1
|
Karimzadeh A, Hansen K, Hein S, Haller B, Heck MM, Tauber R, D Alessandria C, Eiber M, Rauscher I. Impact of baseline 18F-flotufolastat PET bone tumor volume for prognosticating severe hematologic toxicity in patients with metastatic castration-resistant prostate Cancer receiving 177Lu-PSMA-targeted radioligand therapy. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07200-7. [PMID: 40383857 DOI: 10.1007/s00259-025-07200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/06/2025] [Indexed: 05/20/2025]
Abstract
PURPOSE This retrospective analysis evaluated the prognostic value of baseline 18F-flotufolastat-PET bone tumor metrics for severe hematologic toxicity in metastatic castration-resistant prostate cancer (mCRPC) patients treated with [177Lu]Lu-PSMA-I&T. METHODS Data from 182 mCRPC patients with baseline 18F-flotufolastat-PET scans and complete hematologic profiles were analyzed. Bone lesions were semiautomatically delineated, and clinical parameters (e.g., pretreatments, lab results) were assessed. Hematologic adverse events (AEs) were defined per Common Terminology Criteria for Adverse Events version 5.0, with grades 3-4 considered severe. Cox regression was used to identify prognostic factors for AEs. RESULTS Baseline bone tumor volume prognosticated leukocytopenia (HR 1.03 per 100 ml, p = 0.036), while the number of bone lesions was prognostic for anemia (HR 1.04 per 10 lesions, p < 0.001) and severe anemia (HR per 10 lesions 1.05, p = 0.009). Higher baseline hemoglobin correlated with reduced leukocytopenia (HR 0.74, p = 0.002), thrombocytopenia (HR 0.80, p = 0.033), and severe anemia (HR 0.52, p < 0.001). Baseline kidney dysfunction was linked to anemia (HR 2.46, p = 0.002) and severe anemia (HR 3.81, p = 0.023). Prior [223Ra]Radiumdichloride treatment prognosticated severe thrombocytopenia (HR 6.43, p = 0.021). CONCLUSION Baseline 18F-flotufolastat-PET metrics and pretherapeutic clinical parameters are key prognostic factors for severe hematologic toxicity in mCRPC patients treated with [177Lu]Lu-PSMA-I&T.
Collapse
Affiliation(s)
- Amir Karimzadeh
- Department of Nuclear Medicine, School of Medicine and Health, TUM University Hospital, Munich, Germany.
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Kimberley Hansen
- Department of Nuclear Medicine, School of Medicine and Health, TUM University Hospital, Munich, Germany
| | - Stefan Hein
- Department of Nuclear Medicine, School of Medicine and Health, TUM University Hospital, Munich, Germany
| | - Bernhard Haller
- School of Medicine and Health, Institute of AI and Informatics in Medicine, Technical University of Munich, TUM University Hospital, Munich, Germany
| | - Matthias M Heck
- Department of Urology, School of Medicine and Health, TUM University Hospital, Munich, Germany
| | - Robert Tauber
- Department of Urology, School of Medicine and Health, TUM University Hospital, Munich, Germany
| | - Calogero D Alessandria
- Department of Nuclear Medicine, School of Medicine and Health, TUM University Hospital, Munich, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, School of Medicine and Health, TUM University Hospital, Munich, Germany
- Bavarian Cancer Research Center, Munich, Germany
| | - Isabel Rauscher
- Department of Nuclear Medicine, School of Medicine and Health, TUM University Hospital, Munich, Germany
- Bavarian Cancer Research Center, Munich, Germany
| |
Collapse
|
2
|
Yang H, Ko K, Yang C. Evaluating auto-contouring accuracy in reduced CT dose images for radiopharmaceutical therapies: Denoising and evaluation of 177Lu DOTATATE therapy dataset. J Appl Clin Med Phys 2025; 26:e70066. [PMID: 40025651 PMCID: PMC11969114 DOI: 10.1002/acm2.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
PURPOSE Reducing radiation dose attributed to computed tomography (CT) may compromise the accuracy of organ segmentation, an important step in 177Lu DOTATATE therapy that affects both activity and mass estimates. This study aimed to facilitate CT dose reduction using deep learning methods for patients undergoing serial single photon emission computed tomography (SPECT)/CT imaging during 177Lu DOTATATE therapy. METHODS The 177Lu DOTATATE patient dataset hosted in Deep Blue Data was used in this study. The noise insertion method incorporating the effect of bowtie filter, automatic exposure control, and electronic noise was applied to simulate images at four reduced dose levels. Organ segmentation was carried out using the TotalSegmentator model, while image denoising was performed with the DenseNet model. The impact of segmentation performance on the dosimetry accuracy of 177Lu DOTATATE therapy was quantified by calculating the percent difference between a dose rate map segmented with a reference mask and the same dose rate map segmented with a test mask (PDdose) for spleen, right kidney, left kidney, and liver. RESULTS Before denoising, the mean ± standard deviation of PDdose for all critical organs were 2.31 ± 2.94%, 4.86 ± 9.42%, 8.39 ± 14.76%, 12.95 ± 19.99% in CT images at dose levels down to 20%, 10%, 5%, 2.5% of the normal dose, respectively. After denoising, the corresponding results were 1.69 ± 2.25%, 2.84 ± 4.46%, 3.72 ± 4.22%, 7.98 ± 15.05% in CT images at dose levels down to 20%, 10%, 5%, 2.5% of the normal dose, respectively. CONCLUSION As dose reduction increased, CT image segmentation gradually deteriorated, which in turn deteriorated the dosimetry accuracy of 177Lu DOTATATE therapy. Improving CT image quality through denoising could enhance 177Lu DOTATATE dosimetry, making it a valuable tool to support CT dose reduction for patients undergoing serial SPECT/CT imaging during treatment.
Collapse
Affiliation(s)
- Hung‐Te Yang
- Department of Radiation OncologyKaohsiung Municipal Siaogang HospitalKaohsiungTaiwan
| | - Kuan‐Yin Ko
- Department of Nuclear MedicineNational Taiwan University Cancer CenterTaipeiTaiwan
| | - Ching‐Ching Yang
- Department of Medical Imaging and Radiological SciencesKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Medical ResearchKaohsiung Medical University HospitalKaohsiungTaiwan
| |
Collapse
|
3
|
Kao YH, Falzone N, Pearson M, Sivaratnam D. First-Strike Rapid Predictive Dosimetry and Dose Response for 177Lu-PSMA Therapy in Metastatic Castration-Resistant Prostate Cancer. J Nucl Med Technol 2024; 52:212-218. [PMID: 38901967 DOI: 10.2967/jnmt.123.267067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/23/2024] [Indexed: 06/22/2024] Open
Abstract
We devised and clinically validated a schema of rapid personalized predictive dosimetry for 177Lu-PSMA-I&T in metastatic castration-resistant prostate cancer. It supersedes traditional empiric prescription by providing clinically meaningful predicted absorbed doses for first-strike optimization. Methods: Prostate-specific membrane antigen PET was conceptualized as a simulation study that captures the complex dosimetric interplay between tumor, marrow, and kidneys at a single time point. Radiation principles of fractionation, heterogeneity, normal-organ constraints (marrow, kidney), absorbed dose, and dose rate were introduced. We created a predictive calculator in the form of a free, open-source, and user-friendly spreadsheet that can be completed within minutes. Our schema achieves speed and accuracy by sampling tissue radioconcentrations (kBq/cm3) to be analyzed in conjunction with clinical input from the user that reflect dosimetric preconditions. The marrow-absorbed dose constraint was 0.217 Gy (dose rate, ≤0.0147 Gy/h) per fraction with an interfraction interval of at least 6 wk. Results: Our first 10 patients were analyzed. The first-strike mean tumor-absorbed dose threshold for any prostate-specific antigen (PSA) response was more than 10 Gy (dose rate, >0.1 Gy/h). The metastasis with the lowest first-strike tumor-absorbed dose correlated the best with the percentage decrease of PSA; its threshold to achieve hypothetical zero PSA was 20 Gy or more. Each patient's PSA doubling time can be used to personalize their unique absorbed dose-response threshold. The predicted mean first-strike prescription constrained by marrow-absorbed dose rate per fraction was 11.0 ± 4.0 GBq. Highly favorable conditions (tumor sink effect) were dosimetrically expressed as the combination of tumor-to-normal-organ ratios of more than 150 for marrow and more than 4 for kidney. Our schema obviates the traditional role of the SUV as a predictive parameter. Conclusion: Our rapid schema is feasible to implement in any busy real-world theranostics unit and exceeds today's best practice standards. Our dosimetric thresholds and predictive parameters can radiobiologically rationalize each patient's first-strike prescription down to a single becquerel. Favorable tumor-to-normal-organ ratios can be prospectively exploited by predictive dosimetry to optimize the first-strike prescription. The scientific framework of our schema may be applied to other systemic radionuclide therapies.
