1
|
Koatale PC, Welling MM, Mdanda S, Mdlophane A, Takyi-Williams J, Durandt C, van den Bout I, Cleeren F, Sathekge MM, Ebenhan T. Evaluation of [ 68Ga]Ga-DOTA-AeK as a Potential Imaging Tool for PET Imaging of Cell Wall Synthesis in Bacterial Infections. Pharmaceuticals (Basel) 2024; 17:1150. [PMID: 39338315 PMCID: PMC11434960 DOI: 10.3390/ph17091150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The ability of bacteria to recycle exogenous amino acid-based peptides and amino sugars for peptidoglycan biosynthesis was extensively investigated using optical imaging. In particular, fluorescent AeK-NBD was effectively utilized to study the peptidoglycan recycling pathway in Gram-negative bacteria. Based on these promising results, we were inspired to develop the radioactive AeK conjugate [68Ga]Ga-DOTA-AeK for the in vivo localization of bacterial infection using PET/CT. An easy-to-implement radiolabeling procedure for DOTA-AeK with [68Ga]GaCI3 followed by solid-phase purification was successfully established to obtain [68Ga]Ga-DOTA-AeK with a radiochemical purity of ≥95%. [68Ga]Ga-DOTA-AeK showed good stability over time with less protein binding under physiological conditions. The bacterial incorporation of [68Ga]Ga-DOTA-AeK and its fluorescent Aek-NBD analog were investigated in live and heat-killed Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Unfortunately, no conclusive in vitro intracellular uptake of [68Ga]Ga-DOTA-AeK was observed for E. coli or S. aureus live and heat-killed bacterial strains (p > 0.05). In contrast, AeK-NBD showed significantly higher intracellular incorporation in live bacteria compared to the heat-killed control (p < 0.05). Preliminary biodistribution studies of [68Ga]Ga-DOTA-AeK in a dual-model of chronic infection and inflammation revealed limited localization at the infection site with non-specific accumulation in response to inflammatory markers. Finally, our study demonstrates proof that the intracellular incorporation of AeK is necessary for successful bacteria-specific imaging using PET/CT. Therefore, Ga-68 was not a suitable radioisotope for tracing the bacterial uptake of AeK tripeptide, as it required chelation with a bulky metal chelator such as DOTA, which may have limited its active membrane transportation. An alternative for optimization is to explore diverse chemical structures of AeK that would allow for radiolabeling with 18F or 11C.
Collapse
Affiliation(s)
- Palesa C. Koatale
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (P.C.K.); (S.M.); (A.M.); (M.M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Mick M. Welling
- Department of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Sipho Mdanda
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (P.C.K.); (S.M.); (A.M.); (M.M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Amanda Mdlophane
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (P.C.K.); (S.M.); (A.M.); (M.M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - John Takyi-Williams
- Therapeutics Systems Research Laboratories (TSRL), Inc., Ann Arbor, MI 48109, USA;
| | - Chrisna Durandt
- Department of Medical Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria 0001, South Africa;
- South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, Pretoria 0001, South Africa
| | - Iman van den Bout
- Department of Physiology, University of Pretoria, Pretoria 0001, South Africa;
| | - Frederik Cleeren
- Department of Pharmacy and Pharmacological Sciences, Radiopharmaceutical Research, KU Leuven, 3000 Leuven, Belgium;
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (P.C.K.); (S.M.); (A.M.); (M.M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Thomas Ebenhan
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (P.C.K.); (S.M.); (A.M.); (M.M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| |
Collapse
|
2
|
Kim SY, Soh H, Jung JH, Cho EH, Kim H, Ju JM, Sheen JH, Lee SJ, Oh SJ, Lee SJ, Chung J, Ryu JS. Direct and Indirect Chimeric Antigen Receptor T-Cell Imaging with PET/MRI in a Tumor Xenograft Model. Radiology 2024; 310:e231406. [PMID: 38411517 DOI: 10.1148/radiol.231406] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Background Chimeric antigen receptor (CAR) T cells are a promising cancer therapy; however, reliable and repeatable methods for tracking and monitoring CAR T cells in vivo remain underexplored. Purpose To investigate direct and indirect imaging strategies for tracking the biodistribution of CAR T cells and monitoring their therapeutic effect in target tumors. Materials and Methods CAR T cells co-expressing a tumor-targeting gene (anti-CD19 CAR) and a human somatostatin receptor subtype 2 (hSSTr2) reporter