1
|
He J, Burova E, Taduriyasas C, Ni M, Adler C, Wei Y, Negron N, Xiong K, Bai Y, Shavlakadze T, Ioffe E, Lin JC, Ferrando A, Glass DJ. Single cell-resolved cellular, transcriptional, and epigenetic changes in mouse T cell populations linked to age-associated immune decline. Proc Natl Acad Sci U S A 2025; 122:e2425992122. [PMID: 40163732 PMCID: PMC12002302 DOI: 10.1073/pnas.2425992122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Splenic T cells are pivotal to the immune system, yet their function deteriorates with age. To elucidate the specific aspects of T cell biology affected by aging, we conducted a comprehensive multi-time point single-cell RNA sequencing study, complemented by single-cell Assay for Transposase Accessible Chromatin (ATAC) sequencing and single-cell T cell repertoire (TCR) sequencing on splenic T cells from mice across 10 different age groups. This map of age-related changes in the distribution of T cell lineages and functional states reveals broad changes in T cell function and composition, including a prominent enrichment of Gzmk+ T cells in aged mice, encompassing both CD4+ and CD8+ T cell subsets. Notably, there is a marked decrease in TCR diversity across specific T cell populations in aged mice. We identified key pathways that may underlie the perturbation of T cell functions with aging, supporting cytotoxic T cell clonal expansion with age. This study provides insights into the aging process of splenic T cells and also highlights potential targets for therapeutic intervention to enhance immune function in the elderly. The dataset should serve as a resource for further research into age-related immune dysfunction and for identifying potential therapeutic strategies.
Collapse
Affiliation(s)
- Jing He
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | | | - Min Ni
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | - Yi Wei
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | - Kun Xiong
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | - Yu Bai
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | - Ella Ioffe
- Preclinical and Early Development, Cullinan Therapeutics, Cambridge, MA02142
| | - John C. Lin
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | | |
Collapse
|
2
|
Li E, Wang R, Li Y, Zan X, Wu S, Yin Y, Yang X, Yin L, Zhang Y, Li J, Zhao X, Zhang C. A Novel Research Paradigm for Sarcopenia of Limb Muscles: Lessons From the Perpetually Working Diaphragm's Anti-Aging Mechanisms. J Cachexia Sarcopenia Muscle 2025; 16:e13797. [PMID: 40223287 PMCID: PMC11994741 DOI: 10.1002/jcsm.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Skeletal muscle function and mass continuously decrease during aging. Most studies target limb muscles owing to their direct impact on mobility and falls risk. The diaphragm (DIA), also a type of skeletal muscle with different phenotype, has received less attention. Comparative research of the DIA and limb muscles can reveal their distinct aging characteristics. Critically, the potential endogenous anti-aging mechanisms of DIA that may provide new insights into the mechanisms of sarcopenia in limb muscles remain scarce. METHODS Treadmill and grip tests assessed limb muscle function, while a lung function system evaluated respiratory function in both adult (6-month-old) and old (22-month-old) mice. Histological assessments evaluated muscle mass in both the DIA and tibialis anterior (TA). Transcriptome sequencing identified differentially expressed genes (DEGs) between the DIA and TA with aging. Adeno-associated virus (AAV)-encoding short hairpin (sh) RNA targeting gene was injected into adult mice's TA muscles to knockdown target gene level in TA, and AAV-gene was injected into old mice's TA to overexpress target gene level. RESULTS Old mice displayed significantly reduced running distance (p = 0.0026), maximal speed (p = 0.0019), time to exhaustion (p = 0.0033) and grip strength (p = 0.0055) compared with adult mice, alongside TA's weight loss, decreased myofibre cross-sectional area (CSA) and autophagy deficiency. However, lung function indicators (respiratory rate, tidal volume, minute ventilation volume, forced vital capacity and ratio of forced expiratory volume in 100 or 200 ms to forced vital capacity), as well as DIA weight and morphology remained stable in old mice. Transcriptional analysis revealed 61 DEGs, with significant upregulation or downregulation observed in TA, but without changes in DIA during aging. Smox (spermine oxidase) is one of the DEGs, responsible for catalysing the conversion of spermine to spermidine. It was reported that in muscle atrophy models such as limb immobilisation, fasting and denervation, Smox's levels are positively correlated with muscle mass and function. Additionally, an increase in Smox also promotes mitochondrial biogenesis. In our study, AAV-shSmox adult mice decreased running distance, speed and time, myofibre CSA alongside mitochondrial function, compared with controls. In contrast, old mice with Smox overexpression showed enhanced mitochondrial function. CONCLUSIONS In conclusion, this study reveals aging diversities of TA and DIA, explores the sarcopenia of limb muscles based on the anti-aging properties of DIA, which offers a novel perspective on limb sarcopenia. Our findings suggest Smox as a potential target for developing strategies to mitigate sarcopenia progression.
