1
|
Beck M, Blumenberg V, Bücklein VL, Bundschuh RA, Harrer DC, Hirschbühl K, Jung J, Kunz WG, Menhart K, Winkelmann M, Yakushev I, Illert AL, Eckstein M, Völkl S, Claus R, Hansmann L, Hecker JS, Kuwert T, Mackensen A, Subklewe M, Hellwig D, Müller F. Liver-FDG-uptake augments early PET/CT prognostic value for CD19-targeted CAR-T cell therapy in diffuse large B cell lymphoma. EJNMMI Res 2025; 15:25. [PMID: 40095158 PMCID: PMC11914545 DOI: 10.1186/s13550-025-01201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/19/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Despite revolutionary efficacy of CD19-CAR-T cell therapy (CAR-T) in aggressive B cell lymphoma, many patients still relapse mostly early. In early failure, distinct drugs support CAR-T which makes reliable and early prediction of imminent relapse/refractoriness critical. A complete metabolic remission (CR) on Fluor-18-Deoxyglucose (FDG) Positron-Emission-Computed Tomography (PET) 30 days after CAR-T (PET30) strongly predicts progression-free survival (PFS), but still fails in a relevant proportion of patients. We aimed to identify additional routine parameters in PET evaluation to enhance CAR-T response prediction. RESULTS Thirty patients with aggressive B cell lymphoma treated with CAR-T were retrospectively analyzed. Pre-CAR-T, LDH was the strongest PFS-predictor also by multivariate analysis. Post-CAR-T, 10 out of 14 patients (71.4%) with PET30-CR remained in disease remission, while 12 out of 16 patients (75%) with incomplete metabolic remission (PET30-nCR) relapsed after CAR-T. 28.6% of patients with PET30-CR ultimately progressed. Change of liver FDG-uptake from baseline to day30 (Delta-Liver-SUVmean) was identified as an independent biomarker for response. PET30-nCR and a decrease of Delta-Liver-SUVmean were associated with a high risk of tumor progression (HR 4.79 and 3.99, respectively). The combination of PET30 and Delta-Liver-SUVmean identified patients at very low, at intermediate and at very high risk of relapse (PFS not reached, 7.5 months, 1.5 months, respectively). CONCLUSION Additionally to PET30 metabolic remission, longitudinal metabolic changes in Delta-Liver-SUVmean predicted CAR-T efficiency. Our results may guide early intervention studies aiming to enhance CAR-T particularly in the very high-risk patients.
Collapse
Affiliation(s)
- Michael Beck
- Department of Nuclear Medicine, University Hospital of Erlangen, Friedrich-Alexander-Universität- Erlangen Nürnberg, Erlangen, Germany.
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany.
| | - Viktoria Blumenberg
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Veit L Bücklein
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, LMU Munich, Munich, Germany
| | - Ralph A Bundschuh
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany
- Nuclear Medicine, Faculty of Medicine, University Hospital of Augsburg, Augsburg, Germany
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus at the TU Dresden, Dresden, Germany
| | - Dennis C Harrer
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Klaus Hirschbühl
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany
- Hematology and Oncology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Johannes Jung
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany
- Department of Medicine III, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Wolfgang G Kunz
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Karin Menhart
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Michael Winkelmann
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Igor Yakushev
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany
- Department of Nuclear Medicine, School of Medicine, TUM University Hospital, Technical University of Munich, Munich, Germany
| | - Anna Lena Illert
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany
- Department of Medicine III, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Markus Eckstein
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany
- Department of Pathology, University Hospital of Erlangen, Friedrich-Alexander-Universität- Erlangen Nürnberg, Erlangen, Germany
| | - Simon Völkl
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität-Erlangen Nürnberg, Erlangen, Germany
| | - Rainer Claus
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany
- Hematology and Oncology, Medical Faculty, University of Augsburg, Augsburg, Germany
- Pathology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Leo Hansmann
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Judith S Hecker
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany
- Department of Medicine III, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
- Center for Translational Cancer Research, Technical University of Munich (TUM), TranslaTUM, Munich, Germany
| | - Torsten Kuwert
- Department of Nuclear Medicine, University Hospital of Erlangen, Friedrich-Alexander-Universität- Erlangen Nürnberg, Erlangen, Germany
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany
| | - Andreas Mackensen
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität-Erlangen Nürnberg, Erlangen, Germany
| | - Marion Subklewe
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Dirk Hellwig
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Fabian Müller
- Bavarian Cancer Research Center, Resp. Site (Augsburg, LMU Munich, TUM Munich, Erlangen, Regensburg), Germany.