gene were generated from human peripheral blood mononuclear cells. After direct labeling with zirconium 89 (89Zr)-p-isothiocyanatobenzyl-desferrioxamine (DFO), CAR T cells were intravenously injected into immunodeficient mice with a CD19-positive and CD19-negative human tumor xenograft on the left and right flank, respectively. PET/MRI was used for direct in vivo imaging of 89Zr-DFO-labeled CAR T cells on days 0, 1, 3, and 7 and for indirect cell imaging with the radiolabeled somatostatin receptor-targeted ligand gallium 68 (68Ga)-DOTA-Tyr3-octreotide (DOTATOC) on days 6, 9, and 13. On day 13, mice were euthanized, and tissues and tumors were excised. Results The 89Zr-DFO-labeled CAR T cells were observed on PET/MRI scans in the liver and lungs of mice (n = 4) at all time points assessed. However, they were not visualized in CD19-positive or CD19-negative tumors, even on day 7. Serial 68Ga-DOTATOC PET/MRI showed CAR T cell accumulation in CD19-positive tumors but not in CD19-negative tumors from days 6 to 13. Notably, 68Ga-DOTATOC accumulation in CD19-positive tumors was highest on day 9 (mean percentage injected dose [%ID], 3.7% ± 1.0 [SD]) and decreased on day 13 (mean %ID, 2.6% ± 0.7) in parallel with a decrease in tumor volume (day 9: mean, 195 mm3 ± 27; day 13: mean, 127 mm3 ± 43) in the group with tumor growth inhibition. Enhanced immunohistochemistry staining of cluster of differentiation 3 (CD3) and hSSTr2 was also observed in excised CD19-positive tumor tissues. Conclusion Direct and indirect cell imaging with PET/MRI enabled in vivo tracking and monitoring of CAR T cells in an animal model. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Bulte in this issue.
Collapse
Affiliation(s)
- Seog-Young Kim
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Hyunsu Soh
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Jin Hwa Jung
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Eun Hye Cho
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Hyori Kim
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Ji-Min Ju
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Joong Hyuk Sheen
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Sang Ju Lee
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Seung Jun Oh
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Sang-Jin Lee
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Junho Chung
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| | - Jin-Sook Ryu
- From the Convergence Medicine Research Center (S.Y.K., H.S., J.H.J., H.K.) and Department of Nuclear Medicine (E.H.C., Sang Ju Lee, S.J.O., J.S.R.), Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea (J.M.J., J.H.S., Sang-Jin Lee); and Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea (J.C.)
| |
Collapse
|
3
|
Benabdallah N, Zhang H, Unnerstall R, Fears A, Summer L, Fassbender M, Rodgers BE, Abou D, Radchenko V, Thorek DLJ. Engineering a modular 44Ti/ 44Sc generator: eluate evaluation in preclinical models and estimation of human radiation dosimetry. EJNMMI Res 2023; 13:17. [PMID: 36853422 PMCID: PMC9975127 DOI: 10.1186/s13550-023-00968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/19/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND 44Sc/47Sc is an attractive theranostic pair for targeted in vivo positron emission tomographic (PET) imaging and beta-particle treatment of cancer. The 44Ti/44Sc generator allows daily onsite production of this diagnostic isotope, which may provide an attractive alternative for PET facilities that lack in-house irradiation capabilities. Early animal and patient studies have demonstrated the utility of 44Sc. In our current study, we built and evaluated a novel clinical-scale 44Ti/44Sc generator, explored the pharmacokinetic profiles of 44ScCl3, [44Sc]-citrate and [44Sc]-NODAGA (1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid) in naïve mice, and estimated the radiation burden of 44ScCl3 in humans. METHODS 44Ti/44Sc (101.2 MBq) in 6 M HCl solution was utilized to assemble a modular ZR resin containing generator. After assembly, 44Sc was eluted with 0.05 M HCl for further PET imaging and biodistribution studies in female Swiss Webster mice. Based on the biodistribution data, absorbed doses of 44/47ScCl3 in human adults were calculated for 18 organs and tissues using the IDAC-Dose software. RESULTS 44Ti in 6 M HCl was loaded onto the organic resin generator with a yield of 99.97%. After loading and initial stabilization, 44ScCl3 was eluted with 0.05 M HCl in typical yields of 82.9 ± 5.3% (N = 16), which was normalized to the estimated generator capacity. Estimated generator capacity was computed based on elution time interval