Collapse
Affiliation(s)
- Enhui Li
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanShanxiChina
| | - Rui Wang
- Department of NeurologyFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Yanli Li
- Department of NeurologyFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Xiang Zan
- The Neurosurgery Department of Shanxi Provincial People's HospitalShanxi Medical UniversityTaiyuanShanxiChina
| | - Shufen Wu
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanShanxiChina
| | - Yiru Yin
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanShanxiChina
| | - Xiaorong Yang
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanShanxiChina
| | - Litian Yin
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanShanxiChina
| | - Yu Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanShanxiChina
| | - Jianguo Li
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanShanxiChina
| | - Xin Zhao
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanShanxiChina
| | - Ce Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanShanxiChina
| |
Collapse
|
3
|
Xu J, Wakai M, Xiong K, Yang Y, Prabakaran A, Wu S, Ahrens D, Molina-Portela MDP, Ni M, Bai Y, Shavlakadze T, Glass DJ. The pro-inflammatory cytokine IL6 suppresses mitochondrial function via the gp130-JAK1/STAT1/3-HIF1α/ERRα axis. Cell Rep 2025; 44:115403. [PMID: 40056415 DOI: 10.1016/j.celrep.2025.115403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/07/2024] [Accepted: 02/14/2025] [Indexed: 03/10/2025] Open
Abstract
Chronic inflammation and a decline in mitochondrial function are hallmarks of aging. Here, we show that the two mechanisms may be linked. We found that interleukin-6 (IL6) suppresses mitochondrial function in settings where PGC1 (both PGC1α and PGC1β) expression is low. This suppression is mediated by the JAK1/STAT1/3 axis, which activates HIF1α through non-canonical mechanisms involving upregulation of HIF1A and ERRα transcription, and subsequent stabilization of the HIF1A protein by ERRα. HIF1α, in turn, inhibits ERRα, which is a master regulator of mitochondrial biogenesis, thus contributing to the inhibition of mitochondrial function. When expressed at higher levels, PGC1 rescues ERRα to boost baseline mitochondrial respiration, including under IL6-treated conditions. Our study suggests that inhibition of the IL6 signaling axis could be a potential treatment for those inflammatory settings where mitochondrial function is compromised.
Collapse
Affiliation(s)
- Jianing Xu
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA.
| | - Matthew Wakai
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Kun Xiong
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Yanfeng Yang
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Adithya Prabakaran
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Sophia Wu
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Diana Ahrens
- Research Flow Cytometry Core, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | | | - Min Ni
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Yu Bai
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Tea Shavlakadze
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA.
| | - David J Glass
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA.
| |
Collapse
|
4
|
Gorbunova V, Seluanov A. SIRT5 slows skeletal muscle ageing by alleviating inflammation. Nat Metab 2025; 7:447-449. [PMID: 40087406 DOI: 10.1038/s42255-025-01228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Affiliation(s)
- Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
5
|
Umek N, Meznarič M, Šink Ž, Blagotinšek Cokan K, Prosenc Zmrzljak U, Horvat S. In situ spatial transcriptomic analysis of human skeletal muscle using the Xenium platform. Cell Tissue Res 2025; 399:291-302. [PMID: 39786556 DOI: 10.1007/s00441-024-03945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Traditional transcriptomic studies often overlook the complex heterogeneity of skeletal muscle, as they typically isolate RNA from mixed muscle fibre and cell populations, resulting in an averaged transcriptomic profile that obscures fibre type-specific differences. This study assessed the potential of the recently developed Xenium platform for high-resolution spatial transcriptomic analysis of human skeletal muscle histological sections. Human vastus lateralis muscle samples from two individuals were analysed using the Xenium platform and Human Multi-Tissue and Cancer Panel targeting 377 genes complemented by staining of successive sections for Myosin Heavy Chain isoforms to differentiate between type 1 and type 2 muscle fibres. Manual segmentation of muscle fibres allowed accurate comparisons of transcript densities across fibre types and subcellular regions, overcoming limitations in the platform's automated segmentation. The analysis revealed higher transcript density in type 1 fibres, particularly in nuclear and perinuclear areas, and identified 191 out of 377 genes with differential expression between muscle fibres and perimysium. Genes such as PROX1, S100A1, LGR5, ACTA2, and LPL exhibited higher expression in type 1 fibres, whereas PEBP4, CAVIN1, GATM, and PVALB in type 2 fibres. We demonstrated that the Xenium platform is capable of high-resolution spatial in situ transcriptomic analysis of skeletal muscle histological sections. This study demonstrates that, with manual segmentation, the Xenium platform effectively performs fibre type-specific transcriptomic analysis, providing new insights into skeletal muscle biology.