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität-Erlangen Nürnberg, Erlangen, Germany.
| |
Collapse
|
2
|
Wu S, Xu T, Gao J, Zhang Q, Huang Y, Liu Z, Hao X, Yao Z, Hao X, Wu PY, Wu Y, Yin B, Tang Z. Non-invasive diagnosis of liver fibrosis via MRI using targeted gadolinium-based nanoparticles. Eur J Nucl Med Mol Imaging 2024; 52:48-61. [PMID: 39231880 DOI: 10.1007/s00259-024-06894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION Accurate diagnosis of liver fibrosis is crucial for preventing cirrhosis and liver tumors. Liver fibrosis is driven by activated hepatic stellate cells (HSCs) with elevated CD44 expression. We developed hyaluronic acid (HA)-coated gadolinium-based nanoprobes to specifically target CD44 for diagnosing liver fibrosis using T1-weighted magnetic resonance imaging (MRI). MATERIALS AND METHODS NaGdF4 nanoparticles (NPs) were synthesized via thermal decomposition and modified with polyethylene glycol (PEG) to obtain non-targeting NaGdF4@PEG NPs. These were subsequently coated with HA to target HSCs, resulting in liver fibrosis-targeting NaGdF4@PEG@HA nanoprobes. Characterization includedd transmission electron microscopy and X-ray diffraction. Cell viability was assessed using the Cell Counting Kit-8 (CCK-8). Internalization of NaGdF4@PEG@HA nanoprobes by mouse HSCs JS1 cells via ligand-receptor interaction was observed using flow cytometry and confocal laser scanning microscopy (CLSM). Liver fibrosis was induced in C57BL/6 mice using a methionine-choline deficient (MCD) diet. MRI performance and nanoprobe distribution in fibrotic and normal livers were analyzed using a GE Discovery 3.0T MR 750 scanner. RESULTS NaGdF4@PEG@HA nanoprobes exhibited homogeneous morphology, low toxicity, and a high T1 relaxation rate (7.645 mM⁻¹s⁻¹). CLSM and flow cytometry demonstrated effective phagocytosis of NaGdF4@PEG@HA nanoprobes by JS1 cells compared to NaGdF4@PEG. MRI scans revealed higher T1 signals in fibrotic livers compared to normal livers after injection of NaGdF4@PEG@HA. NaGdF4@PEG@HA demonstrated higher targeting ability in fibrotic mice. CONCLUSIONS NaGdF4@PEG@HA nanoprobes effectively target HSCs with high T1 relaxation rate, facilitating efficient MRI diagnosis of liver fibrosis.
Collapse
Affiliation(s)
- Shiman Wu
- Department of Radiology, Huashan hospital, Fudan University, 200040, Shanghai, P. R. China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, Huashan Hospital, National Medical Center for Infectious Diseases, Fudan University, Shanghai, 200040, P. R. China
| | - Tingting Xu
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Jiahao Gao
- Department of Radiology, Huashan hospital, Fudan University, 200040, Shanghai, P. R. China
| | - Qi Zhang
- Department of Radiology, Huashan hospital, Fudan University, 200040, Shanghai, P. R. China
| | - Yuxin Huang
- Department of Radiology, Huashan hospital, Fudan University, 200040, Shanghai, P. R. China
| | - Zonglin Liu
- Department of Radiology, Huashan hospital, Fudan University, 200040, Shanghai, P. R. China
| | - Xiaozhu Hao
- Department of Radiology, Huashan hospital, Fudan University, 200040, Shanghai, P. R. China
| | - Zhenwei Yao
- Department of Radiology, Huashan hospital, Fudan University, 200040, Shanghai, P. R. China
| | - Xing Hao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Pu-Yeh Wu
- GE Healthcare, Beijing, 100176, P.R. China
| | - Yue Wu
- Department of Radiology, Huashan hospital, Fudan University, 200040, Shanghai, P. R. China.
| | - Bo Yin
- Department of Radiology, Huashan hospital, Fudan University, 200040, Shanghai, P. R. China.