and the total amount of 44Ti loaded on the generator. Run in forward and reverse directions, the 44Sc/44Ti ratio from a primary column was significantly improved from 1038 ± 440 to 3557 ± 680 (Bq/Bq) when a secondary, replaceable, ZR resin cartridge was employed at the flow outlet. In vivo imaging and ex vivo distribution studies of the reversible modular generator for 44ScCl3, [44Sc]-citrate and [44Sc]-NODAGA show that free 44Sc remained in the circulation significantly longer than the chelated 44Sc. The dose estimation of 44ScCl3 reveals that the radiation burden is 0.146 mSv/MBq for a 70 kg adult male and 0.179 mSv/MBq for a 57 kg adult female. Liver, spleen and heart wall will receive the highest absorbed dose: 0.524, 0.502, and 0.303 mGy/MBq, respectively, for the adult male. CONCLUSIONS A clinical-scale 44Ti/44Sc generator system with a modular design was developed to supply 44ScCl3 in 0.05 M HCl, which is suitable for further radiolabeling and in vivo use. Our data demonstrated that free 44ScCl3 remained in the circulation for extended periods, which resulted in approximately 10 times greater radiation burden than stably chelated 44Sc. Stable 44Sc/47Sc-complexation will be more favorable for in vivo use and for clinical utility.
Collapse
Affiliation(s)
- Nadia Benabdallah
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway Boulevard, St. Louis, MO, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hanwen Zhang
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway Boulevard, St. Louis, MO, 63110, USA.
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO, 63110, USA.
| | - Ryan Unnerstall
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway Boulevard, St. Louis, MO, 63110, USA
| | - Amanda Fears
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway Boulevard, St. Louis, MO, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lucy Summer
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway Boulevard, St. Louis, MO, 63110, USA
| | - Michael Fassbender
- Chemistry Division, Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM, 87545, USA
| | - Buck E Rodgers
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway Boulevard, St. Louis, MO, 63110, USA
- Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO, 63110, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Diane Abou
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway Boulevard, St. Louis, MO, 63110, USA
- Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO, 63110, USA
- Mallinckrodt Cyclotron Facility, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Daniel L J Thorek
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway Boulevard, St. Louis, MO, 63110, USA.
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO, 63110, USA.
| |
Collapse
|
4
|
Damerow H, Wängler B, Schirrmacher R, Fricker G, Wängler C. Synthesis of a Bifunctional Cross-Bridged Chelating Agent, Peptide Conjugation, and Comparison of 68 Ga Labeling and Complex Stability Characteristics with Established Chelators. ChemMedChem 2023; 18:e202200495. [PMID: 36259364 PMCID: PMC10100262 DOI: 10.1002/cmdc.202200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/17/2022] [Indexed: 01/24/2023]
Abstract
[68 Ga]Ga3+ can be introduced into receptor-specific peptidic carriers via different chelators to obtain radiotracers for Positron Emission Tomography imaging and the chosen chelating agent considerably influences the in vivo pharmacokinetics of the corresponding radiopeptides. A chelator that should be a valuable alternative to established chelating agents for 68 Ga-radiolabeling of peptides would be a backbone-functionalized variant of the chelator CB-DO2A. Here, the bifunctional cross-bridged chelating agent CB-DO2A-GA was developed and compared to the established chelators DOTA, NODA-GA and DOTA-GA. For this purpose, CB-DO2A-GA(tBu)2 was introduced into the peptide Tyr3 -octreotate (TATE) and in direct comparison to the corresponding DOTA-, NODA-GA-, and DOTA-GA-modified TATE analogs, CB-DO2A-GA-TATE required harsher reaction conditions for 68 Ga-incorporation. Regarding the hydrophilicity profile of the resulting radiopeptides, a decrease in hydrophilicity from [68 Ga]Ga-DOTA-GA-TATE (logD(7.4) of -4.11±0.11) to [68 Ga]Ga-CB-DO2A-GA-TATE (-3.02±0.08) was observed. Assessing the stability against metabolic degradation and complex challenge, [68 Ga]Ga-CB-DO2A-GA demonstrated a very high kinetic inertness, exceeding that of [68 Ga]Ga-DOTA-GA. Therefore, CB-DO2A-GA is a valuable alternative to established chelating agents for 68 Ga-radiolabeling of peptides, especially when the formation of a very stable, positively charged 68 Ga-complex is pursued.