Collapse
Affiliation(s)
- Nejc Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia.
| | - Marija Meznarič
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | - Žiga Šink
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | | | | | - Simon Horvat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Egerman MA, Zhang Y, Donne R, Xu J, Gadi A, McEwen C, Salmon H, Xiong K, Bai Y, Germino M, Barringer K, Jimenez Y, Del Pilar Molina-Portela M, Shavlakadze T, Glass DJ. ActRII or BMPR ligands inhibit skeletal myoblast differentiation, and BMPs promote heterotopic ossification in skeletal muscles in mice. Skelet Muscle 2025; 15:4. [PMID: 39994804 PMCID: PMC11853584 DOI: 10.1186/s13395-025-00373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Prior studies suggested that canonical Activin Receptor II (ActRII) and BMP receptor (BMPR) ligands can have opposing, distinct effects on skeletal muscle depending in part on differential downstream SMAD activation. It was therefore of interest to test ActRII ligands versus BMP ligands in settings of muscle differentiation and in vivo. METHODS AND RESULTS In human skeletal muscle cells, both ActRII ligands and BMP ligands inhibited myogenic differentiation: ActRII ligands in a SMAD2/3-dependent manner, and BMP ligands via SMAD1/5. Surprisingly, a neutralizing ActRIIA/B antibody mitigated the negative effects of both classes of ligands, indicating that some BMPs act at least partially through the ActRII receptors in skeletal muscle. Gene expression analysis showed that both ActRII and BMP ligands repress muscle differentiation genes in human myoblasts and myotubes. In mice, hepatic BMP9 over-expression induced liver toxicity, caused multi-organ wasting, and promoted a pro-atrophy gene signature despite elevated SMAD1/5 signaling in skeletal muscle. Local overexpression of BMP7 or BMP9, achieved by intramuscular AAV delivery, induced heterotopic ossification. Elevated SMAD1/5 signaling with increased expression of BMP target genes was also observed in sarcopenic muscles of old rats. CONCLUSIONS The canonical ActRII ligand-SMAD2/3 and BMP ligand-SMAD1/5 axes can both block human myoblast differentiation. Our observations further demonstrate the osteoinductive function of BMP ligands while pointing to a potential relevancy of blocking the BMP-SMAD1/5 axis in the setting of therapeutic anti-ActRIIA/B inhibition.
Collapse
Affiliation(s)
- Marc A Egerman
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Yuhong Zhang
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Romain Donne
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Jianing Xu
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Abhilash Gadi
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Corissa McEwen
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Hunter Salmon
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Kun Xiong
- Molecular Profiling, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Yu Bai
- Molecular Profiling, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Mary Germino
- Imaging Sciences, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Kevin Barringer
- Inflammation & Immune Diseases, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Yasalp Jimenez
- Inflammation & Immune Diseases, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | - Tea Shavlakadze
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - David J Glass
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA.
| |
Collapse
|
7
|
Altab G, Merry BJ, Beckett CW, Raina P, Lopes I, Goljanek-Whysall K, de Magalhães JP. Unravelling the transcriptomic symphony of muscle ageing: key pathways and hub genes altered by ageing and caloric restriction in rat muscle revealed by RNA sequencing. BMC Genomics 2025; 26:29. [PMID: 39800693 PMCID: PMC11727704 DOI: 10.1186/s12864-024-11051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025] Open
Abstract
Age-related muscle wasting, sarcopenia is an extensive loss of muscle mass and strength with age and a major cause of disability and accidents in the elderly. Mechanisms purported to be involved in muscle ageing and sarcopenia are numerous but poorly understood, necessitating deeper study. Hence, we employed high-throughput RNA sequencing to survey the global changes in protein-coding gene expression occurring in skeletal muscle with age. Caloric restriction (CR) is a known prophylactic intervention against sarcopenia. Therefore, total RNA was isolated from the muscle tissue of both rats fed ad libitum and CR rats. RNA-seq data were subjected to Gene Ontology, pathway, co-expression, and interaction network analyses. This revealed the functional pathways most activated by both ageing and CR, as well as the key "hub" proteins involved in their activation.RNA-seq revealed 442 protein-coding genes to be upregulated and 377 to be downregulated in aged muscle, compared to young muscle. Upregulated genes were commonly involved in protein folding and immune responses; meanwhile, downregulated genes were often related to developmental biology. CR was found to suppress 69.7% and rescue 57.8% of the genes found to be upregulated and downregulated in aged muscle, respectively. In addition, CR uniquely upregulated 291 and downregulated 304 protein-coding genes. Hub genes implicated in both ageing and CR included Gc, Plg, Irf7, Ifit3, Usp18, Rsad2, Blm and RT1-A2, whilst those exclusively implicated in CR responses included Alb, Apoa1, Ambp, F2, Apoh, Orm1, Mx1, Oasl2 and Rtp4. Hub genes involved in ageing but unaffected by CR included Fgg, Fga, Fgb and Serpinc1. In conclusion, this comprehensive RNA sequencing study highlights gene expression patterns, hub genes and signalling pathways most affected by ageing in skeletal muscle. This data may provide the initial evidence for several targets for potential future therapeutic interventions against sarcopenia.
Collapse
Affiliation(s)
- Gulam Altab
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Brian J Merry
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Charles W Beckett
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Priyanka Raina
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Inês Lopes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Katarzyna Goljanek-Whysall
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
- College of Medicine, Nursing and Health Sciences, University of Galway, Galway, H91 TK33, Ireland
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK.
- Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham, B15 2WB, UK.
| |
Collapse
|
8
|
Rieger L, Molina T, Fabre P, Greffard K, Pellerito O, Dort J, Bilodeau JF, Dumont NA. Transcriptomic and lipidomic profiling reveals distinct bioactive lipid signatures in slow and fast muscles and highlights the role of resolvin-D2 in fiber type determination during myogenesis. FASEB J 2024; 38:e70250. [PMID: 39698915 DOI: 10.1096/fj.202401747r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
Skeletal muscles are predominantly composed of long, multinucleated muscle fibers, classified according to their metabolic and contractile phenotype. The determination of fiber types is influenced by various factors (e.g., innervation, hormones, physical demand). Our laboratory and others showed that resolvins, lipid mediators derived from omega-3 fatty acids, promote muscle regeneration and function after an injury or in models of muscular dystrophies; however, the effect of resolvins on the determination of muscle phenotype remains unknown. Here, we investigated the impact of lipid mediators on muscle phenotype during myogenesis. Transcriptomics analysis of single-nuclei RNAseq data sets revealed that the enzymes responsible for bioactive lipids biosynthesis are differentially expressed in slow fibers versus fast fibers. Lipidomics analysis of slow-twitch muscle (soleus) versus fast-twitch muscle (tibialis anterior) showed that the levels of lipids derived from arachidonic acid are similar between muscle groups, but lipids derived from alpha-linolenic acid, linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid are enriched in slow-twitch muscle. Screening for different lipids in vitro showed that resolvin-D2 enhances the formation of myotubes expressing the slow myosin heavy chain isoform. In vivo, the administration of resolvin-D2 enhances muscle strength, increases myofiber size, and affects fiber typing in injured muscles but not in uninjured muscles. Resolvin-D2 promoted the transition toward the dominant fiber types in regenerating muscle (i.e., type I in the slow-twitch soleus and type IIB in the fast-twitch tibialis anterior muscle), suggesting its participation in fiber typing in conjunction with other factors. Overall, these findings identified new roles of bioactive lipids in the regulation of fiber typing, which could have therapeutic applicability in muscle injuries or dystrophies.
Collapse
Affiliation(s)
- Lupann Rieger
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Thomas Molina
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Paul Fabre
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Karine Greffard
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Quebec, Quebec, Canada
| | | | - Junio Dort
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-François Bilodeau
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| | - Nicolas A Dumont
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
9
|
Pei L, Yao Z, Liang D, Yang K, Tao L. Mitochondria in skeletal system-related diseases. Biomed Pharmacother 2024; 181:117505. [PMID: 39499974 DOI: 10.1016/j.biopha.2024.117505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 12/21/2024] Open
Abstract
Skeletal system-related diseases, such as osteoporosis, arthritis, osteosarcoma and sarcopenia, are becoming major public health concerns. These diseases are characterized by insidious progression, which seriously threatens patients' health and quality of life. Early diagnosis and prevention in high-risk populations can effectively prevent the deterioration of these patients. Mitochondria are essential organelles for maintaining the physiological activity of the skeletal system. Mitochondrial functions include contributing to the energy supply, modulating the Ca2+ concentration, maintaining redox balance and resisting the inflammatory response. They participate in the regulation of cellular behaviors and the responses of osteoblasts, osteoclasts, chondrocytes and myocytes to external stimuli. In this review, we describe the pathogenesis of skeletal system diseases, focusing on mitochondrial function. In addition to osteosarcoma, a characteristic of which is active mitochondrial metabolism, mitochondrial damage occurs during the development of other diseases. Impairment of mitochondria leads to an imbalance in osteogenesis and osteoclastogenesis in osteoporosis, cartilage degeneration and inflammatory infiltration in arthritis, and muscle atrophy and excitationcontraction coupling blockade in sarcopenia. Overactive mitochondrial metabolism promotes the proliferation and migration of osteosarcoma cells. The copy number of mitochondrial DNA and mitochondria-derived peptides can be potential biomarkers for the diagnosis of these disorders. High-risk factor detection combined with mitochondrial component detection contributes to the early detection of these diseases. Targeted mitochondrial intervention is an effective method for treating these patients. We analyzed skeletal system-related diseases from the perspective of mitochondria and provided new insights for their diagnosis, prevention and treatment by demonstrating the relationship between mitochondria and the skeletal system.
Collapse
Affiliation(s)
- Liang Pei
- Department of Pediatrics, Shengjing Hospital of China Medical University, China
| | - Zhuo Yao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Dong Liang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China..
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China..
| |
Collapse
|
10
|
Zhang G, Hu F, Huang T, Ma X, Cheng Y, Liu X, Jiang W, Dong B, Fu C. The recent development, application, and future prospects of muscle atrophy animal models. MEDCOMM – FUTURE MEDICINE 2024; 3. [DOI: 10.1002/mef2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/01/2024] [Indexed: 01/06/2025]
Abstract
AbstractMuscle atrophy, characterized by the loss of muscle mass and function, is a hallmark of sarcopenia and cachexia, frequently associated with aging, malignant tumors, chronic heart failure, and malnutrition. Moreover, it poses significant challenges to human health, leading to increased frailty, reduced quality of life, and heightened mortality risks. Despite extensive research on sarcopenia and cachexia, consensus in their assessment remains elusive, with inconsistent conclusions regarding their molecular mechanisms. Muscle atrophy models are crucial tools for advancing research in this field. Currently, animal models of muscle atrophy used for clinical and basic scientific studies are induced through various methods, including aging, genetic editing, nutritional modification, exercise, chronic wasting diseases, and drug administration. Muscle atrophy models also include in vitro and small organism models. Despite their value, each of these models has certain limitations. This review focuses on the limitations and diverse applications of muscle atrophy models to understand sarcopenia and cachexia, and encourage their rational use in future research, therefore deepening the understanding of underlying pathophysiological mechanisms, and ultimately advancing the exploration of therapeutic strategies for sarcopenia and cachexia.