Collapse
Affiliation(s)
- Yung Hsiang Kao
- Department of Nuclear Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia;
| | - Nadia Falzone
- GenesisCare Theranostics, North Shore Health Hub, Sydney, New South Wales, Australia
| | - Michael Pearson
- Medical Imaging Department, Cabrini Hospital, Malvern, Victoria, Australia; and
| | - Dinesh Sivaratnam
- Department of Nuclear Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Medical Imaging Department, Cabrini Hospital, Malvern, Victoria, Australia; and
- GenesisCare Theranostics, Cabrini Hospital, Malvern, Victoria, Australia
| |
Collapse
|
4
|
Ells Z, Grogan TR, Czernin J, Dahlbom M, Calais J. Dosimetry of [ 177Lu]Lu-PSMA-Targeted Radiopharmaceutical Therapies in Patients with Prostate Cancer: A Comparative Systematic Review and Metaanalysis. J Nucl Med 2024; 65:1264-1271. [PMID: 38960712 PMCID: PMC11294071 DOI: 10.2967/jnumed.124.267452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/29/2024] [Indexed: 07/05/2024] Open
Abstract
Novel theranostic approaches using radiopharmaceuticals targeting prostate-specific membrane antigen (PSMA) have emerged for treating metastatic castration-resistant prostate cancer. The physical properties and commercial availability of 177Lu make it one of the most used radionuclides for radiopharmaceutical therapy (RPT). In this literature review, we aimed at comparing the dosimetry of the most used [177Lu]Lu-PSMA RPT compounds. Methods: This was a systematic review and metaanalysis of [177Lu]Lu-PSMA RPT (617, I&T, and J591) dosimetry in patients with prostate cancer. Absorbed doses in Gy/GBq for each organ at risk (kidney, parotid and submandibular glands, bone marrow, liver, and lacrimal glands) and for tumor lesions (bone and nonbone lesions) were extracted from included articles. These were used to estimate the pooled average absorbed dose of each agent in Gy/GBq and in Gy/cycle, normalized to the injected activity (per cycle) used in the VISION (7.4 GBq), SPLASH (6.8 GBq), and PROSTACT trials (5.8 GBq). Results: Twenty-nine published articles comprising 535 patients were included in the metaanalysis. The pooled doses (weighted average across studies) of [177Lu]Lu-PSMA-617 and [177Lu]Lu-PSMA-I&T were 4.04 Gy/GBq (17 studies, 297 patients) and 4.70 Gy/GBq (10 studies, 153 patients) for the kidney (P = 0.10), 5.85 Gy/GBq (14 studies, 216 patients) and 2.62 Gy/GBq (5 studies, 86 patients) for the parotids (P < 0.01), 5.15 Gy/GBq (5 studies, 81 patients) and 4.35 Gy/GBq (1 study, 18 patients) for the submandibular glands (P = 0.56), 11.03 Gy/GBq (6 studies, 121 patients) and 19.23 Gy/GBq (3 studies, 53 patients) for the lacrimal glands (P = 0.20), 0.24 Gy/GBq (12 studies, 183 patients) and 0.19 Gy/GBq (4 studies, 68 patients) for the bone marrow (P = 0.31), and 1.11 Gy/GBq (9 studies, 154 patients) and 0.56 Gy/GBq (4 studies, 56 patients) for the liver (P = 0.05), respectively. Average tumor doses tended to be higher for [177Lu]Lu-PSMA-617 than for [177Lu]Lu-PSMA-I&T in soft tissue tumor lesions (4.19 vs. 2.94 Gy/GBq; P = 0.26). Dosimetry data of [177Lu]Lu-J591 were limited to one published study of 35 patients with reported absorbed doses of 1.41, 0.32, and 2.10 Gy/GBq to the kidney, bone marrow, and liver, respectively. Conclusion: In this metaanalysis, there was no significant difference in absorbed dose between [177Lu]Lu-PSMA-I&T and [177Lu]Lu-PSMA-617. There was a possible trend toward a higher kidney dose with [177Lu]Lu-PSMA-I&T and a higher tumor lesion dose with [177Lu]Lu-PSMA-617. It remains unknown whether this finding has any clinical impact. The dosimetry methodologies were strikingly heterogeneous among studies, emphasizing the need for standardization.
Collapse
Affiliation(s)
- Zachary Ells
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California; and
| | - Tristan R Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Johannes Czernin
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California; and
| | - Magnus Dahlbom
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California; and
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California; and
| |
Collapse
|
5
|
Kim KM, Suh M, Cheon GJ, Lee MS, Lee JS. Simplified image-based dosimetry using planar images and patient-specific S-values. Med Phys 2024; 51:5708-5721. [PMID: 38340367 DOI: 10.1002/mp.16974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Single time point measurement approach and hybrid dosimetry were proposed to simplify the dosimetry process. It is anticipated that utilizing patient-specific S-value would enable more accurate dosimetry assessment based on imaging compared to using the conventional MIRD S-values. PURPOSE We performed planar image-based dosimetry scaled with a single SPECT image for the entire treatment cycle using patient-specific S-values (PSS dosimetry) of organs. PSS dosimetry could further simplify the dosimetry procedure compared with a conventional 2D planar/3D SPECT hybrid dosimetry, as PSS dosimetry requires only one SPECT/CT image for the treatment of the entire cycle, whereas the conventional hybrid dosimetry requires a SPECT/CT image for each treatment cycle. METHODS 177Lu-DOTATATE SPECT/CT and planar image datasets acquired from Seoul National University Hospital (SNUH, Seoul, Republic of Korea) were utilized for the evaluation. Images were acquired 4, 24, 48, and 120 h after patients' intravenous injection of 177Lu-DOTATATE. Dose estimations based on a Monte Carlo (MC) simulation using the Geant4 Application for Emission Tomography (GATE) (v.8.2) were considered as the reference. Planar image-based dosimetry scaled with a single SPECT image was performed using the patient-specific S-value (PSS). Briefly, the CT image was considered as the patient's anatomical reference and PSSs were quantified using the multiple voxel S-value (VSV) method. Then, PSS dosimetry was performed by obtaining activity information from sequential planar images and a scaling factor derived from a single SPECT/planar image pair. Hybrid dosimetry using sequential planar images and a single SPECT image was performed for comparison. The absorbed doses of the kidneys, bone marrow (BM) in the lumbar spine, liver, and spleen calculated using the PSS and hybrid dosimetries were compared with the reference MC results. RESULTS The mean differences (MDs) of the self-absorption S-values between S-value of OLINDA/EXM and PSS for the kidneys, liver, and spleen were -0.04%, -2.39%, and -2.62%, respectively. However, the differences in the self-absorption S-values were significantly higher for the BM (84.99%) and the remainder of the body (ROB) (280.84%). The absorbed doses estimated by the PSS and hybrid dosimetries showed relatively high errors compared with MC simulation result, regardless of the organ. In contrast, the PSS and hybrid dosimetries produced similar dose estimates. For the entire cycles of the treatment, the MDs of absorbed doses between PSS and hybrid dosimetries were -3.31%, -6.04%, 3.37%, and -2.17% for the kidneys, BM, liver, and spleen, respectively. Through a correlation analysis and the Wilcoxon signed-rank test, we concluded that there was no significant difference between the results obtained by the two dosimetry methods. CONCLUSIONS As the PSS was derived using CT images with actual anatomical information and organ-specific volume of interest (VOI), PSS dosimetry provided reliable results. PSS dosimetry was robust in estimating the absorbed dose for the later treatment cycles. Therefore, PSS dosimetry outperformed hybrid dosimetry in terms of dose estimation for a greater number of treatment cycles.