Collapse
Affiliation(s)
- Helen Damerow
- Clinic of Radiology and Nuclear Medicine, Biomedical ChemistryMedical Faculty Mannheim of Heidelberg University68167MannheimGermany
| | - Björn Wängler
- Clinic of Radiology and Nuclear Medicine, Molecular Imaging and RadiochemistryMedical Faculty Mannheim of Heidelberg University68167MannheimGermany
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological ImagingUniversity of AlbertaEdmontonABT6G 1Z2Canada
| | - Gert Fricker
- Institute of Pharmacy and Molecular BiotechnologyUniversity of Heidelberg69120HeidelbergGermany
| | - Carmen Wängler
- Clinic of Radiology and Nuclear Medicine, Biomedical ChemistryMedical Faculty Mannheim of Heidelberg University68167MannheimGermany
| |
Collapse
|
5
|
Lambidis E, Lumén D, Koskipahta E, Imlimthan S, Lopez BB, Sánchez AIF, Sarparanta M, Cheng RH, Airaksinen AJ. Synthesis and ex vivo biodistribution of two 68Ga-labeled tetrazine tracers: Comparison of pharmacokinetics. Nucl Med Biol 2022; 114-115:151-161. [PMID: 35680503 DOI: 10.1016/j.nucmedbio.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/27/2022]
Abstract
Pretargeted PET imaging allows the use of radiotracers labeled with short-living PET radionuclides for tracing drugs with slow pharmacokinetics. Recently, especially methods based on bioorthogonal chemistry have been under intensive investigation for pretargeted PET imaging. The pharmacokinetics of the radiotracer is one of the factors that determine the success of the pretargeted strategy. Here, we report synthesis and biological evaluation of two 68Ga-labeled tetrazine (Tz)-based radiotracers, [68Ga]Ga-HBED-CC-PEG4-Tz ([68Ga]4) and [68Ga]Ga-DOTA-PEG4-Tz ([68Ga]6), aiming for development of new tracer candidates for pretargeted PET imaging based on the inverse electron demand Diels-Alder (IEDDA) ligation between a tetrazine and a strained alkene, such as trans-cyclooctene (TCO). Excellent radiochemical yield (RCY) was obtained for [68Ga]4 (RCY > 96%) and slightly lower for [68Ga]6 (RCY > 88%). Radiolabeling of HBED-CC-Tz proved to be faster and more efficient under milder conditions compared to the DOTA analogue. The two tracers exhibited excellent radiolabel stability both in vitro and in vivo. Moreover, [68Ga]4 was successfully used for radiolabeling two different TCO-functionalized nanoparticles in vitro: Hepatitis E virus nanoparticles (HEVNPs) and porous silicon nanoparticles (PSiNPs).
Collapse
Affiliation(s)
- Elisavet Lambidis
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Dave Lumén
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Elina Koskipahta
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Surachet Imlimthan
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Brianda B Lopez
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | | | - Mirkka Sarparanta
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - R Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Anu J Airaksinen
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland; Turku PET Centre, Department of Chemistry, University of Turku, Turku FI-20520, Finland.
| |
Collapse
|
6
|
Price TW, Renard I, Prior TJ, Kubíček V, Benoit DM, Archibald SJ, Seymour AM, Hermann P, Stasiuk GJ. Bn2DT3A, a Chelator for 68Ga Positron Emission Tomography: Hydroxide Coordination Increases Biological Stability of [ 68Ga][Ga(Bn 2DT3A)(OH)] . Inorg Chem 2022; 61:17059-17067. [PMID: 36251390 DOI: 10.1021/acs.inorgchem.2c01992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chelator Bn2DT3A was used to produce a novel 68Ga complex for positron emission tomography (PET). Unusually, this system is stabilized by a coordinated hydroxide in aqueous solutions above pH 5, which confers sufficient stability for it to be used for PET. Bn2DT3A complexes Ga3+ in a hexadentate manner, forming a mer-mer complex with log K([Ga(Bn2DT3A)]) = 18.25. Above pH 5, the hydroxide ion coordinates the Ga3+ ion following dissociation of a coordinated amine. Bn2DT3A radiolabeling displayed a pH-dependent speciation, with [68Ga][Ga(Bn2DT3A)(OH)]- being formed above pH 5 and efficiently radiolabeled at pH 7.4. Surprisingly, [68Ga][Ga(Bn2DT3A)(OH)]- was found to show an increased stability in vitro (for over 2 h in fetal bovine serum) compared to [68Ga][Ga(Bn2DT3A)]. The biodistribution of [68Ga][Ga(Bn2DT3A)(OH)]- in healthy rats showed rapid clearance and excretion via the kidneys, with no uptake seen in the lungs or bones.