Collapse
Affiliation(s)
- Gongchang Zhang
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Fengjuan Hu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Tingting Huang
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Xiaoqing Ma
- Longkou People Hospital Longkou Shandong Province China
| | - Ying Cheng
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Xiaolei Liu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Wenzhou Jiang
- Longkou People Hospital Longkou Shandong Province China
| | - Birong Dong
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Chenying Fu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
- Department of Laboratory of Aging and Geriatric Medicine National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu Sichuan Province China
| |
Collapse
|
11
|
Grima-Terrén M, Campanario S, Ramírez-Pardo I, Cisneros A, Hong X, Perdiguero E, Serrano AL, Isern J, Muñoz-Cánoves P. Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets. Mol Aspects Med 2024; 100:101319. [PMID: 39312874 DOI: 10.1016/j.mam.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.
Collapse
Affiliation(s)
- Mercedes Grima-Terrén
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Silvia Campanario
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Ignacio Ramírez-Pardo
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Andrés Cisneros
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Xiaotong Hong
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | | | - Antonio L Serrano
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Pura Muñoz-Cánoves
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| |
Collapse
|
12
|
Sayer AA, Cooper R, Arai H, Cawthon PM, Ntsama Essomba MJ, Fielding RA, Grounds MD, Witham MD, Cruz-Jentoft AJ. Sarcopenia. Nat Rev Dis Primers 2024; 10:68. [PMID: 39300120 DOI: 10.1038/s41572-024-00550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
Sarcopenia is the accelerated loss of skeletal muscle mass and function commonly, but not exclusively, associated with advancing age. It is observed across many species including humans in whom it can lead to decline in physical function and mobility as well as to increased risk of adverse outcomes including falls, fractures and premature mortality. Although prevalence estimates vary because sarcopenia has been defined in different ways, even using a conservative approach, the prevalence is between 5% and 10% in the general population. A life course framework has been proposed for understanding not only the occurrence of sarcopenia in later life but also influences operating at earlier life stages with potentially important implications for preventive strategies. Harnessing progress in understanding the hallmarks of ageing has been key to understanding sarcopenia pathophysiology. Considerable convergence in approaches to diagnosis of sarcopenia has occurred over the last 10 years, with a growing emphasis on the central importance of muscle strength. Resistance exercise is currently the mainstay of treatment; however, it is not suitable for all. Hence, adjunctive and alternative treatments to improve quality of life are needed. An internationally agreed approach to definition and diagnosis will enable a step change in the field and is likely to be available in the near future through the Global Leadership Initiative in Sarcopenia.
Collapse
Affiliation(s)
- Avan A Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust and Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Rachel Cooper
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust and Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Obu, Japan
| | - Peggy M Cawthon
- California Pacific Medical Center, Research Institute, San Francisco, CA, USA
- University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, CA, USA
| | - Marie-Josiane Ntsama Essomba
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Roger A Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Miles D Witham
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust and Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
13
|
Owen AM, Fry CS. Decoding the decline: unveiling drivers of sarcopenia. J Clin Invest 2024; 134:e183302. [PMID: 39145450 PMCID: PMC11324291 DOI: 10.1172/jci183302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
There remains a critical need to define molecular pathways underlying sarcopenia to identify putative therapeutic targets. Research in the mechanisms of aging and sarcopenia relies heavily on preclinical rodent models. In this issue of the JCI, Kerr et al. implemented a clinically-relevant sarcopenia classification system of aged C57BL/6J mice, capturing sarcopenia prevalence across both sexes. The authors performed detailed physiological, molecular, and energetic analyses and demonstrated that mitochondrial biogenesis, oxidative capacity, and AMPK-autophagy signaling decreased as sarcopenia progressed in male mice. Sarcopenia was less prevalent in female mice with fewer alterations compared with the male-affected processes. The findings highlight factors beyond age as necessary for classifying the sarcopenic phenotype in rodent models, reveal sexual dimorphism across the trajectory of age-related declines in muscle mass and function in a commonly used rodent model, and provide insight into sex-dependent molecular alterations associated with sarcopenia progression.