Collapse
Affiliation(s)
- Keon Min Kim
- Interdisciplinary Program in Bioengineering, Seoul National University Graduate School, Seoul, South Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, South Korea
| | - Minseok Suh
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Min Sun Lee
- Korea Atomic Energy Research Institute, Daejeon, South Korea
| | - Jae Sung Lee
- Interdisciplinary Program in Bioengineering, Seoul National University Graduate School, Seoul, South Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, South Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
6
|
Vergnaud L, Dewaraja YK, Giraudet AL, Badel JN, Sarrut D. A review of 177Lu dosimetry workflows: how to reduce the imaging workloads? EJNMMI Phys 2024; 11:65. [PMID: 39023648 PMCID: PMC11554969 DOI: 10.1186/s40658-024-00658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
177 Lu radiopharmaceutical therapy is a standardized systemic treatment, with a typical dose of 7.4 GBq per injection, but its response varies from patient to patient. Dosimetry provides the opportunity to personalize treatment, but it requires multiple post-injection images to monitor the radiopharmaceutical's biodistribution over time. This imposes an additional imaging burden on centers with limited resources. This review explores methods to lessen this burden by optimizing acquisition types and minimizing the number and duration of imaging sessions. After summarizing the different steps of dosimetry and providing examples of dosimetric workflows for177 Lu -DOTATATE and177 Lu -PSMA, we examine dosimetric workflows based on a reduced number of acquisitions, or even just one. We provide a non-exhaustive description of simplified methods and their assumptions, as well as their limitations. Next, we detail the specificities of each normal tissue and tumors, before reviewing dose-response relationships in the literature. In conclusion, we will discuss the current limitations of dosimetric workflows and propose avenues for improvement.
Collapse
Affiliation(s)
- Laure Vergnaud
- CREATIS; CNRS UMR 5220; INSERM U 1044, Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France.
| | - Yuni K Dewaraja
- Department of Radiology, University of Michigan, Ann Arbor, USA
| | | | - Jean-Noël Badel
- CREATIS; CNRS UMR 5220; INSERM U 1044, Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | - David Sarrut
- CREATIS; CNRS UMR 5220; INSERM U 1044, Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| |
Collapse
|
7
|
Zhang-Yin J. Lutetium-177-Prostate-Specific Membrane Antigen Radioligand Therapy: What Is the Value of Post-Therapeutic Imaging? Biomedicines 2024; 12:1512. [PMID: 39062085 PMCID: PMC11274713 DOI: 10.3390/biomedicines12071512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Lutetium-177 (Lu-177)-labelled radioligand therapies (RLT) targeting prostate-specific membrane antigen (PSMA) present a promising treatment for patients with progressive metastasized castration-resistant prostate cancer (mCRPC). Personalized dosimetry, facilitated by post-therapeutic imaging, offers the potential to enhance treatment efficacy by customizing radiation doses to individual patient needs, thereby maximizing therapeutic benefits while minimizing toxicity to healthy tissues. However, implementing personalized dosimetry is resource-intensive, requiring multiple single-photon emission-computed tomography (SPECT)/CT scans and posing significant logistical challenges for both healthcare facilities and patients. Despite these challenges, personalized dosimetry can lead to optimized radiation delivery, improved safety, and better management of complex cases. Nevertheless, the financial and resource burdens complicate its adoption in routine clinical practice. While the European Association of Nuclear Medicine (EANM) supports personalized dosimetry, standardization is lacking due to these practical constraints. Further research and streamlined methodologies are essential to balance the benefits and feasibility of personalized dosimetry, potentially improving treatment outcomes for mCRPC patients.
Collapse
Affiliation(s)
- Jules Zhang-Yin
- Department of Nuclear Medicine, Clinique Sud Luxembourg, Vivalia, B-6700 Arlon, Belgium
| |
Collapse
|
8
|
Vallot D, Brillouet S, Pondard S, Vija L, Texier JS, Dierickx L, Courbon F. Impact of different models based on blood samples and images for bone marrow dosimetry after 177Lu-labeled somatostatin-receptor therapy. EJNMMI Phys 2024; 11:32. [PMID: 38564043 PMCID: PMC10987460 DOI: 10.1186/s40658-024-00615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/15/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Peptide receptor radionuclide therapy with 177Lu-DOTATATE is a recognized option for treating neuroendocrine tumors and has few toxicities, except for the kidneys and bone marrow. The bone marrow dose is generally derived from a SPECT/CT image-based method with four timepoints or from a blood-based method with up to 9 timepoints, but there is still no reference method. This retrospective single-center study on the same cohort of patients compared the calculated bone marrow dose administered with both methods using mono, bi- or tri-exponential models. For the image-based method, the dose was estimated using Planetdose© software. Pearson correlation coefficients were calculated. We also studied the impact of late timepoints for both methods. RESULTS The bone marrow dose was calculated for 131 treatments with the blood-based method and for 17 with the image-based method. In the former, the median absorbed dose was 15.3, 20.5 and 28.3 mGy/GBq with the mono-, bi- and tri-exponential model, respectively. With the image-based method, the median absorbed dose was 63.9, 41.9 and 60.8 with the mono-, bi- and tri-exponential model, respectively. Blood samples after 24h post-injection did not evidence any change in the absorbed bone marrow dose with the bi-exponential model. On the contrary, the 6-day post-injection timepoint was more informative with the image-based model. CONCLUSION This study confirms that the estimated bone marrow dose is significantly lower with the blood-based method than with the image-based method. The blood-based method with a bi-exponential model proved particularly useful, without the need for blood samples after 24h post-injection. Nevertheless, this blood-based method is based on an assumption that needs to be more validated. The important difference between the two methods does not allow to determine the optimal one to estimate the true absorbed dose and further studies are necessary to compare with biological effects.