| | - Zhongmin Tang
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| |
Collapse
|
3
|
Huang W, Peng Y, Kang L. Advancements of non‐invasive imaging technologies for the diagnosis and staging of liver fibrosis: Present and future. VIEW 2024; 5. [DOI: 10.1002/viw.20240010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/28/2024] [Indexed: 01/04/2025] Open
Abstract
AbstractLiver fibrosis is a reparative response triggered by liver injury. Non‐invasive assessment and staging of liver fibrosis in patients with chronic liver disease are of paramount importance, as treatment strategies and prognoses depend significantly on the degree of fibrosis. Although liver fibrosis has traditionally been staged through invasive liver biopsy, this method is prone to sampling errors, particularly when biopsy sizes are inadequate. Consequently, there is an urgent clinical need for an alternative to biopsy, one that ensures precise, sensitive, and non‐invasive diagnosis and staging of liver fibrosis. Non‐invasive imaging assessments have assumed a pivotal role in clinical practice, enjoying growing popularity and acceptance due to their potential for diagnosing, staging, and monitoring liver fibrosis. In this comprehensive review, we first delved into the current landscape of non‐invasive imaging technologies, assessing their accuracy and the transformative impact they have had on the diagnosis and management of liver fibrosis in both clinical practice and animal models. Additionally, we provided an in‐depth exploration of recent advancements in ultrasound imaging, computed tomography imaging, magnetic resonance imaging, nuclear medicine imaging, radiomics, and artificial intelligence within the field of liver fibrosis research. We summarized the key concepts, advantages, limitations, and diagnostic performance of each technique. Finally, we discussed the challenges associated with clinical implementation and offer our perspective on advancing the field, hoping to provide alternative directions for the future research.
Collapse
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Yushuo Peng
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Lei Kang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| |
Collapse
|
4
|
Chen S, Zhuang D, Jia Q, Guo B, Hu G. Advances in Noninvasive Molecular Imaging Probes for Liver Fibrosis Diagnosis. Biomater Res 2024; 28:0042. [PMID: 38952717 PMCID: PMC11214848 DOI: 10.34133/bmr.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/08/2024] [Indexed: 07/03/2024] Open
Abstract
Liver fibrosis is a wound-healing response to chronic liver injury, which may lead to cirrhosis and cancer. Early-stage fibrosis is reversible, and it is difficult to precisely diagnose with conventional imaging modalities such as magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, and ultrasound imaging. In contrast, probe-assisted molecular imaging offers a promising noninvasive approach to visualize early fibrosis changes in vivo, thus facilitating early diagnosis and staging liver fibrosis, and even monitoring of the treatment response. Here, the most recent progress in molecular imaging technologies for liver fibrosis is updated. We start by illustrating pathogenesis for liver fibrosis, which includes capillarization of liver sinusoidal endothelial cells, cellular and molecular processes involved in inflammation and fibrogenesis, as well as processes of collagen synthesis, oxidation, and cross-linking. Furthermore, the biological targets used in molecular imaging of liver fibrosis are summarized, which are composed of receptors on hepatic stellate cells, macrophages, and even liver collagen. Notably, the focus is on insights into the advances in imaging modalities developed for liver fibrosis diagnosis and the update in the corresponding contrast agents. In addition, challenges and opportunities for future research and clinical translation of the molecular imaging modalities and the contrast agents are pointed out. We hope that this review would serve as a guide for scientists and students who are interested in liver fibrosis imaging and treatment, and as well expedite the translation of molecular imaging technologies from bench to bedside.