Collapse
Affiliation(s)
- Allison M. Owen
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Christopher S. Fry
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
14
|
Gajdošová L, Katrenčíková B, Borbélyová V, Muchová J. The Effect of Omega-3 Fatty Acid Supplementation and Exercise on Locomotor Activity, Exploratory Activity, and Anxiety-Like Behavior in Adult and Aged Rats. Physiol Res 2024; 73:461-480. [PMID: 39012176 PMCID: PMC11299774 DOI: 10.33549/physiolres.935245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/13/2024] [Indexed: 07/18/2024] Open
Abstract
Aging is an inevitable and complex biological process that is associated with a gradual decline in physiological functions and a higher disease susceptibility. Omega-3 fatty acids, particularly docosahexaenoic acid, play a crucial role in maintaining brain health and their deficiency is linked to age-related cognitive decline. Combining omega-3-rich diets with exercise may enhance cognitive function more effectively, as both share overlapping neurobiological and physiological effects. This study aimed to evaluate the effect of exercise and omega-3 fatty acid (FA) supplementation in two different doses (160 mg/kg and 320 mg/kg) on anxiety-like behavior and cognitive abilities in both adult and aged rats. Male Wistar rats (4-5- and 23-24-month-old) were randomly divided into seven groups: 3-week control supplemented with placebo without exercise, low-dose omega-3 FAs, high-dose omega-3 FAs, 7-week control supplemented with placebo without exercise, exercise-only, low-dose omega-3 FAs with exercise, and high-dose omega-3 FAs with exercise. The administered oil contained omega-3 FAs with DHA:EPA in a ratio of 1.5:1. Our results indicate that aging negatively impacts the locomotor and exploratory activity of rats. In adult rats, a low dose of omega-3 FAs reduces locomotor activity when combined with exercise while high dose of omega-3 FAs reduces anxiety-like behavior and improves recognition memory when combined with exercise. The combination of omega-3 FAs and exercise had varying impacts on behavior, suggesting a need for further research in this area to fully understand their therapeutic efficacy in the context of cognitive changes associated with aging.
Collapse
Affiliation(s)
- L Gajdošová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 811 08 Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
15
|
Langston PK, Mathis D. Immunological regulation of skeletal muscle adaptation to exercise. Cell Metab 2024; 36:1175-1183. [PMID: 38670108 DOI: 10.1016/j.cmet.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Exercise has long been acknowledged for its powerful disease-preventing, health-promoting effects. However, the cellular and molecular mechanisms responsible for the beneficial effects of exercise are not fully understood. Inflammation is a component of the stress response to exercise. Recent work has revealed that such inflammation is not merely a symptom of exertion; rather, it is a key regulator of exercise adaptations, particularly in skeletal muscle. The purpose of this piece is to provide a conceptual framework that we hope will integrate exercise immunology with exercise physiology, muscle biology, and cellular immunology. We start with an overview of early studies in the field of exercise immunology, followed by an exploration of the importance of stromal cells and immunocytes in the maintenance of muscle homeostasis based on studies of experimental muscle injury. Subsequently, we discuss recent advances in our understanding of the functions and physiological relevance of the immune system in exercised muscle. Finally, we highlight a potential immunological basis for the benefits of exercise in musculoskeletal diseases and aging.
Collapse
Affiliation(s)
- P Kent Langston
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Kolonay DW, Sattler KM, Strawser C, Rafael-Fortney J, Mihaylova MM, Miller KE, Lepper C, Baskin KK. Temporal regulation of the Mediator complex during muscle proliferation, differentiation, regeneration, aging, and disease. Front Cell Dev Biol 2024; 12:1331563. [PMID: 38690566 PMCID: PMC11058648 DOI: 10.3389/fcell.2024.1331563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Genesis of skeletal muscle relies on the differentiation and fusion of mono-nucleated muscle progenitor cells into the multi-nucleated muscle fiber syncytium. The temporally-controlled cellular and morphogenetic changes underlying this process are initiated by a series of highly coordinated transcription programs. At the core, the myogenic differentiation cascade is driven by muscle-specific transcription factors, i.e., the Myogenic Regulatory Factors (MRFs). Despite extensive knowledge on the function of individual MRFs, very little is known about how they are coordinated. Ultimately, highly specific coordination of these transcription programs is critical for their masterfully timed transitions, which in turn facilitates the intricate generation of skeletal muscle fibers from a naïve pool of progenitor cells. The Mediator complex links basal transcriptional machinery and transcription factors to regulate transcription and could be the integral component that coordinates transcription factor function during muscle differentiation, growth, and maturation. In this study, we systematically deciphered the changes in Mediator complex subunit expression in skeletal muscle development, regeneration, aging, and disease. We incorporated our in vitro and in vivo experimental results with analysis of publicly available RNA-seq and single nuclei RNA-seq datasets and uncovered the regulation of Mediator subunits in different physiological and temporal contexts. Our experimental results revealed that Mediator subunit expression during myogenesis is highly dynamic. We also discovered unique temporal patterns of Mediator expression in muscle stem cells after injury and during the early regeneration period, suggesting that Mediator subunits may have unique contributions to directing muscle stem cell fate. Although we observed few changes in Mediator subunit expression in aging muscles compared to younger muscles, we uncovered extensive heterogeneity of Mediator subunit expression in dystrophic muscle nuclei, characteristic of chronic muscle degeneration and regeneration cycles. Taken together, our study provides a glimpse of the complex regulation of Mediator subunit expression in the skeletal muscle cell lineage and serves as a springboard for mechanistic studies into the function of individual Mediator subunits in skeletal muscle.
