Liu S, Shao Y, Qian L, Zhou G. Hierarchical sequence labeling for extracting BEL statements from biomedical literature. BMC Med Inform Decis Mak 2019; 19:63. [PMID: 30961584 PMCID: PMC6454591 DOI: 10.1186/s12911-019-0758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Extracting relations between bio-entities from biomedical literature is often a challenging task and also an essential step towards biomedical knowledge expansion. The BioCreative community has organized a shared task to evaluate the robustness of the causal relationship extraction algorithms in Biological Expression Language (BEL) from biomedical literature. Method We first map the sentence-level BEL statements in the BC-V training corpus to the corresponding text segments, thus generating hierarchically tagged training instances. A hierarchical sequence labeling model was afterwards induced from these training instances and applied to the test sentences in order to construct the BEL statements. Results The experimental results on extracting BEL statements from BioCreative V Track 4 test corpus show that our method achieves promising performance with an overall F-measure of 31.6%. Furthermore, it has the potential to be enhanced by adopting more advanced machine learning approaches. Conclusion We propose a framework for hierarchical relation extraction using hierarchical sequence labeling on the instance-level training corpus derived from the original sentence-level corpus via word alignment. Its main advantage is that we can make full use of the original training corpus to induce the sequence labelers and then apply them to the test corpus.
Collapse
Affiliation(s)
- Suwen Liu
- School of Computer Science and Technology, Soochow University, Suzhou, China
| | - Yifan Shao
- School of Computer Science and Technology, Soochow University, Suzhou, China
| | - Longhua Qian
- School of Computer Science and Technology, Soochow University, Suzhou, China.
| | - Guodong Zhou
- School of Computer Science and Technology, Soochow University, Suzhou, China
| |
Collapse
|
28
|
Liu S, Cheng W, Qian L, Zhou G. Combining relation extraction with function detection for BEL statement extraction. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5277249. [PMID: 30624649 PMCID: PMC6323300 DOI: 10.1093/database/bay133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/26/2018] [Indexed: 11/29/2022]
Abstract
The BioCreative-V community proposed a challenging task of automatic extraction of causal relation network in Biological Expression Language (BEL) from the biomedical literature. Previous studies on this task largely used models induced from other related tasks and then transformed intermediate structures to BEL statements, which left the given training corpus unexplored. To make full use of the BEL training corpus, in this work, we propose a deep learning-based approach to extract BEL statements. Specifically, we decompose the problem into two subtasks: entity relation extraction and entity function detection. First, two attention-based bidirectional long short-term memory networks models are used to extract entity relation and entity function, respectively. Then entity relation and their functions are combined into a BEL statement. In order to boost the overall performance, a strategy of threshold filtering is applied to improve the precision of identified entity functions. We evaluate our approach on the BioCreative-V Track 4 corpus with or without gold entities. The experimental results show that our method achieves the state-of-the-art performance with an overall F1-measure of 46.9% in stage 2 and 21.3% in stage 1, respectively.
Collapse
Affiliation(s)
- Suwen Liu
- School of Computer Science and Technology, Soochow University, Suzhou, China
| | - Wei Cheng
- School of Computer Science and Technology, Soochow University, Suzhou, China
| | - Longhua Qian
- School of Computer Science and Technology, Soochow University, Suzhou, China
| | - Guodong Zhou
- School of Computer Science and Technology, Soochow University, Suzhou, China
| |
Collapse
|
29
|
Onye SC, Akkeleş A, Dimililer N. relSCAN - A system for extracting chemical-induced disease relation from biomedical literature. J Biomed Inform 2018; 87:79-87. [PMID: 30296491 DOI: 10.1016/j.jbi.2018.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/17/2018] [Accepted: 09/30/2018] [Indexed: 11/20/2022]
Abstract
This paper proposes an effective and robust approach for Chemical-Induced Disease (CID) relation extraction from PubMed articles. The study was performed on the Chemical Disease Relation (CDR) task of BioCreative V track-3 corpus. The proposed system, named relSCAN, is an efficient CID relation extraction system with two phases to classify relation instances from the Co-occurrence and Non-Co-occurrence mention levels. We describe the case of chemical and disease mentions that occur in the same sentence as 'Co-occurrence', or as 'Non-Co-occurrence' otherwise. In the first phase, the relation instances are constructed on both mention levels. In the second phase, we employ a hybrid feature set to classify the relation instances at both of these mention levels using the combination of two Machine Learning (ML) classifiers (Support Vector Machine (SVM) and J48 Decision tree). This system is entirely corpus dependent and does not rely on information from external resources in order to boost its performance. We achieved good results, which are comparable with the other state-of-the-art CID relation extraction systems on the BioCreative V corpus. Furthermore, our system achieves the best performance on the Non-Co-occurrence mention level.