Collapse
Affiliation(s)
- Shaofang Chen
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Danping Zhuang
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Qingyun Jia
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application,
Harbin Institute of Technology, Shenzhen 518055, China
| | - Genwen Hu
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| |
Collapse
|
5
|
Rao W, Fang XH, Zhao Y, Wang Y, Zhang B, Wei Z, Kong X, Cai JZ, Yang G, Xie M. Clinical value of [ 18F]AlF-NOTA-FAPI-04 PET/CT for assessing early-stage liver fibrosis in adult liver transplantation recipients compared with chronic HBV patients. Jpn J Radiol 2024; 42:536-545. [PMID: 38316724 DOI: 10.1007/s11604-024-01528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024]
Abstract
AIMS To investigate the clinical value and performance of [18F]AlF-NOTA-FAPI-04 PET/CT in assessing early-stage liver fibrosis in liver transplantation (LT) recipients. METHODS A prospective study including 17 LT recipients and 12 chronic Hepatitis B (CHB) patients was conducted. All patients received liver biopsy, transient elastography (TE), and [18F]AlF-NOTA-FAPI-04 PET/CT. On [18F]AlF-NOTA-FAPI-04 PET/CT scans, the liver parenchyma's maximum standardized uptake values (SUVmax) were measured. The receiver operating characteristic (ROC) curve analysis was applied to determine the diagnostic efficacy of [18F]AlF-NOTA-FAPI-04 PET/CT in early-stage liver fibrosis (S1-S2) compared with the diagnostic performance of TE. RESULTS Among those 29 patients enrolled in this study, 15(51.7%) had fibrosis S0, 10(34.5%) had S1, and 4(13.8%) had S2, respectively. The SUVmax of patients with early-stage liver fibrosis was significantly higher than those without liver fibrosis in LT recipients and CHB patients (P = 0.004, P = 0.02). In LT recipients, a SUVmax cut-off value of 2.0 detected early-stage liver fibrosis with an AUROC of 0.92 (P = 0.006), and a liver stiffness measurements (LSM) score cut-off value of 8.2 kPa diagnosed early-stage liver fibrosis with an AUROC of 0.80 (P = 0.012). In CHB patients, a SUVmax cut-off value of 2.7 detected early-stage liver fibrosis with an AUROC of 0.94 (P < 0.001) and an LSM scores cut-off value of 8.4 kPa diagnosed early-stage liver fibrosis with an AUROC of 0.91 (P < 0.001). CONCLUSION [18F]AlF-NOTA-FAPI-04 PET/CT could be applied to evaluate early-stage liver fibrosis in LT recipients and CHB patients properly, with the potential additional advantages in monitoring and predicting complications after LT.
Collapse
Affiliation(s)
- Wei Rao
- Division of Hepatology, Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
- Department of Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
- Institute of Organ Donation and Transplantation of Qingdao University Medical College, Qingdao, 266000, Shandong, China
| | - Xiao-Han Fang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Youwei Zhao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Ye Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhimin Wei
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xinjuan Kong
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Jin-Zhen Cai
- Division of Hepatology, Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
- Department of Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
- Institute of Organ Donation and Transplantation of Qingdao University Medical College, Qingdao, 266000, Shandong, China
| | - Guangjie Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Man Xie
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
6
|
Hsieh HH, Chu PA, Lin YH, Kao YCJ, Chung YH, Hsu ST, Mo JM, Wu CY, Peng SL. Imaging diabetic cardiomyopathy in a type 1 diabetic rat model using 18F-FEPPA PET. Nucl Med Biol 2024; 128-129:108878. [PMID: 38324923 DOI: 10.1016/j.nucmedbio.2024.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Diabetic patients often experience chronic inflammation and fibrosis in their cardiac tissues, highlighting the pressing need for the development of sensitive diagnostic methods for longitudinal assessment of diabetic cardiomyopathy. This study aims to evaluate the significance of an inflammatory marker known as translocator protein (TSPO) in a positron emission tomography (PET) protocol for longitudinally monitoring cardiac dysfunction in a diabetic animal model. Additionally, we compared the commonly used radiotracer, 18F-fluoro-2-deoxy-d-glucose (18F-FDG). METHODS Fourteen 7-week-old female Sprague-Dawley rats were used in this study. Longitudinal PET experiments were conducted using 18F-N-2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)acetamide (18F-FEPPA) (n = 3), the TSPO radiotracer, and 18F-FDG (n = 3), both before and after the onset of diabetes. Histological and immunohistochemical staining assays were also conducted in both the control (n = 4) and diabetes (n = 4) groups. RESULTS Results indicated a significant increase in cardiac tissue uptake of 18F-FEPPA after the onset of diabetes (P < 0.05), aligning with elevated TSPO levels observed in diabetic animals according to histological data. Conversely, the uptake of 18F-FDG in cardiac tissue significantly decreased after the onset of diabetes (P < 0.05). CONCLUSION These findings suggest that 18F-FEPPA can function as a sensitive probe for detecting chronic inflammation and fibrosis in the cardiac tissues of diabetic animals.
Collapse
Affiliation(s)
- Hsin-Hua Hsieh
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan
| | - Pei-An Chu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsin Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Chieh Jill Kao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan
| | - Yi-Hsiu Chung
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Ting Hsu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jia-Min Mo
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan.