Collapse
Affiliation(s)
- Dominic W. Kolonay
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Kristina M. Sattler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Corinne Strawser
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Jill Rafael-Fortney
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Maria M. Mihaylova
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Katherine E. Miller
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Christoph Lepper
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Kedryn K. Baskin
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
17
|
Ciuffoli V, Feng X, Jiang K, Acevedo-Luna N, Ko KD, Wang AHJ, Riparini G, Khateb M, Glancy B, Dell'Orso S, Sartorelli V. Psat1-generated α-ketoglutarate and glutamine promote muscle stem cell activation and regeneration. Genes Dev 2024; 38:151-167. [PMID: 38453480 PMCID: PMC10982694 DOI: 10.1101/gad.351428.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
By satisfying bioenergetic demands, generating biomass, and providing metabolites serving as cofactors for chromatin modifiers, metabolism regulates adult stem cell biology. Here, we report that a branch of glycolysis, the serine biosynthesis pathway (SBP), is activated in regenerating muscle stem cells (MuSCs). Gene inactivation and metabolomics revealed that Psat1, one of the three SBP enzymes, controls MuSC activation and expansion of myogenic progenitors through production of the metabolite α-ketoglutarate (α-KG) and α-KG-generated glutamine. Psat1 ablation resulted in defective expansion of MuSCs and impaired regeneration. Psat1, α-KG, and glutamine were reduced in MuSCs of old mice. α-KG or glutamine re-established appropriate muscle regeneration of adult conditional Psat1 -/- mice and of old mice. These findings contribute insights into the metabolic role of Psat1 during muscle regeneration and suggest α-KG and glutamine as potential therapeutic interventions to ameliorate muscle regeneration during aging.
Collapse
Affiliation(s)
- Veronica Ciuffoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xuesong Feng
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kan Jiang
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Natalia Acevedo-Luna
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kyung Dae Ko
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - A Hong Jun Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Giulia Riparini
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mamduh Khateb
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Brian Glancy
- Muscle Energetics, National Heart, Lung, and Blood Institute, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Stefania Dell'Orso
- Genomic Technology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
18
|
Kanazawa Y, Takahashi T, Nagano M, Koinuma S, Shigeyoshi Y. The Effects of Aging on Sarcoplasmic Reticulum-Related Factors in the Skeletal Muscle of Mice. Int J Mol Sci 2024; 25:2148. [PMID: 38396828 PMCID: PMC10889371 DOI: 10.3390/ijms25042148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The pathogenesis of sarcopenia includes the dysfunction of calcium homeostasis associated with the sarcoplasmic reticulum; however, the localization in sarcoplasmic reticulum-related factors and differences by myofiber type remain unclear. Here, we investigated the effects of aging on sarcoplasmic reticulum-related factors in the soleus (slow-twitch) and gastrocnemius (fast-twitch) muscles of 3- and 24-month-old male C57BL/6J mice. There were no notable differences in the skeletal muscle weight of these 3- and 24-month-old mice. The expression of Atp2a1, Atp2a2, Sln, and Pln increased with age in the gastrocnemius muscles, but not in the soleus muscles. Subsequently, immunohistochemical analysis revealed ectopic sarcoplasmic reticulum calcium ion ATPase (SERCA) 1 and SERCA2a immunoreactivity only in the gastrocnemius muscles of old mice. Histochemical and transmission electron microscope analysis identified tubular aggregate (TA), an aggregation of the sarcoplasmic reticulum, in the gastrocnemius muscles of old mice. Dihydropyridine receptor α1, ryanodine receptor 1, junctophilin (JPH) 1, and JPH2, which contribute to sarcoplasmic reticulum function, were also localized in or around the TA. Furthermore, JPH1 and JPH2 co-localized with matrix metalloproteinase (MMP) 2 around the TA. These results suggest that sarcoplasmic reticulum-related factors are localized in or around TAs that occur in fast-twitch muscle with aging, but some of them might be degraded by MMP2.
Collapse
Affiliation(s)
- Yuji Kanazawa
- Department of Physical Therapy, Hokuriku University, Kanazawa 920-1180, Ishikawa, Japan
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Osaka, Japan; (M.N.); (S.K.); (Y.S.)
| | - Tatsuo Takahashi
- Department of Clinical Pharmacology, Hokuriku University, Kanazawa 920-1181, Ishikawa, Japan;
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Osaka, Japan; (M.N.); (S.K.); (Y.S.)
| | - Satoshi Koinuma
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Osaka, Japan; (M.N.); (S.K.); (Y.S.)