Collapse
|
9
|
Persson M, Hindorf C, Ardenfors O, Larsson M, Nilsson JN. Risk of treatment-altering haematological toxicity and its dependence on bone marrow doses in peptide receptor radionuclide therapy. EJNMMI Res 2024; 14:13. [PMID: 38319478 PMCID: PMC10847080 DOI: 10.1186/s13550-024-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Peptide receptor radionuclide therapy is effective in treating neuroendocrine tumours, but treatment may be limited by kidney and bone marrow toxicity. In this work, the absorbed dose burden to the bone marrow was estimated using image-based dosimetry and its potential use for predicting treatment-altering toxicity was studied. Peripheral blood samples taken before and after 229 treatments with 177Lu-DOTATATE in 59 patients were studied. In connection to the treatments, a total of 940 blood sample occasions provided data on white blood cell, neutrophil granulocyte, platelet, erythrocyte and haemoglobin concentrations. SPECT/CT image data were collected at two or three time points after each treatment. Absorbed doses to bone marrow were calculated from the activity concentration in a metastasis-free lumbar vertebra. The rate of delayed and aborted treatments was analysed based on medical records. RESULTS The average absorbed dose to the bone marrow was 0.42 Gy (median 0.33 Gy, SD 0.27 Gy) per treatment. Dose-response relationships between white blood cells, neutrophil granulocytes and haemoglobin concentrations were observed, most prominently at 31-45 days after each treatment. The correlations were stronger in patients with skeletal metastases. The rates of haematological toxicity-related delays and aborted treatments were 6% and 12%, respectively. None of the studied bone marrow dosimetric parameters could clearly predict treatment-related toxicity. However, patients with skeletal metastases had higher risk of treatment-altering toxicity (odds ratio = 6.0). CONCLUSIONS Treatment-altering haematological toxicity in peptide receptor radionuclide therapy is relatively rare and appears difficult to fully predict from post-therapeutic image-based dosimetry. However, for patients with skeletal metastases, the haematological dose-response relationships are stronger. Future studies may focus on this patient group, to further investigate the usefulness of dosimetry in predicting decreases in blood values.
Collapse
Affiliation(s)
- Märta Persson
- Medicinsk Fysik och Teknik, Mälarsjukhuset, Eskilstuna, Sweden
| | - Cecilia Hindorf
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Oscar Ardenfors
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Larsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176, Stockholm, Sweden
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Joachim N Nilsson
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
10
|
Steiner J, Nguyen B, Jafari F. A Pharmacokinetic Model Determination of Time Activity Curves in Radiopharmaceutical Therapy. Mol Imaging 2024; 23:15353508241280015. [PMID: 40098749 PMCID: PMC11911383 DOI: 10.1177/15353508241280015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 03/19/2025] Open
Abstract
Introduction and Purpose Radiopharmaceutical therapy (RPT) dosimetry can be challenging to perform due to sparse data measurements and variations in how the time activity curve (TAC) is determined. In this work, a single system of equations was theoretically derived to estimate the TAC. Methods A pharmacokinetic (PK) model was developed to estimate patient specific rate constants for a given set of body compartments. The PK model and an optimizer were numerically implemented to determine the rate constants and, using these physiologic data, to generate TACs and time integrated activities (TIAs) for 3 tissue systems from clinical data gathered in 5 patients. A fourth (aggregate) tissue compartment is added using conservation of activity considerations. Results Feasibility of the PK model was demonstrated by successfully generating TACs and TIAs for all patients in a manner comparable to existing methods in the literature. The data are compared to smaller sampling regimes. Differences between the 3- and 4-compartment models show that conservation of activity considerations should be part of TAC estimations. Conclusion The results here suggest a new paradigm in RPT in using the rate constants so identified as a diagnostic tool and as a vehicle to achieving individualized tumorcidal dose and/or the maximum tolerable dose to normal tissues.
Collapse
Affiliation(s)
- Joseph Steiner
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Brandon Nguyen
- Department of Radiology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Farhad Jafari
- Department of Radiology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
11
|
Chen G, Lu Z, Jiang H, Afshar-Oromieh A, Rominger A, Shi K, Mok GSP. Lu-177-PSMA dosimetry for kidneys and tumors based on SPECT images at two imaging time points. Front Med (Lausanne) 2023; 10:1246881. [PMID: 38020081 PMCID: PMC10679348 DOI: 10.3389/fmed.2023.1246881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Background Personalized dosimetry for Lu-177-PSMA treatment requires multiple-time-point SPECT/CT scans to calculate time-integrated activity (TIA). This study evaluates two-time-point (TTP) methods for TIA calculation for kidneys and tumors. Methods A total of 18 patients treated with 3.7-7.4 GBq Lu-177 PSMA-617 were analyzed retrospectively, including 18 sets of left and right kidneys, as well as 45 tumors. Four quantitative SPECT/CT (4TP) were acquired at 2 h, 20 h, 40 h, 60 h (n = 11), or 200 h (n = 7) after treatment, and they were fit bi-exponentially as reference. The TTP method was fitted by a mono-exponential washout function using two selected imaging time points for kidneys. For tumors, one uptake and one washout phase were modeled, assuming linear (type I) and same (type II) uptake phase between 0 h to the first time point and mono-exponential washout thereafter. Two single-time-point (STP) methods were also implemented for comparison. TIA calculated by TTP and STP methods were compared with reference to the 4TP TIA. Results For the kidneys, the TTP methods using 20 h-60 h and 40 h-200 h had smaller mean absolute errors of 8.05 ± 6.05% and 4.95 ± 3.98%, respectively, as compared to other combinations of time points and STP methods. For tumors, the type I and type II TTP methods using 20h-60 h and 40-200 h had smaller mean absolute errors of 6.14 ± 5.19% and 12.22 ± 4.44%, and 8.31 ± 7.16% and 4.48 ± 7.10%, respectively, as compared to other TTP and STP methods. Conclusion The TTP methods based on later imaging time demonstrated fewer errors than the STP methods in kidney and tumor TIA. Imaging at 20 h-60 h and 40 h-200 h could simplify the dosimetry procedures with fewer TIA estimation errors.
Collapse
Affiliation(s)
- Gefei Chen
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
| | - Zhonglin Lu
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
| | - Han Jiang
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Greta S. P. Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
12
|
Kratochwil C, Fendler WP, Eiber M, Hofman MS, Emmett L, Calais J, Osborne JR, Iravani A, Koo P, Lindenberg L, Baum RP, Bozkurt MF, Delgado Bolton RC, Ezziddin S, Forrer F, Hicks RJ, Hope TA, Kabasakal L, Konijnenberg M, Kopka K, Lassmann M, Mottaghy FM, Oyen WJG, Rahbar K, Schoder H, Virgolini I, Bodei L, Fanti S, Haberkorn U, Hermann K. Joint EANM/SNMMI procedure guideline for the use of 177Lu-labeled PSMA-targeted radioligand-therapy ( 177Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging 2023; 50:2830-2845. [PMID: 37246997 PMCID: PMC10317889 DOI: 10.1007/s00259-023-06255-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is expressed by the majority of clinically significant prostate adenocarcinomas, and patients with target-positive disease can easily be identified by PSMA PET imaging. Promising results with PSMA-targeted radiopharmaceutical therapy have already been obtained in early-phase studies using various combinations of targeting molecules and radiolabels. Definitive evidence of the safety and efficacy of [177Lu]Lu-PSMA-617 in combination with standard-of-care has been demonstrated in patients with metastatic castration-resistant prostate cancer, whose disease had progressed after or during at least one taxane regimen and at least one novel androgen-axis drug. Preliminary data suggest that 177Lu-PSMA-radioligand therapy (RLT) also has high potential in additional clinical situations. Hence, the radiopharmaceuticals [177Lu]Lu-PSMA-617 and [177Lu]Lu-PSMA-I&T are currently being evaluated in ongoing phase 3 trials. The purpose of this guideline is to assist nuclear medicine personnel, to select patients with highest potential to benefit from 177Lu-PSMA-RLT, to perform the procedure in accordance with current best practice, and to prepare for possible side effects and their clinical management. We also provide expert advice, to identify those clinical situations which may justify the off-label use of [177Lu]Lu-PSMA-617 or other emerging ligands on an individual patient basis.
Collapse
Affiliation(s)
- Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany.