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan; Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
7
|
van Leer B, van Rijsewijk ND, Nijsten MWN, Slart RHJA, Pillay J, Glaudemans AWJM. Practice of 18F-FDG-PET/CT in ICU Patients: A Systematic Review. Semin Nucl Med 2023; 53:809-819. [PMID: 37258380 DOI: 10.1053/j.semnuclmed.2023.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
18F-FDG-PET/CT imaging has become a key tool to evaluate infectious and inflammatory diseases. However, application of 18F-FDG-PET/CT in patients in the intensive care unit (ICU) is limited, which is remarkable since the development of critical illness is closely linked to infection and inflammation. This limited use is caused by perceived complexity and risk of planning and executing 18F-FDG-PET/CT in such patients. The aim of this systematic review was to investigate the feasibility of 18F-FDG-PET/CT in ICU patients with special emphasis on patient preparation, transport logistics and safety. Therefore, a systematic search was performed in PubMed, Embase, and Web of Science using the search terms: intensive care, critically ill, positron emission tomography and 18F-FDG or derivates. A total of 1183 articles were found of which 10 were included. Three studies evaluated the pathophysiology of acute respiratory distress syndrome, acute lung injury and acute chest syndrome. Three other studies applied 18F-FDG-PET/CT to increase understanding of pathophysiology after traumatic brain injury. The remaining four studies evaluated infection of unknown origin. These four studies showed a sensitivity and specificity between 85%-100% and 57%-88%, respectively. A remarkable low adverse event rate of 2% was found during the entire 18F-FDG-PET/CT procedure, including desaturation and hypotension. In all studies, a team consisting of an intensive care physician and nurse was present during transport to ensure continuation of necessary critical care. Full monitoring during transport was used in patients requiring mechanical ventilation or vasopressor support. None of the studies used specific patient preparation for ICU patients. However, one article described specific recommendations in their discussion. In conclusion, 18F-FDG-PET/CT has been shown to be feasible and safe in ICU patients, even when ventilated or requiring vasopressors. Specific recommendations regarding patient preparation, logistics and scanning are needed. Including 18F-FDG-PET/CT in routine workup of infection of unknown origin in ICU patients showed potential to identify source of infection and might improve outcome.
Collapse
Affiliation(s)
- Bram van Leer
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Nick D van Rijsewijk
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten W N Nijsten
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Janesh Pillay
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Gui R, Li W, Li Z, Wang H, Wu Y, Jiao W, Zhao G, Shen Y, Wang L, Zhang J, Chen S, Hao L, Cheng Y. Effects and potential mechanisms of IGF1/IGF1R in the liver fibrosis: A review. Int J Biol Macromol 2023; 251:126263. [PMID: 37567540 DOI: 10.1016/j.ijbiomac.2023.126263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Liver fibrosis is a wound-healing response due to persistent liver damage and it may progress to cirrhosis and even liver cancer if no intervention is given. In the current cognition, liver fibrosis is reversible. So, it is of great significance to explore the related gene targets or biomarker for anti-fibrosis of liver. Insulin like growth factor 1 (IGF1) and IGF1 receptor (IGF1R) are mainly expressed in the liver tissues and play critical roles in the liver function. The present review summarized the role of IGF1/IGF1R and its signaling system in liver fibrosis and illustrated the potential mechanisms including DNA damage repair, cell senescence, lipid metabolism and oxidative stress that may be involved in this process according to the studies on the fibrosis of liver or other organs. In particular, the roles of IGF1 and IGF1R in DNA damage repair were elaborated, including membrane-localized and nucleus-localized IGF1R. In addition, for each of the potential mechanism in anti-fibrosis of liver, the signaling pathways of the IGF1/IGF1R mediated and the cell species in liver acted by IGF1 and IGF1R under different conditions were included. The data in this review will support for the study about the effect of IGF1/IGF1R on liver fibrosis induced by various factors, meanwhile, provide a basis for the study of liver fibrosis to focus on the communications between the different kinds of liver cells.