Collapse
Affiliation(s)
- Thomas W Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, U.K.,Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, U.K.,Positron Emission Tomography Research Center, University of Hull, Cottingham Road, Hull HU6 7RX, U.K
| | - Isaline Renard
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, U.K.,Positron Emission Tomography Research Center, University of Hull, Cottingham Road, Hull HU6 7RX, U.K
| | - Timothy J Prior
- Chemistry, University of Hull, Cottingham Road, Hull HU6 7RX, U.K
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, Czech Republic
| | - David M Benoit
- E.A. Milne Centre for Astrophysics, Department of Physics and Mathematics, University of Hull, Cottingham Road, Hull HU6 7RX, U.K
| | - Stephen J Archibald
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, U.K.,Positron Emission Tomography Research Center, University of Hull, Cottingham Road, Hull HU6 7RX, U.K
| | - Anne-Marie Seymour
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, U.K
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, Czech Republic
| | - Graeme J Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, U.K
| |
Collapse
|
7
|
Suilamo S, Li XG, Lankinen P, Oikonen V, Tolvanen T, Luoto P, Viitanen R, Saraste A, Seppänen M, Pirilä L, Hohenthal U, Roivainen A. 68Ga-Citrate PET of Healthy Men: Whole-Body Biodistribution Kinetics and Radiation Dose Estimates. J Nucl Med 2022; 63:1598-1603. [PMID: 35273093 PMCID: PMC9536698 DOI: 10.2967/jnumed.122.263884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
68Ga-citrate has one of the simplest chemical structures of all 68Ga-radiopharmaceuticals, and its clinical use is justified by the proven medical applications using its isotope-labeled compound 67Ga-citrate. To support broader application of 68Ga-citrate in medical diagnosis, further research is needed to gain clinical data from healthy volunteers. In this work, we studied the biodistribution of 68Ga-citrate and subsequent radiation exposure from it in healthy men. Methods: 68Ga-citrate was prepared with an acetone-based radiolabeling procedure compliant with good manufacturing practices. Six healthy men (age 41 ± 12 y, mean ± SD) underwent sequential whole-body PET/CT scans after an injection of 204 ± 8 MBq of 68Ga-citrate. Serial arterialized venous blood samples were collected during PET imaging, and the radioactivity concentration was measured with a γ-counter. Urinary voids were collected and measured. The MIRD bladder-voiding model with a 3.5-h voiding interval was used. A model using a 70-kg adult man and the MIRD schema was used to estimate absorbed doses in target organs and effective doses. Calculations were performed using OLINDA/EXM software, version 2.0. Results: Radioactivity clearance from the blood was slow, and relatively high radioactivity concentrations were observed over the whole of the 3-h measuring period. Although radioactivity excretion via urine was rather slow (biologic half-time, 69 ± 24 h), the highest decay-corrected concentrations in urinary bladder contents were measured at the 90- and 180-min time points. Moderate concentrations were also seen in kidneys, liver, and spleen. The source organs showing the largest residence times were muscle, liver, lung, and heart contents. The heart wall received the highest absorbed dose, 0.077 ± 0.008 mSv/MBq. The mean effective dose (International Commission on Radiological Protection publication 103) was 0.021 ± 0.001 mSv/MBq. Conclusion: PET imaging with 68Ga-citrate is associated with modest radiation exposure. A 200-MBq injection of 68Ga-citrate results in an effective radiation dose of 4.2 mSv, which is in the same range as other 68Ga-labeled tracers. This suggests the feasibility of clinical studies using 68Ga-citrate imaging in humans and the possibility of performing multiple scans in the same subjects across the course of a year.