Collapse
Affiliation(s)
- Stanley Chika Onye
- Department of Applied Mathematics and Computer Science, Faculty of Arts & Sciences, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey.
| | - Arif Akkeleş
- Department of Mathematics, Faculty of Arts & Sciences, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
| | - Nazife Dimililer
- Department of Information Technology, School of Computing and Technology, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
| |
Collapse
|
30
|
Zheng W, Lin H, Liu X, Xu B. A document level neural model integrated domain knowledge for chemical-induced disease relations. BMC Bioinformatics 2018; 19:328. [PMID: 30223767 PMCID: PMC6142695 DOI: 10.1186/s12859-018-2316-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 08/14/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The effective combination of texts and knowledge may improve performances of natural language processing tasks. For the recognition of chemical-induced disease (CID) relations which may span sentence boundaries in an article, although existing CID systems explored the utilization for knowledge bases, the effects of different knowledge on the identification of a special CID haven't been distinguished by these systems. Moreover, systems based on neural network only constructed sentence or mention level models. RESULTS In this work, we proposed an effective document level neural model integrated domain knowledge to extract CID relations from biomedical articles. Basic semantic information of an article with respect to a special CID candidate pair was learned from the document level sub-network module. Furthermore, knowledge attention depending on the representation of the article was proposed to distinguish the influences of different knowledge on the special CID pair and then the final representation of knowledge was formed by aggregating weighed knowledge. Finally, the integrated representations of texts and knowledge were passed to a softmax classifier to perform the CID recognition. Experimental results on the chemical-disease relation corpus proposed by BioCreative V show that our proposed system integrated knowledge achieves a good overall performance compared with other state-of-the-art systems. CONCLUSIONS Experimental analyses demonstrate that the introduced attention mechanism on domain knowledge plays a significant role in distinguishing influences of different knowledge on the judgment for a special CID relation.
Collapse
Affiliation(s)
- Wei Zheng
- College of Computer Science and Technology, Dalian University of Technology, Dalian, China.,College of Software, Dalian JiaoTong University, Dalian, China
| | - Hongfei Lin
- College of Computer Science and Technology, Dalian University of Technology, Dalian, China.
| | - Xiaoxia Liu
- College of Computer Science and Technology, Dalian University of Technology, Dalian, China
| | - Bo Xu
- College of Computer Science and Technology, Dalian University of Technology, Dalian, China.
| |
Collapse
|
31
|
Chemical-induced disease relation extraction with dependency information and prior knowledge. J Biomed Inform 2018; 84:171-178. [DOI: 10.1016/j.jbi.2018.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 11/18/2022]
|
32
|
Zheng W, Lin H, Li Z, Liu X, Li Z, Xu B, Zhang Y, Yang Z, Wang J. An effective neural model extracting document level chemical-induced disease relations from biomedical literature. J Biomed Inform 2018; 83:1-9. [DOI: 10.1016/j.jbi.2018.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/14/2018] [Accepted: 05/04/2018] [Indexed: 01/06/2023]
|
33
|
Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, Ferrero E, Agapow PM, Zietz M, Hoffman MM, Xie W, Rosen GL, Lengerich BJ, Israeli J, Lanchantin J, Woloszynek S, Carpenter AE, Shrikumar A, Xu J, Cofer EM, Lavender CA, Turaga SC, Alexandari AM, Lu Z, Harris DJ, DeCaprio D, Qi Y, Kundaje A, Peng Y, Wiley LK, Segler MHS, Boca SM, Swamidass SJ, Huang A, Gitter A, Greene CS. Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface 2018; 15:20170387. [PMID: 29618526 PMCID: PMC5938574 DOI: 10.1098/rsif.2017.0387] [Citation(s) in RCA: 905] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 03/07/2018] [Indexed: 11/12/2022] Open
Abstract
Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems-patient classification, fundamental biological processes and treatment of patients-and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural network's prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine.