Collapse
Affiliation(s)
- Ruirui Gui
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Wanqiao Li
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Zhipeng Li
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Hongbin Wang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Yuchen Wu
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Wenlin Jiao
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Gang Zhao
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Luping Wang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Jialu Zhang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Sihan Chen
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China.
| | - Yunyun Cheng
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
9
|
Kim J, Lee C, Noh SG, Kim S, Chung HY, Lee H, Moon JO. Integrative Transcriptomic Analysis Reveals Upregulated Apoptotic Signaling in Wound-Healing Pathway in Rat Liver Fibrosis Models. Antioxidants (Basel) 2023; 12:1588. [PMID: 37627582 PMCID: PMC10451232 DOI: 10.3390/antiox12081588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Liver fibrosis, defined by the aberrant accumulation of extracellular matrix proteins in liver tissue due to chronic inflammation, represents a pressing global health issue. In this study, we investigated the transcriptomic signatures of three independent liver fibrosis models induced by bile duct ligation, carbon tetrachloride, and dimethylnitrosamine (DMN) to unravel the pathological mechanisms underlying hepatic fibrosis. We observed significant changes in gene expression linked to key characteristics of liver fibrosis, with a distinctive correlation to the burn-wound-healing pathway. Building on these transcriptomic insights, we further probed the p53 signaling pathways within the DMN-induced rat liver fibrosis model, utilizing western blot analysis. We observed a pronounced elevation in p53 protein levels and heightened ratios of BAX/BCL2, cleaved/pro-CASPASE-3, and cleaved/full length-PARP in the livers of DMN-exposed rats. Furthermore, we discovered that orally administering oligonol-a polyphenol, derived from lychee, with anti-oxidative properties-effectively countered the overexpressions of pivotal apoptotic genes within these fibrotic models. In conclusion, our findings offer an in-depth understanding of the molecular alterations contributing to liver fibrosis, spotlighting the essential role of the apoptosis pathway tied to the burn-wound-healing process. Most importantly, our research proposes that regulating this pathway, specifically the balance of apoptosis, could serve as a potential therapeutic approach for treating liver fibrosis.
Collapse
Affiliation(s)
- Jihyun Kim
- BIT Convergence-Based Innovative Drug Development Targeting Mate-Inflammation, Pusan National University, Busan 46241, Republic of Korea;
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (C.L.); (S.G.N.); (S.K.); (H.Y.C.)
| | - Changyong Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (C.L.); (S.G.N.); (S.K.); (H.Y.C.)
| | - Sang Gyun Noh
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (C.L.); (S.G.N.); (S.K.); (H.Y.C.)
| | - Seungwoo Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (C.L.); (S.G.N.); (S.K.); (H.Y.C.)
| | - Hae Young Chung
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (C.L.); (S.G.N.); (S.K.); (H.Y.C.)
| | - Haeseung Lee
- BIT Convergence-Based Innovative Drug Development Targeting Mate-Inflammation, Pusan National University, Busan 46241, Republic of Korea;
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (C.L.); (S.G.N.); (S.K.); (H.Y.C.)
| | - Jeon-Ok Moon
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (C.L.); (S.G.N.); (S.K.); (H.Y.C.)
| |
Collapse
|
10
|
Sviridenko A, di Santo G, Virgolini I. Imaging Fibrosis. PET Clin 2023:S1556-8598(23)00017-2. [PMID: 36990946 DOI: 10.1016/j.cpet.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Tissue injury in nonmalignant human disease can develop from either disproportionate inflammation or exaggerated fibrotic responses. The molecular and cellular fundamental of these 2 processes, their impact on disease prognosis and the treatment concept deviates fundamentally. Consequently, the synchronous assessment and quantification of these 2 processes in vivo is extremely desirable. Although noninvasive molecular techniques such as 18F-fluorodeoxyglucose PET offer insights into the degree of inflammatory activity, the assessment of the molecular dynamics of fibrosis remains challenging. The 68Ga-fibroblast activation protein inhibitor-46 may improve noninvasive clinical diagnostic performance in patients with both fibroinflammatory pathology and long-term CT-abnormalities after severe COVID-19.