Collapse
Affiliation(s)
- Sami Suilamo
- Department of Medical Physics, Turku University Hospital, Turku, Finland
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| | - Xiang-Guo Li
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Petteri Lankinen
- Department of Orthopaedics and Traumatology, Turku University Hospital and University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Vesa Oikonen
- Turku PET Centre, University of Turku, Turku, Finland
| | - Tuula Tolvanen
- Department of Medical Physics, Turku University Hospital, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Pauliina Luoto
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | | | - Antti Saraste
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Heart Center, Turku University Hospital, Turku, Finland
| | - Marko Seppänen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Laura Pirilä
- Department of Rheumatology and Clinical Immunology, Division of Medicine, Turku University Hospital; Turku, Finland
- Department of Medicine, University of Turku, Turku, Finland; and
| | - Ulla Hohenthal
- Department of Infectious Diseases, Division of Medicine, Turku University Hospital, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Turku, Finland;
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| |
Collapse
|
8
|
Feng L, Fang J, Zeng X, Liu H, Zhang J, Huang L, Guo Z, Zhuang R, Zhang X. 68Ga-Labeled Maleimide for Blood Pool and Lymph PET Imaging through Covalent Bonding to Serum Albumin In Vivo. ACS OMEGA 2022; 7:28597-28604. [PMID: 35990434 PMCID: PMC9386703 DOI: 10.1021/acsomega.2c03505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
This study aims to develop a novel 68Ga-labeled tracer, which can covalently bind to albumin in vivo based on the maleimide-thiol strategy, and to evaluate its potential applications using positron emission tomography (PET). 68Ga-labeled maleimide-monoamide-DOTA (denoted as [68Ga]Ga-DM) was prepared conveniently with a high radiochemical yield (>90%) and radiochemical purity (>99%). Its molar activity was calculated as 249.60 ± 68.50 GBq/μmol, and the octanol-water partition coefficient (LogP) was -3.15 ± 0.08 with good stabilities. In vitro experiments showed that [68Ga]Ga-DM can bind to albumin efficiently and rapidly, with a binding fraction of over 70%. High uptake and excellent retention in blood were observed with a long half-life (t 1/2Z) of 190.15 ± 24.14 min, which makes it possible for blood pool PET imaging with high contrast. The transient micro-bleeding in the rat model was detected successfully with PET imaging. In addition, the uptakes of [68Ga]Ga-DM in the inflammatory popliteal lymph nodes depend on the severity (5.90% ID/g and 2.32% ID/g vs 1.01% ID/g for healthy lymph nodes at 0.5 h post-injection) indicating its feasibility for lymphatic imaging. In conclusion, a novel 68Ga-labeled tracer was prepared with high efficiency and yield in mild conditions. Based on the promising properties of bonding covalently to albumin, great stability, high blood contrast with a long half-life, and well environmental tolerance, [68Ga]Ga-DM could be developed as a potential tracer for PET imaging of blood pool, bleeding, and vascular permeability alteration diseases in the clinic.
Collapse
|
9
|
Firth G, Blower JE, Bartnicka JJ, Mishra A, Michaels AM, Rigby A, Darwesh A, Al-Salemee F, Blower PJ. Non-invasive radionuclide imaging of trace metal trafficking in health and disease: "PET metallomics". RSC Chem Biol 2022; 3:495-518. [PMID: 35656481 PMCID: PMC9092424 DOI: 10.1039/d2cb00033d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 12/05/2022] Open
Abstract
Several specific metallic elements must be present in the human body to maintain health and function. Maintaining the correct quantity (from trace to bulk) and location at the cell and tissue level is essential. The study of the biological role of metals has become known as metallomics. While quantities of metals in cells and tissues can be readily measured in biopsy and autopsy samples by destructive analytical techniques, their trafficking and its role in health and disease are poorly understood. Molecular imaging with radionuclides - positron emission tomography (PET) and single photon emission computed tomography (SPECT) - is emerging as a means to non-invasively study the acute trafficking of essential metals between organs, non-invasively and in real time, in health and disease. PET scanners are increasingly widely available in hospitals, and methods for producing radionuclides of some of the key essential metals are developing fast. This review summarises recent developments in radionuclide imaging technology that permit such investigations, describes the radiological and physicochemical properties of key radioisotopes of essential trace metals and useful analogues, and introduces current and potential future applications in preclinical and clinical investigations to study the biology of essential trace metals in health and disease.