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Osaka, Japan; (M.N.); (S.K.); (Y.S.)
| |
Collapse
|
19
|
Gilad N, Mohanam MP, Darlyuk-Saadon I, Heng CKM, Plaschkes I, Benyamini H, Berezhnoy NV, Engelberg D. Asynchronous Pattern of MAPKs' Activity during Aging of Different Tissues and of Distinct Types of Skeletal Muscle. Int J Mol Sci 2024; 25:1713. [PMID: 38338990 PMCID: PMC10855984 DOI: 10.3390/ijms25031713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The MAPK p38α was proposed to be a prominent promoter of skeletal muscle aging. The skeletal muscle tissue is composed of various muscle types, and it is not known if p38α is associated with aging in all of them. It is also not known if p38α is associated with aging of other tissues. JNK and ERK were also proposed to be associated with aging of several tissues. Nevertheless, the pattern of p38α, JNK, and ERK activity during aging was not documented. Here, we documented the levels of phosphorylated/active p38α, Erk1/2, and JNKs in several organs as well as the soleus, tibialis anterior, quadriceps, gastrocnemius, and EDL muscles of 1-, 3-, 6-, 13-, 18-, and 24-month-old mice. We report that in most tissues and skeletal muscles, the MAPKs' activity does not change in the course of aging. In most tissues and muscles, p38α is in fact active at younger ages. The quadriceps and the lungs are exceptions, where p38α is significantly active only in mice 13 months old or older. Curiously, levels of active JNK and ERKs are also elevated in aged lungs and quadriceps. RNA-seq analysis of the quadriceps during aging revealed downregulation of proteins related to the extra-cellular matrix (ECM) and ERK signaling. A panel of mRNAs encoding cell cycle inhibitors and senescence-associated proteins, considered to be aging markers, was not found to be elevated. It seems that the pattern of MAPKs' activation in aging, as well as expression of known 'aging' components, are tissue- and muscle type-specific, supporting a notion that the process of aging is tissue- and even cell-specific.
Collapse
Affiliation(s)
- Nechama Gilad
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602, Singapore
| | - Manju Payini Mohanam
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ilona Darlyuk-Saadon
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602, Singapore
| | - C. K. Matthew Heng
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Nikolay V. Berezhnoy
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - David Engelberg
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
20
|
Viggars MR, Sutherland H, Cardozo CP, Jarvis JC. Conserved and species-specific transcriptional responses to daily programmed resistance exercise in rat and mouse. FASEB J 2023; 37:e23299. [PMID: 37994729 DOI: 10.1096/fj.202301611r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Mice are often used in gain or loss of function studies to understand how genes regulate metabolism and adaptation to exercise in skeletal muscle. Once-daily resistance training with electrical nerve stimulation produces hypertrophy of the dorsiflexors in rat, but not in mouse. Using implantable pulse generators, we assessed the acute transcriptional response (1-h post-exercise) after 2, 10, and 20 days of training in free-living mice and rats using identical nerve stimulation paradigms. RNA sequencing revealed strong concordance in the timecourse of many transcriptional responses in the tibialis anterior muscles of both species including responses related to "stress responses/immediate-early genes, and "collagen homeostasis," "ribosomal subunits," "autophagy," and "focal adhesion." However, pathways associated with energy metabolism including "carbon metabolism," "oxidative phosphorylation," "mitochondrial translation," "propanoate metabolism," and "valine, leucine, and isoleucine degradation" were oppositely regulated between species. These pathways were suppressed in the rat but upregulated in the mouse. Our transcriptional analysis suggests that although many pathways associated with growth show remarkable similarities between species, the absence of an actual growth response in the mouse may be because the mouse prioritizes energy metabolism, specifically the replenishment of fuel stores and intermediate metabolites.
Collapse
Affiliation(s)
- Mark R Viggars
- Research Institute for Sport & Exercise Science, Liverpool John Moores University, Liverpool, UK
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| | - Hazel Sutherland
- Research Institute for Sport & Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Christopher P Cardozo
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, New York, USA
- Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Jonathan C Jarvis
- Research Institute for Sport & Exercise Science, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
21
|
Granic A, Suetterlin K, Shavlakadze T, Grounds M, Sayer A. Hallmarks of ageing in human skeletal muscle and implications for understanding the pathophysiology of sarcopenia in women and men. Clin Sci (Lond) 2023; 137:1721-1751. [PMID: 37986616 PMCID: PMC10665130 DOI: 10.1042/cs20230319] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Ageing is a complex biological process associated with increased morbidity and mortality. Nine classic, interdependent hallmarks of ageing have been proposed involving genetic and biochemical pathways that collectively influence ageing trajectories and susceptibility to pathology in humans. Ageing skeletal muscle undergoes profound morphological and physiological changes associated with loss of strength, mass, and function, a condition known as sarcopenia. The aetiology of sarcopenia is complex and whilst research in this area is growing rapidly, there is a relative paucity of human studies, particularly in older women. Here, we evaluate how the nine classic hallmarks of ageing: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication contribute to skeletal muscle ageing and the pathophysiology of sarcopenia. We also highlight five novel hallmarks of particular significance to skeletal muscle ageing: inflammation, neural dysfunction, extracellular matrix dysfunction, reduced vascular perfusion, and ionic dyshomeostasis, and discuss how the classic and novel hallmarks are interconnected. Their clinical relevance and translational potential are also considered.
Collapse
Affiliation(s)
- Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| | - Karen Suetterlin
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, U.K
| | - Tea Shavlakadze
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, NY, U.S.A
| | - Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Avan A. Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| |
Collapse
|