Collapse
|
11
|
Ibrahim F, Gabelloni M, Faggioni L, Padma S, Visakh AR, Cioni D, Neri E. Are Semiquantitative Methods Superior to Deauville Scoring in the Monitoring Therapy Response for Pediatric Hodgkin Lymphoma? J Pers Med 2023; 13:445. [PMID: 36983627 PMCID: PMC10055884 DOI: 10.3390/jpm13030445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/05/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Tailoring treatment in patients with Hodgkin lymphoma (HL) is paramount to maximize outcomes while avoiding unnecessary toxicity. We aimed to compare the performance of SUVmax reduction (ΔSUVmax%) and the PET ratio (rPET) versus the Deauville score (DS) for assessing the chemotherapy response in pediatric HL patients undergoing 18F-FDG PET-CT. Fifty-two patients with biopsy-proven HL (aged 8-16 years) were enrolled at baseline, interim (after the second or third chemotherapy round) and post-therapy (on completion of first-line chemotherapy). Interim and post-therapy DS, ΔSUVmax% and rPET were compared as response predictors. Patients were classified as responders or non-responders based on a 24-month clinical follow-up. Interim DS showed a sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and diagnostic accuracy of 100%, 80.4%, 100%, 40% and 82.7%, respectively, in predicting the therapy response. Post-therapy DS showed a sensitivity, specificity, PPV, NPV and accuracy of 66.7%, 97.8%, 95.7%, 80% and 94.2%, repsectively. Interim ΔSUVmax% showed a sensitivity, specificity, PPV, NPV and accuracy of 83.3%, 82.6%, 97.4%, 38.5% and 82.7%, respectively, with a 56.3% cutoff. Post-therapy ΔSUVmax% showed a sensitivity, specificity, PPV, NPV and accuracy of 83.3%, 84.8%, 97.5%, 41.7% and 84.6%, respectively, with a 76.8% cutoff. Compared to ΔSUVmax%, DS showed a significantly higher sensitivity, specificity (p < 0.05) and NPV (p < 0.01). The sensitivity, specificity, PPV, NPV and accuracy of rPET in predicting the therapy response at 24 months were 76.1%, 100%, 100%, 35.3% and 78.8%, respectively, with a cut-off of 1.31. DS and rPET showed comparable predictive performance (p > 0.58). In conclusion, DS is an easier method with better performance than ΔSUVmax% and rPET in predicting the chemotherapy response in pediatric HL patients.
Collapse
Affiliation(s)
- Firuz Ibrahim
- Department of Nuclear Medicine and PET-CT, Burjeel Medical City, Abu Dhabi 92510, United Arab Emirates
| | - Michela Gabelloni
- Academic Radiology, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
| | - Lorenzo Faggioni
- Academic Radiology, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
| | | | - Arun R. Visakh
- Department of Nuclear Medicine, VPS Lakeshore Hospital, Kochi 682040, Kerala, India
| | - Dania Cioni
- Academic Radiology, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
| | - Emanuele Neri
- Academic Radiology, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
12
|
Tokorodani R, Kume T, Daisaki H, Hayashi N, Iwasa H, Yamagami T. Combining 99mTc-GSA single-photon emission-computed tomography and Gd-EOB-DTPA-enhanced magnetic resonance imaging for staging liver fibrosis. Medicine (Baltimore) 2023; 102:e32975. [PMID: 36800578 PMCID: PMC9936016 DOI: 10.1097/md.0000000000032975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Preoperative assessment of the degree of liver fibrosis is important to determine treatment strategies. In this study, galactosyl human serum albumin single-photon emission-computed tomography and ethoxybenzyl (EOB) contrast-enhanced magnetic resonance imaging (MRI) were used to assess the changes in hepatocyte function after liver fibrosis, and the standardized uptake value (SUV) was combined with gadolinium EOB-diethylenetriaminepentaacetic acid to evaluate its added value for liver fibrosis staging. A total of 484 patients diagnosed with hepatocellular carcinoma who underwent liver resection between January 2010 and August 2018 were included. Resected liver specimens were classified based on pathological findings into nonfibrotic and fibrotic groups (stratified according to the Ludwig scale). Galactosyl human serum albumin-single-photon emission-computed tomography and EOB contrast-enhanced MRI examinations were performed, and the mean SUVs (SUVmean) and contrast enhancement indices (CEIs) were obtained. The diagnostic value of the acquired SUV and CEIs for fibrosis was assessed by calculating the area under the receiver operating characteristic curve (AUC). In the receiver operating characteristic analysis, SUV + CEI showed the highest AUC in both fibrosis groups. In particular, in the comparison between fibrosis groups, SUV + CEI showed significantly higher AUCs than SUV and CEI alone in discriminating between fibrosis (F3 and 4) and no or mild fibrosis (F0 and 2) (AUC: 0.879, vs SUV [P = 0.008], vs. CEI [P = 0.023]), suggesting that the combination of SUV + CEI has greater diagnostic performance than the individual indices. Combining the SUV and CEI provides high accuracy for grading liver fibrosis, especially in differentiating between grades F0 and 2 and F3-4. SUV and gadolinium EOB-diethylenetriaminepentaacetic acid-enhanced MRI can be noninvasive diagnostic methods to guide the selection of clinical treatment options for patients with liver diseases.