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, 45147, Essen, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum Rechts Der Isar, Technical University Munich (TUM), 81675, Munich, Germany
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Oncology, Sir Peter MacCallum, University of Melbourne, Melbourne, VIC, Australia
| | - Louise Emmett
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital Sydney, Darlinghurst, Australia
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA
| | - Joseph R Osborne
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Amir Iravani
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Phillip Koo
- Division of Diagnostic Imaging, Banner MD Anderson Cancer Center, Gilbert, AZ, USA
| | - Liza Lindenberg
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Richard P Baum
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Wiesbaden, Germany
| | - Murat Fani Bozkurt
- Hacettepe University Faculty of Medicine, Department of Nuclear Medicine, Ankara, Turkey
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño (La Rioja), Spain
| | - Samer Ezziddin
- Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany
| | - Flavio Forrer
- Department of Radiology and Nuclear Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Rodney J Hicks
- The University of Melbourne Department of Medicine, St Vincent's Hospital, Melbourne, Australia
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging / Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Levent Kabasakal
- Department of Nuclear Medicine, Cerrahpasa Medical Faculty, Istanbul University- Cerrahpasa, Istanbul, Turkey
| | - Mark Konijnenberg
- Radiology & Nuclear Medicine Department, Erasmus MC, Rotterdam, The Netherlands
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Technical University Dresden, School of Science, Faculty of Chemistry and Food Chemistry; German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, RWTH Aachen University Medical Faculty, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Wim J G Oyen
- Department of Biomedical Sciences, Humanitas University, and Humanitas Clinical and Research Centre, Department of Nuclear Medicine, Milan, Italy
- Department of Radiology and Nuclear Medicine, Rijnstate Hospital, Arnhem, the Netherlands
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Kambiz Rahbar
- Department of Nuclear Medicine, University Hospital Muenster, Muenster, Germany
| | - Heiko Schoder
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Lisa Bodei
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stefano Fanti
- Division of Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ken Hermann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, 45147, Essen, Germany
| |
Collapse
|
13
|
Tsai CJ, Chang KW, Yang BH, Wu PH, Lin KH, Wong CYO, Lee HL, Huang WS. Very-Low-Dose Radiation and Clinical Molecular Nuclear Medicine. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060912. [PMID: 35743943 PMCID: PMC9225609 DOI: 10.3390/life12060912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022]
Abstract
Emerging molecular and precision medicine makes nuclear medicine a de facto choice of imaging, especially in the era of target-oriented medical care. Nuclear medicine is minimally invasive, four-dimensional (space and time or dynamic space), and functional imaging using radioactive biochemical tracers in evaluating human diseases on an anatomically configured image. Many radiopharmaceuticals are also used in therapies. However, there have been concerns over the emission of radiation from the radionuclides, resulting in wrongly neglecting the potential benefits against little or any risks at all of imaging to the patients. The sound concepts of radiation and radiation protection are critical for promoting the optimal use of radiopharmaceuticals to patients, and alleviating concerns from caregivers, nuclear medicine staff, medical colleagues, and the public alike.
Collapse
Affiliation(s)
- Chi-Jung Tsai
- Department of Nuclear Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan;
| | - Kang-Wei Chang
- Taipei Neuroscience Institute & Laboratory Animal Center, Taipei Medical University, Taipei 110, Taiwan;
| | - Bang-Hung Yang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (B.-H.Y.); (K.-H.L.)
| | - Ping-Hsiu Wu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110, Taiwan;
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei 110, Taiwan
| | - Ko-Han Lin
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (B.-H.Y.); (K.-H.L.)
| | - Ching Yee Oliver Wong
- Department of Radiology, University of Southern California, Los Angeles, CA 90007, USA;
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110, Taiwan;
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei 110, Taiwan
- Correspondence: (H.-L.L.); (W.-S.H.); Tel.: +886-2-737-2181 (ext. 3396) (H.-L.L.); +886-2-2826-4400 (W.-S.H.)
| | - Wen-Sheng Huang
- Department of Nuclear Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan;
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (B.-H.Y.); (K.-H.L.)
- Department of Nuclear Medicine, Cheng-Hsin General Hospital, No. 45, Cheng-Hsin Street, Beitou District, Taipei 112, Taiwan
- Correspondence: (H.-L.L.); (W.-S.H.); Tel.: +886-2-737-2181 (ext. 3396) (H.-L.L.); +886-2-2826-4400 (W.-S.H.)
| |
Collapse
|
14
|
Kind F, Michalski K, Yousefzadeh-Nowshahr E, Meyer PT, Mix M, Ruf J. Bone marrow impairment during early [ 177Lu]PSMA-617 radioligand therapy: Haematotoxicity or tumour progression? EJNMMI Res 2022; 12:20. [PMID: 35403915 PMCID: PMC9001754 DOI: 10.1186/s13550-022-00891-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background The recent phase III VISION-trial confirms the treatment efficacy of radioligand therapy with [177Lu]PSMA-617 (PSMA-RLT) in metastatic castration-resistant prostate cancer (mCRPC). In PSMA-RLT, the relatively low absorbed bone marrow dose allows for multiple therapy cycles with relatively low risk of haematological adverse events (hAE). However, as disease progression itself may be a cause of bone marrow impairment, the aim of this study was to assess potential relations between impairment of haematological status and response to PSMA-RLT. Methods In this retrospective analysis, haematological parameters (HP) of 64 patients with mCRPC were systematically acquired over two cycles (12–16 weeks) of PSMA-RLT from baseline to restaging. Changes in HP were analysed qualitatively (CTCAE 5.0) and quantitatively. The HP changes from baseline were compared to quantitative and qualitative biochemical and imaging response, using PCWG3 and PROMISE criteria. Results All grade 3/4 hAE observed were associated with disseminated or diffuse bone involvement as well as biochemical non-response at restaging. Quantitatively, at baseline, HP inversely correlated with biochemical and volumetric (on PET) tumour burden as well as bone involvement pattern (p ≤ 0.043). Among patients with disseminated or diffuse bone involvement, percentage changes in HP (%HP) at restaging inversely correlated with serological and imaging tumour burden (p ≤ 0.017). Biochemical non-responders showed a significant decrease in %HP (p ≤ 0.001) while HP in biochemical responders remained stable (p ≥ 0.079). Conclusion During early cycles of PSMA-RLT, qualitative and quantitative bone marrow impairment appears to be closely associated with osseous tumour burden as only patients with advanced bone involvement and non-response to therapy exhibited high-grade haematological adverse events, showing a significant decline of haematological parameters. This implies that in patients with advanced mCRPC, non-response to PSMA-RLT may be a major cause of bone marrow impairment during early treatment cycles. German Clinical Trial Register DRKS00013665. Registered 28 December 2017, retrospectively registered (www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00013665)
Collapse
Affiliation(s)
- Felix Kind
- Department of Nuclear Medicine, Faculty of Medicine, Medical Centre - University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| | - Kerstin Michalski
- Department of Nuclear Medicine, Faculty of Medicine, Medical Centre - University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Elham Yousefzadeh-Nowshahr
- Department of Nuclear Medicine, Faculty of Medicine, Medical Centre - University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Faculty of Medicine, Medical Centre - University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Faculty of Medicine, Medical Centre - University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Juri Ruf
- Department of Nuclear Medicine, Faculty of Medicine, Medical Centre - University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Jackson P, Hofman M, McIntosh L, Buteau JP, Ravi Kumar A. Radiation Dosimetry in 177Lu-PSMA-617 Therapy. Semin Nucl Med 2021; 52:243-254. [PMID: 34893320 DOI: 10.1053/j.semnuclmed.2021.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Radionuclide therapy using the small molecule PSMA bound to the beta-emitting radionuclide, Lutetium-177 (177Lu-PSMA) has demonstrated efficacy and survival benefit castrate resistant metastatic disease and represents a novel new line of therapy. Whilst dosimetry was critical for early development, it was not incorporated into either the TheraP or VISION randomized studies, highlighting the difficulty of adopting dosimetry in routine clinical practice. Accumulated clinical experience has also shown that the common (and generally low grade) toxicities such as nausea, xerostomia, and cytopenias are not readily predicted on the basis of dosimetry estimates. The majority of dosimetry and clinical literature deals with the radiopharmaceutical 177Lu-PSMA-617 which displays relatively consistent patterns of retention among normal tissues and high specificity for metastatic prostate cancer phenotypes. Population dosimetry incorporating estimates to the kidneys, salivary glands, and bone marrow have been widely reported the typical range of doses is becoming well established. There is growing interest on tumor dosimetry in 177Lu-PSMA-617 therapy as an overall modest side-effect profile from primary organ retention has been observed. A focus away from normal organ dosimetry to whole body tumor dosimetry may enable early prediction of treatment failure. Given the safety of 177Lu-PSMA there is also potential to escalate administered radioactivity to further improve outcomes. Importantly, the variability of uptake between individuals, both to tumor and normal organs, has also been highlighted which provides some rationale for the utility of personalized radiation analysis to optimize treatment based on potential toxicity thresholds or tumor control. Methods to perform dosimetry using serial post treatment imaging may incorporate planar, 3D SPECT, or hybrid datasets. Reliable measurements may be obtained through either method, however, continued developments in computational analysis are better suited to fully 3D imaging; particularly in conjunction with volumetric CT to assist with alignment and contouring. Dose analysis over sequential treatment cycles is vital to understand the radiobiology of these treatments which is unique compared to external beam therapy due to dose rate, fractionation scheme, and potential for intratumoral nonuniformity.