Collapse
Affiliation(s)
- George Firth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Julia E Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Joanna J Bartnicka
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Aishwarya Mishra
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Aidan M Michaels
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Alex Rigby
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Afnan Darwesh
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Fahad Al-Salemee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| |
Collapse
|
10
|
Tishchenko VK, Petriev VM, Kuzenkova KA, Shegai PV, Ivanov SA, Kaprin AD. A Comparative Study of the Pharmacokinetics of Bis- and Pentaphosphonic Acids Labeled with Gallium-68 in Rats with Experimental Model of Bone Callus. Bull Exp Biol Med 2020; 169:644-647. [PMID: 32986215 DOI: 10.1007/s10517-020-04945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Indexed: 11/28/2022]
Abstract
We analyzed biodistribution of 68Ga-labeled hydroxyethylidenediphosphonic acid (68Ga-HEDP) and diethylenetriaminepentakis(methylenephosphonic acid) (68Ga-DTPMP) in Wistar rats with experimental model of bone callus. It was shown that the content of 68Ga-DTPMP and 68Ga-HEDP in bone callus was ~1.5-fold higher than in intact femur. 68Ga-DTPMP was characterized by higher stability in vivo, higher uptake in the bone tissue, and lower uptake in others visceral organs in comparison with 68Ga-HEDP. Thus, 68Ga-DTPMP had more suitable pharmacokinetic properties than 68Ga-HEDP.
Collapse
Affiliation(s)
- V K Tishchenko
- National Medical Research Center of Radiology, Ministry of Health of the Russian Federation, Obninsk, Russia. .,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia.
| | - V M Petriev
- National Medical Research Center of Radiology, Ministry of Health of the Russian Federation, Obninsk, Russia.,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - K A Kuzenkova
- National Medical Research Center of Radiology, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - P V Shegai
- National Medical Research Center of Radiology, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - S A Ivanov
- National Medical Research Center of Radiology, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - A D Kaprin
- National Medical Research Center of Radiology, Ministry of Health of the Russian Federation, Obninsk, Russia
| |
Collapse
|
11
|
Tishchenko VK, Petriev VM, Mikhailovskaya AA, Stepchenkova ED, Timoshenko VY, Postnov AA, Zavestovskaya IN. Experimental Study of the Biodistribution of New Bone-Seeking Compounds Based on Phosphonic Acids and Gallium-68. Bull Exp Biol Med 2020; 168:777-780. [PMID: 32333308 DOI: 10.1007/s10517-020-04800-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Indexed: 11/29/2022]
Abstract
We investigate biodistribution of gallium-labeled hydroxyethylidenediphosphonic acid (68Ga-HEDP) and diethylenetriaminepentakis(methylenephosphonic acid) (68Ga-DTPMP) in intact Wistar rats. It was shown that 68Ga-DTPMP accumulated mainly in the bone tissue providing high femur/blood and femur/muscle ratios and had high stability in vivo. In contrast, 68Ga-HEDP was characterized by low stability and high uptake of radioactivity in blood throughout the study. So 68Ga-DTPMP can be considered as a new prospective radiotracer in oncology for imaging bone tissue metastasis by positron emission tomography.
Collapse
Affiliation(s)
- V K Tishchenko
- National Medical Research Centre of Radiology, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - V M Petriev
- National Medical Research Centre of Radiology, Ministry of Health of the Russian Federation, Obninsk, Russia. .,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia.