Collapse
Affiliation(s)
- Travers Ching
- Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Daniel S Himmelstein
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brett K Beaulieu-Jones
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandr A Kalinin
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Gregory P Way
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Enrico Ferrero
- Computational Biology and Stats, Target Sciences, GlaxoSmithKline, Stevenage, UK
| | | | - Michael Zietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael M Hoffman
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Wei Xie
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Gail L Rosen
- Ecological and Evolutionary Signal-processing and Informatics Laboratory, Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | - Benjamin J Lengerich
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Johnny Israeli
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Jack Lanchantin
- Department of Computer Science, University of Virginia, Charlottesville, VA, USA
| | - Stephen Woloszynek
- Ecological and Evolutionary Signal-processing and Informatics Laboratory, Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Avanti Shrikumar
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, IL, USA
| | - Evan M Cofer
- Department of Computer Science, Trinity University, San Antonio, TX, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Christopher A Lavender
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Srinivas C Turaga
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Amr M Alexandari
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Zhiyong Lu
- National Center for Biotechnology Information and National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David J Harris
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | | | - Yanjun Qi
- Department of Computer Science, University of Virginia, Charlottesville, VA, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Yifan Peng
- National Center for Biotechnology Information and National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Laura K Wiley
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marwin H S Segler
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Simina M Boca
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
| | - S Joshua Swamidass
- Department of Pathology and Immunology, Washington University in Saint Louis, St Louis, MO, USA
| | - Austin Huang
- Department of Medicine, Brown University, Providence, RI, USA
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Learning for clinical named entity recognition without manual annotations. INFORMATICS IN MEDICINE UNLOCKED 2018. [DOI: 10.1016/j.imu.2018.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
35
|
Taewijit S, Theeramunkong T, Ikeda M. Distant Supervision with Transductive Learning for Adverse Drug Reaction Identification from Electronic Medical Records. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:7575280. [PMID: 29090077 PMCID: PMC5635478 DOI: 10.1155/2017/7575280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/19/2017] [Indexed: 11/17/2022]
Abstract
Information extraction and knowledge discovery regarding adverse drug reaction (ADR) from large-scale clinical texts are very useful and needy processes. Two major difficulties of this task are the lack of domain experts for labeling examples and intractable processing of unstructured clinical texts. Even though most previous works have been conducted on these issues by applying semisupervised learning for the former and a word-based approach for the latter, they face with complexity in an acquisition of initial labeled data and ignorance of structured sequence of natural language. In this study, we propose automatic data labeling by distant supervision where knowledge bases are exploited to assign an entity-level relation label for each drug-event pair in texts, and then, we use patterns for characterizing ADR relation. The multiple-instance learning with expectation-maximization method is employed to estimate model parameters. The method applies transductive learning to iteratively reassign a probability of unknown drug-event pair at the training time. By investigating experiments with 50,998 discharge summaries, we evaluate our method by varying large number of parameters, that is, pattern types, pattern-weighting models, and initial and iterative weightings of relations for unlabeled data. Based on evaluations, our proposed method outperforms the word-based feature for NB-EM (iEM), MILR, and TSVM with F1 score of 11.3%, 9.3%, and 6.5% improvement, respectively.
Collapse
Affiliation(s)
- Siriwon Taewijit
- The School of Information, Communication and Computer Technologies, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12120, Thailand
- The School of Knowledge Science, Japan Advanced Institute of Science and Technology, Nomi 923-1292, Japan
| | - Thanaruk Theeramunkong
- The School of Information, Communication and Computer Technologies, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12120, Thailand
| | - Mitsuru Ikeda
- The School of Knowledge Science, Japan Advanced Institute of Science and Technology, Nomi 923-1292, Japan
| |
Collapse
|
36
|
Gu J, Sun F, Qian L, Zhou G. Chemical-induced disease relation extraction via convolutional neural network. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2017; 2017:3098440. [PMID: 28415073 PMCID: PMC5467558 DOI: 10.1093/database/bax024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/01/2017] [Indexed: 01/08/2023]
Abstract
This article describes our work on the BioCreative-V chemical–disease relation (CDR) extraction task, which employed a maximum entropy (ME) model and a convolutional neural network model for relation extraction at inter- and intra-sentence level, respectively. In our work, relation extraction between entity concepts in documents was simplified to relation extraction between entity mentions. We first constructed pairs of chemical and disease mentions as relation instances for training and testing stages, then we trained and applied the ME model and the convolutional neural network model for inter- and intra-sentence level, respectively. Finally, we merged the classification results from mention level to document level to acquire the final relations between chemical and disease concepts. The evaluation on the BioCreative-V CDR corpus shows the effectiveness of our proposed approach. Database URL:http://www.biocreative.org/resources/corpora/biocreative-v-cdr-corpus/
Collapse
Affiliation(s)
- Jinghang Gu
- School of Computer Science and Technology, Soochow University, 1 Shizi Street, Suzhou, China
| | - Fuqing Sun
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 17 Qihelou Street, Beijing, China
| | - Longhua Qian
- School of Computer Science and Technology, Soochow University, 1 Shizi Street, Suzhou, China
| | - Guodong Zhou
- School of Computer Science and Technology, Soochow University, 1 Shizi Street, Suzhou, China
| |
Collapse
|