Collapse
Affiliation(s)
- Price Jackson
- Molecular Imaging and Therapeutic Nuclear Medicine, Dept of Cancer Imaging, The Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Dept of Oncology, The University of Melbourne, Melbourne, Australia.
| | - Michael Hofman
- Molecular Imaging and Therapeutic Nuclear Medicine, Dept of Cancer Imaging, The Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Dept of Oncology, The University of Melbourne, Melbourne, Australia
| | - Lachlan McIntosh
- Molecular Imaging and Therapeutic Nuclear Medicine, Dept of Cancer Imaging, The Peter MacCallum Cancer Centre, Melbourne, Australia
| | - James Patrick Buteau
- Molecular Imaging and Therapeutic Nuclear Medicine, Dept of Cancer Imaging, The Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Aravind Ravi Kumar
- Molecular Imaging and Therapeutic Nuclear Medicine, Dept of Cancer Imaging, The Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Dept of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
16
|
Kurth J, Heuschkel M, Tonn A, Schildt A, Hakenberg OW, Krause BJ, Schwarzenböck SM. Streamlined Schemes for Dosimetry of 177Lu-Labeled PSMA Targeting Radioligands in Therapy of Prostate Cancer. Cancers (Basel) 2021; 13:cancers13153884. [PMID: 34359784 PMCID: PMC8345627 DOI: 10.3390/cancers13153884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 01/11/2023] Open
Abstract
Simple Summary In patients with progressive metastasized castration-resistance prostate cancer PSMA radioligand therapies have shown promising results regarding clinical safety and efficacy. Dosimetry is mandatory due to legal regulations and also required for the estimation of doses to organs at risk allowing for individual tailoring of treatment in PSMA-RLT. Due to those factors and the often poor health status of patients which restricts intense dosimetric imaging protocols, there is a clear need for simplified dosimetric approaches in mCRPC patients treated with [177Lu]Lu-PSMA-617. In this study, we evaluated different dosimetric methodologies and found that a streamlined dosimetric approach is feasible and valid. This approach is based on single time-point imaging at 48 h p.i. in cycle 2 to 6 taking into account kinetic results of a full dosimetric scheme performed only in cycle1. These results might have a relevant impact on patients handling regarding dosimetry during [177Lu]Lu-PSMA-617 radioligand therapy. Abstract (Background) Aim of this retrospective analysis was to investigate in mCRPC patients treated with [177Lu]Lu-PSMA-617 whether the absorbed dose (AD) in organs at risk (OAR, i.e., kidneys and parotid glands) can be calculated using simplified methodologies with sufficient accuracy. For this calculation, results and kinetics of the first therapy cycle were used. (Methods) 46 patients treated with 2 to 6 cycles of [177Lu]Lu-PSMA-617 were included. As reference (current clinical standard) full dosimetry of the OAR based on quantitative imaging (whole body scintigraphy and quantitative SPECT/CT at 2, 24, 48 and 72 h p.i.) for every cycle was used. Alternatively, two dosimetry schemes, simplified in terms of image acquisition and dose calculation, were established, both assuming nearly unchanged kinetics of the radiopharmaceutical for subsequent cycles. (Results) In general, for both OAR the simplified methods provided results that were consistent with the dosimetric reference method, both per cycle and in terms of cumulative AD. Best results were obtained when imaging was performed at 48 h p.i. in each of the subsequent cycles. However, both simplified methods tended to underestimate the cumulative AD. (Conclusion) Simplified dosimetry schemes are feasible to tailor multi-cycle [177Lu]Lu-PSMA-targeted therapies.
Collapse
Affiliation(s)
- Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany; (M.H.); (A.T.); (A.S.); (B.J.K.); (S.M.S.)
- Correspondence: ; Tel.: +49-381-494-9101
| | - Martin Heuschkel
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany; (M.H.); (A.T.); (A.S.); (B.J.K.); (S.M.S.)
| | - Alexander Tonn
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany; (M.H.); (A.T.); (A.S.); (B.J.K.); (S.M.S.)
| | - Anna Schildt
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany; (M.H.); (A.T.); (A.S.); (B.J.K.); (S.M.S.)
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Oliver W. Hakenberg
- Department of Urology, Rostock University Medical Centre, 18057 Rostock, Germany;
| | - Bernd J. Krause
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany; (M.H.); (A.T.); (A.S.); (B.J.K.); (S.M.S.)
| | - Sarah M. Schwarzenböck
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany; (M.H.); (A.T.); (A.S.); (B.J.K.); (S.M.S.)
| |
Collapse
|
17
|
Image-based dosimetry for 225Ac-PSMA-I&T therapy using quantitative SPECT. Eur J Nucl Med Mol Imaging 2020; 48:1260-1261. [PMID: 32959113 PMCID: PMC8041692 DOI: 10.1007/s00259-020-05024-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/31/2020] [Indexed: 11/17/2022]
|
18
|
Mora-Ramirez E, Santoro L, Cassol E, Ocampo-Ramos JC, Clayton N, Kayal G, Chouaf S, Trauchessec D, Pouget JP, Kotzki PO, Deshayes E, Bardiès M. Comparison of commercial dosimetric software platforms in patients treated with 177 Lu-DOTATATE for peptide receptor radionuclide therapy. Med Phys 2020; 47:4602-4615. [PMID: 32632928 PMCID: PMC7589428 DOI: 10.1002/mp.14375] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose The aim of this study was to quantitatively compare five commercial dosimetric software platforms based on the analysis of clinical datasets of patients who benefited from peptide receptor radionuclide therapy (PRRT) with 177Lu‐DOTATATE (LUTATHERA®). Methods The dosimetric analysis was performed on two patients during two cycles of PRRT with 177Lu. Single photon emission computed tomography/computed tomography images were acquired at 4, 24, 72, and 192 h post injection. Reconstructed images were generated using Dosimetry Toolkit® (DTK) from Xeleris™ and HybridRecon‐Oncology version_1.3_Dicom (HROD) from HERMES. Reconstructed images using DTK were analyzed using the same software to calculate time‐integrated activity coefficients (TIAC), and mean absorbed doses were estimated using OLINDA/EXM V1.0 with mass correction. Reconstructed images from HROD were uploaded into PLANET® OncoDose from DOSIsoft, STRATOS from Phillips, Hybrid Dosimetry Module™ from HERMES, and SurePlan™ MRT from MIM. Organ masses, TIACs, and mean absorbed doses were calculated from each application using their recommendations. Results The majority of organ mass estimates varied by <9.5% between all platforms. The highest variability for TIAC results between platforms was seen for the kidneys (28.2%) for the two patients and the two treatment cycles. Relative standard deviations in mean absorbed doses were slightly higher compared with those observed for TIAC, but remained of the same order of magnitude between all platforms. Conclusions When applying a similar processing approach, results obtained were of the same order of magnitude regardless of the platforms used. However, the comparison of the performances of currently available platforms is still difficult as they do not all address the same parts of the dosimetric analysis workflow. In addition, the way in which data are handled in each part of the chain from data acquisition to absorbed doses may be different, which complicates the comparison exercise. Therefore, the dissemination of commercial solutions for absorbed dose calculation calls for the development of tools and standards allowing for the comparison of the performances between dosimetric software platforms.