| | - A A Mikhailovskaya
- National Medical Research Centre of Radiology, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - E D Stepchenkova
- National Medical Research Centre of Radiology, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - V Yu Timoshenko
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia.,P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia.,Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - A A Postnov
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - I N Zavestovskaya
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia.,P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Wang X, Jaraquemada-Peláez MDG, Cao Y, Ingham A, Rodríguez-Rodríguez C, Pan J, Wang Y, Saatchi K, Häfeli UO, Lin KS, Orvig C. H2CHXhox: Rigid Cyclohexane-Reinforced Nonmacrocyclic Chelating Ligand for [nat/67/68Ga]Ga3+. Inorg Chem 2020; 59:4895-4908. [DOI: 10.1021/acs.inorgchem.0c00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaozhu Wang
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| | | | - Yang Cao
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| | - Aidan Ingham
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver BC V6T 1Z1, Canada
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3,Canada
| | - Cristina Rodríguez-Rodríguez
- Center for Comparative Medicine, 4145 Wesbrook Mall, Vancouver, British Columbia V6T 1W5, Canada
- Department of Physics and Astronomy, University of British Columbia, 6224 Agronomy Road, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jinhe Pan
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver BC V5Z 1L3, Canada
| | - Yongliang Wang
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver BC V5Z 1L3, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Urs O. Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver BC V5Z 1L3, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| |
Collapse
|
13
|
Hajiramezanali M, Atyabi F, Mosayebnia M, Akhlaghi M, Geramifar P, Jalilian AR, Mazidi SM, Yousefnia H, Shahhosseini S, Beiki D. 68Ga-radiolabeled bombesin-conjugated to trimethyl chitosan-coated superparamagnetic nanoparticles for molecular imaging: preparation, characterization and biological evaluation. Int J Nanomedicine 2019; 14:2591-2605. [PMID: 31040674 PMCID: PMC6462163 DOI: 10.2147/ijn.s195223] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Nowadays, nanoparticles (NPs) have attracted much attention in biomedical imaging due to their unique magnetic and optical characteristics. Superparamagnetic iron oxide nanoparticles (SPIONs) are the prosperous group of NPs with the capability to apply as magnetic resonance imaging (MRI) contrast agents. Radiolabeling of targeted SPIONs with positron emitters can develop dual positron emission tomography (PET)/MRI agents to achieve better diagnosis of clinical conditions. METHODS In this work, N,N,N-trimethyl chitosan (TMC)-coated magnetic nanoparticles (MNPs) conjugated to S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (DOTA) as a radioisotope chelator and bombesin (BN) as a targeting peptide (DOTA-BN-TMC-MNPs) were prepared and validated using fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and powder X-ray diffraction (PXRD) tests. Final NPs were radiolabeled with gallium-68 (68Ga) and evaluated in vitro and in vivo as a potential PET/MRI probe for breast cancer (BC) detection. RESULTS The DOTA-BN-TMC-MNPs with a particle size between 20 and 30 nm were efficiently labeled with 68Ga (radiochemical purity higher than 98% using thin layer chromatography (TLC)). The radiolabeled NPs showed insignificant toxicity (>74% cell viability) and high affinity (IC50=8.79 µg/mL) for the gastrin-releasing peptide (GRP)-avid BC T-47D cells using competitive binding assay against 99mTc-hydrazinonicotinamide (HYNIC)-gamma-aminobutyric acid (GABA)-BN (7-14). PET and MRI showed visible uptake of NPs by T-47D tumors in xenograft mouse models. CONCLUSION 68Ga-DOTA-BN-TMC-MNPs could be a potential diagnostic probe to detect BC using PET/MRI technique.
Collapse
Affiliation(s)
- Maliheh Hajiramezanali
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| | - Mona Mosayebnia
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran,
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran,
| | - Amir Reza Jalilian
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran,
| | - Seyed Mohammad Mazidi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | - Hassan Yousefnia
- Material and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | - Soraya Shahhosseini
- Department of Radiopharmacy and Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
14
|
McInnes LE, Rudd SE, Donnelly PS. Copper, gallium and zirconium positron emission tomography imaging agents: The importance of metal ion speciation. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.05.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Development of 68Ga labeled human serum albumin for blood pool imaging: a comparison between two ligands. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5320-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Autio A, Virtanen H, Tolvanen T, Liljenbäck H, Oikonen V, Saanijoki T, Siitonen R, Käkelä M, Schüssele A, Teräs M, Roivainen A. Erratum to: Absorption, distribution and excretion of intravenously injected (68)Ge/(68)Ga generator eluate in healthy rats, and estimation of human radiation dosimetry. EJNMMI Res 2016; 6:51. [PMID: 27294583 PMCID: PMC4906093 DOI: 10.1186/s13550-016-0205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 11/10/2022] Open
Affiliation(s)
- Anu Autio
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, FI-20521, Finland
| | - Helena Virtanen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, FI-20521, Finland
| | - Tuula Tolvanen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, FI-20521, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, FI-20521, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Vesa Oikonen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, FI-20521, Finland
| | - Tiina Saanijoki
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, FI-20521, Finland
| | - Riikka Siitonen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, FI-20521, Finland
| | - Meeri Käkelä
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, FI-20521, Finland
| | | | - Mika Teräs
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, FI-20521, Finland
| | - Anne Roivainen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, FI-20521, Finland. .,Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| |
Collapse
|
17
|
Uso de radiofármacos metales en PET. La nueva realidad. RADIOLOGIA 2015; 57:525. [DOI: 10.1016/j.rx.2015.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/08/2015] [Accepted: 08/25/2015] [Indexed: 11/23/2022]
|