Collapse
Affiliation(s)
- Erick Mora-Ramirez
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, Toulouse, F-31037, France.,INSERM, UMR 1037, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France.,Escuela de Física - CICANUM, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Lore Santoro
- Département de Médecine Nucléaire, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Emmanuelle Cassol
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, Toulouse, F-31037, France.,INSERM, UMR 1037, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France.,Département de Médecine Nucléaire, Hôpitaux Toulouse, Toulouse, F-31059, France.,Faculté de Médecine Rangueil, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
| | - Juan C Ocampo-Ramos
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, Toulouse, F-31037, France.,INSERM, UMR 1037, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
| | - Naomi Clayton
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, Toulouse, F-31037, France.,INSERM, UMR 1037, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
| | - Gunjan Kayal
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, Toulouse, F-31037, France.,INSERM, UMR 1037, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France.,SCK CEN, Belgian Nuclear Research Centre, Boeretang 200, Mol, BE-2400, Belgium
| | - Soufiane Chouaf
- Département de Médecine Nucléaire, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Dorian Trauchessec
- Département de Médecine Nucléaire, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, F-34298, France
| | - Pierre-Olivier Kotzki
- Département de Médecine Nucléaire, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France.,Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, F-34298, France
| | - Emmanuel Deshayes
- Département de Médecine Nucléaire, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France.,Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, F-34298, France
| | - Manuel Bardiès
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, Toulouse, F-31037, France.,INSERM, UMR 1037, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
| |
Collapse
|
19
|
Rinscheid A, Kletting P, Eiber M, Beer AJ, Glatting G. Influence of sampling schedules on [ 177Lu]Lu-PSMA dosimetry. EJNMMI Phys 2020; 7:41. [PMID: 32556844 PMCID: PMC7300169 DOI: 10.1186/s40658-020-00311-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/03/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Individualized dosimetry is recommended for [177Lu]Lu-PSMA radioligand therapy (RLT) which is resource-intensive and protocols are often not optimized. Therefore, a simulation study was performed focusing on the determination of efficient optimal sampling schedules (OSS) for renal and tumour dosimetry by investigating different numbers of time points (TPs). METHODS Sampling schedules with 1-4 TPs were investigated. Time-activity curves of the kidneys and two tumour lesions were generated based on a physiologically based pharmacokinetic (PBPK) model and biokinetic data of 13 patients who have undergone [177Lu]Lu-PSMA I&T therapy. Systematic and stochastic noise of different ratios was considered when modelling time-activity data sets. Time-integrated activity coefficients (TIACs) were estimated by simulating the hybrid planar/SPECT method for schedules comprising at least two TPs. TIACs based on one single SPECT/CT measurement were estimated using an approximation for reducing the number of fitted parameters. For each sampling schedule, the root-mean-squared error (RMSE) of the deviations of the simulated TIACs from the ground truths for 1000 replications was used as a measure for accuracy and precision. RESULTS All determined OSS included a late measurement at 192 h p.i., which was necessary for accurate and precise tumour TIACs. OSS with three TPs were identified to be 3-4, 96-100 and 192 h with an additional SPECT/CT measurement at the penultimate TP. Kidney and tumour RMSE of 6.4 to 7.7% and 6.3 to 7.8% were obtained, respectively. Shortening the total time for dosimetry to e.g. 96 h resulted in kidney and tumour RMSE of 6.8 to 8.3% and 9.1 to 11%, respectively. OSS with four TPs showed similar results as with three TPs. Planar images at 4 and 68 h and a SPECT/CT shortly after the 68 h measurement led to kidney and tumour RMSE of 8.4 to 12% and 12 to 16%, respectively. One single SPECT/CT measurement at 52 h yielded good approximations for the kidney TIACs (RMSE of 7.0%), but led to biased tumour TIACs. CONCLUSION OSS allow improvements in accuracy and precision of renal and tumour dosimetry for [177Lu]Lu-PSMA therapy with potentially less effort. A late TP is important regarding accurate tumour TIACs.
Collapse
Affiliation(s)
- Andreas Rinscheid
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Albert-Einstein-Allee 23, 89081, Ulm, Germany. .,Department of Nuclear Medicine, Ulm University, 89081, Ulm, Germany.
| | - Peter Kletting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Albert-Einstein-Allee 23, 89081, Ulm, Germany.,Department of Nuclear Medicine, Ulm University, 89081, Ulm, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, 81675, München, Germany
| | - Ambros J Beer
- Department of Nuclear Medicine, Ulm University, 89081, Ulm, Germany
| | - Gerhard Glatting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Albert-Einstein-Allee 23, 89081, Ulm, Germany.,Department of Nuclear Medicine, Ulm University, 89081, Ulm, Germany
| |
Collapse
|
20
|
First-in-human dosimetry of gastrin-releasing peptide receptor antagonist [ 177Lu]Lu-RM2: a radiopharmaceutical for the treatment of metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 2019; 47:123-135. [PMID: 31482426 DOI: 10.1007/s00259-019-04504-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Besides PSMA, prostate cancer cells also express gastrin-releasing peptide receptor (GRPr) which is therefore a promising target for theranostic approaches. The high affinity GRPr antagonist RM2 can be labeled with beta-emitting radiometals for therapeutic purposes. The aim of this study was to calculate absorbed doses for critical organs and tumor lesions for [177Lu]Lu-RM2 therapy administered in a group of metastatic castration-resistant prostate cancer (mCRPC) patients who had insufficient PSMA expression or showed lower PSMA accumulation after previous cycles of [177Lu]Lu-PSMA-617 therapy. METHODS Thirty-five patients suffering from mCRPC without further treatment options for approved therapies were examined with [68Ga]Ga-RM2-PET/CT. Out of these, 4 patients (mean age 68 years) were treated with [177Lu]Lu-RM2; two of these also received a 2nd therapy cycle. Mean activity was 4.5 ± 0.9 GBq. For dosimetry, patients underwent planar WB-scintigraphy and SPECT/CT imaging of the upper and lower abdomen at approximately 1, 24, 48, and 72 h p.i. along with blood sampling. Absorbed doses for kidneys, pancreas, liver, spleen, gallbladder wall, and tumor lesions were derived based on quantitative SPECT/CT according to RADAR dosimetry scheme; individual organ masses were extracted from CT. Absorbed dose to bone marrow was calculated based on serial whole-body images and blood sampling according to the EANM guideline. RESULTS Therapy was well tolerated by all patients and no side effects were observed. An increased uptake in tumor lesions and the pancreas was seen within the first 1 h. Mean absorbed organ doses were 1.08 ± 0.44 Gy/GBq in the pancreas, 0.35 ± 0.14 Gy/GBq in the kidneys, 0.05 ± 0.02 Gy/GBq in the liver, 0.07 ± 0.02 Gy/GBq in the gallbladder wall, 0.10 ± 0.06 Gy/GBq in the spleen, and 0.02 ± 0.01 Gy/GBq for the red bone marrow. The mean dose for tumor lesions was 6.20 ± 3.00 Gy/GBq. CONCLUSIONS Application of GRPr antagonist [177Lu]Lu-RM2 is suitable for targeted radiotherapy of mCRPC as it shows high tumor uptake and rapid clearance from normal organs. Absorbed doses in tumor lesions are therapeutically relevant. The critical organ receiving the highest absorbed dose was the pancreas. Results suggest that the activity administered for each cycle could be increased to maximize the absorbed dose of tumors and metastases.
Collapse
|
21
|
Gosewisch A, Ilhan H, Tattenberg S, Mairani A, Parodi K, Brosch J, Kaiser L, Gildehaus FJ, Todica A, Ziegler S, Bartenstein P, Böning G. 3D Monte Carlo bone marrow dosimetry for Lu-177-PSMA therapy with guidance of non-invasive 3D localization of active bone marrow via Tc-99m-anti-granulocyte antibody SPECT/CT. EJNMMI Res 2019; 9:76. [PMID: 31414241 PMCID: PMC6694348 DOI: 10.1186/s13550-019-0548-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/30/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The bone marrow (BM) is a main risk organ during Lu-177-PSMA ligand therapy of metastasized castration-resistant prostate cancer (mCRPC) patients. So far, BM dosimetry relies on S values, which are pre-computed for reference anatomies, simplified activity distributions, and a physiological BM distribution. However, mCRPC patients may show a considerable bone lesion load, which leads to a heterogeneous and patient-specific activity accumulation close to BM-bearing sites. Furthermore, the patient-specific BM distribution might be significantly altered in the presence of bone lesions. The aim was to perform BM absorbed dose calculations through Monte Carlo (MC) simulations and to investigate the potential value of image-based BM localization. This study is based on 11 Lu-177-PSMA-617 therapy cycles of 10 patients (10 first cycles), who obtained a pre-therapeutic Ga-68-PSMA-11 PET/CT; quantitative Lu-177 SPECT acquisitions of the abdomen 24 (+CT), 48, and 72 h p.i.; and a Lu-177 whole-body planar acquisition at 24 h post-therapy. Patient-specific 3D volumes of interest were segmented from the Ga-68-PSMA-11 PET/CT, filled with activity information from the Lu-177 data, and imported into the FLUKA MC code together with the patient CT. MC simulations of the BM absorbed dose were performed assuming a physiological BM distribution according to the ICRP 110 reference male (MC1) or a displacement of active BM from the direct location of bone lesions (MC2). Results were compared with those from S values (SMIRD). BM absorbed doses were correlated with the decrease of lymphocytes, total white blood cells, hemoglobin level, and platelets. For two patients, an additional pre-therapeutic Tc-99m-anti-granulocyte antibody SPECT/CT was performed for BM localization. RESULTS Median BM absorbed doses were 130, 37, and 11 mGy/GBq for MC1, MC2, and SMIRD, respectively. Significant strong correlation with the decrease of platelet counts was found, with highest correlation for MC2 (MC1: r = - 0.63, p = 0.04; MC2: r = - 0.71, p = 0.01; SMIRD: r = - 0.62, p = 0.04). For both investigated patients, BM localization via Tc-99m-anti-granulocyte antibody SPECT/CT indicated a displacement of active BM from the direct location of lesions similar to model MC2 and led to a reduction in the BM absorbed dose of 40 and 41% compared to MC1. CONCLUSION Higher BM absorbed doses were observed for MC-based models; however, for MC2, all absorbed doses were still below 2 Gy. MC1 resulted in critical values for some patients, but is suspected to yield strongly exaggerated absorbed doses by neglecting bone marrow displacement. Image-based BM localization might be beneficial, and future studies are recommended to support an improvement for the prediction of hematoxicities.
Collapse
Affiliation(s)
- Astrid Gosewisch
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Sebastian Tattenberg
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Andrea Mairani
- Heidelberg Ion Beam Therapy Center, University Hospital Heidelberg, Heidelberg, Germany
| | - Katia Parodi
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Garching b. München, Germany
| | - Julia Brosch
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Franz Josef Gildehaus
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Andrei Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Guido Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| |
Collapse
|
22
|
Rudisile S, Gosewisch A, Wenter V, Unterrainer M, Böning G, Gildehaus FJ, Fendler WP, Auernhammer CJ, Spitzweg C, Bartenstein P, Todica A, Ilhan H. Salvage PRRT with 177Lu-DOTA-octreotate in extensively pretreated patients with metastatic neuroendocrine tumor (NET): dosimetry, toxicity, efficacy, and survival. BMC Cancer 2019; 19:788. [PMID: 31395036 PMCID: PMC6686531 DOI: 10.1186/s12885-019-6000-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Background NETTER-1 trial demonstrated high efficacy and low toxicity of four cycles of Peptide Receptor Radionuclide Therapy (PRRT) in patients with metastasized NET. The present study evaluates the outcome of further PRRT cycles in the so called salvage setting in patients after initial response to four therapy cycles and later progression. Methods Thirty five patients (pat.) (25 male, 10 female, 63 ± 9 years) with progressive, metastasized NET (23 small intestinal, 5 lung, 4 CUP, 1 rectal, 1 gastric and 1 paraganglioma) were included. All patients previously received 4 PRRT cycles with 177Lu-DOTATATE and showed initial response. SPECT based dosimetry was applied to determine kidney and tumor doses. Therapy response was evaluated using 68Ga-DOTATATE PET/CT (with high dose CT), CT alone or MRI (RECIST 1.1), toxicity was defined using CTCAE 5.0 criteria. 99mTc99-MAG3 scintigraphy was used to assess potential renal tubular damage. Progression free survival (PFS) and Overall survival (OS) analysis was performed with the Kaplan-Meier-method. Results The median PFS after initial PRRT was 33 months (95% CI: 30–36). The mean cumulative dose for including salvage PRRT was 44 GBq (range 33.5–47). One pat. (2.9%) showed grade 3 hematotoxicity. Kidney dosimetry revealed a mean cumulative kidney dose after a median of 6 PRRT cycles of 23.8 Gy. No grade 3 / 4 nephrotoxicity or relevant decrease in renal function was observed. Follow-up imaging was available in 32 patients after salvage therapy. Best response according to RECIST 1.1. was PR in one patient (3.1%), SD in 26 patients (81.3%) and PD in 5 patients (15.6%). PFS after salvage therapy was 6 months (95% CI: 0–16; 8 patients censored). Mean OS after initial PRRT was 105 months (95% CI: 92–119) and 51 months (95% CI: 41–61) after start of salvage therapy. Median OS was not reached within a follow-up of 71 months after initial PRRT and 25 months after start of salvage PRRT, respectively. Conclusions Salvage therapy with 177Lu-DOTATATE is safe and effective even in patients with extensive previous multimodal therapies during disease progression and represents a feasible and valuable therapy option for progressive NET. Electronic supplementary material The online version of this article (10.1186/s12885-019-6000-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S Rudisile
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - A Gosewisch
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - V Wenter
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - M Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - G Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - F J Gildehaus
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - W P Fendler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,Department of Nuclear Medicine, University Hospital, University of Essen, Essen, Germany
| | - C J Auernhammer
- Department of Internal Medicine 4, University Hospital, LMU Munich, Munich, Germany.,ENETS Centre of Excellence, Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), LMU Munich, Munich, Germany
| | - C Spitzweg
- Department of Internal Medicine 4, University Hospital, LMU Munich, Munich, Germany.,ENETS Centre of Excellence, Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), LMU Munich, Munich, Germany
| | - P Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,ENETS Centre of Excellence, Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), LMU Munich, Munich, Germany
| | - A Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,ENETS Centre of Excellence, Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), LMU Munich, Munich, Germany
| | - H Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany. .,ENETS Centre of Excellence, Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), LMU Munich, Munich, Germany.
| |
Collapse
|