Collapse
Affiliation(s)
- Ryotaro Tokorodani
- Division of Radiology, Department of Medical Technology, Kochi Medical School Hospital, Nankoku, Japan
- * Correspondence: Ryotaro Tokorodani, Department of Radiology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan (e-mail: )
| | - Toshiaki Kume
- Department of Radiological Technology, Kochi Health Sciences Center, Kochi, Japan
| | - Hiromitu Daisaki
- Department of Gunma Prefectural College of Health Sciences, Maebashi, Japan
| | - Naoya Hayashi
- Division of Radiology, Department of Medical Technology, Kochi Medical School Hospital, Nankoku, Japan
| | - Hitomi Iwasa
- Department of Diagnostic and Interventional Radiology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Takuji Yamagami
- Department of Diagnostic and Interventional Radiology, Kochi Medical School, Kochi University, Nankoku, Japan
| |
Collapse
|
13
|
Pirasteh A, Periyasamy S, Meudt JJ, Liu Y, Lee LM, Schachtschneider KM, Schook LB, Gaba RC, Mao L, Said A, McMillan AB, Laeseke PF, Shanmuganayagam D. Staging Liver Fibrosis by Fibroblast Activation Protein Inhibitor PET in a Human-Sized Swine Model. J Nucl Med 2022; 63:1956-1961. [PMID: 35450958 PMCID: PMC9730920 DOI: 10.2967/jnumed.121.263736] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/07/2022] [Indexed: 01/11/2023] Open
Abstract
Current methods of staging liver fibrosis have notable limitations. We investigated the utility of PET in staging liver fibrosis by correlating liver uptake of 68Ga-labeled fibroblast activation protein inhibitor (FAPI) with histology in a human-sized swine model. Methods: Five pigs underwent baseline 68Ga-FAPI-46 (68Ga-FAPI) PET/MRI and liver biopsy, followed by liver parenchymal embolization, 8 wk of oral alcohol intake, endpoint 68Ga-FAPI PET/MRI, and necropsy. Regions of interest were drawn on baseline and endpoint PET images, and SUVmean was recorded. At the endpoint, liver sections corresponding to regions of interest were identified and cut out. Fibrosis was histologically evaluated using a modified METAVIR score for swine liver and quantitatively using collagen proportionate area (CPA). Box-and-whisker plots and linear regression were used to correlate SUVmean with METAVIR score and CPA, respectively. Results: Liver 68Ga-FAPI uptake strongly correlated with CPA (r = 0.89, P < 0.001). 68Ga-FAPI uptake was significantly and progressively higher across F2 and F3/F4 fibrosis stages, with a respective median SUVmean of 2.9 (interquartile range [IQR], 2.7-3.8) and 7.6 (IQR, 6.7-10.2) (P < 0.001). There was no significant difference between 68Ga-FAPI uptake of baseline liver and endpoint liver sections staged as F0/F1, with a respective median SUVmean of 1.7 (IQR, 1.3-2.0) and 1.7 (IQR, 1.5-1.8) (P = 0.338). Conclusion: The strong correlation between liver 68Ga-FAPI uptake and the histologic stage of liver fibrosis suggests that 68Ga-FAPI PET can play an impactful role in noninvasive staging of liver fibrosis, pending validation in patients.
Collapse
Affiliation(s)
- Ali Pirasteh
- Radiology and Medical Physics, University of Wisconsin–Madison, Madison, Wisconsin
| | - Sarvesh Periyasamy
- Radiology and Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin
| | - Jennifer Jean Meudt
- Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, Wisconsin
| | - Yongjun Liu
- Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin
| | - Laura M. Lee
- Research Animal Resources and Compliance, University of Wisconsin–Madison, Madison, Wisconsin
| | - Kyle M. Schachtschneider
- Radiology and Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois;,National Center for Supercomputing Applications, University of Illinois at Urbana–Champaign, Champaign, Illinois
| | - Lawrence B. Schook
- Animal Sciences, University of Illinois at Chicago, Chicago, Illinois;,Radiology/Interventional Radiology, University of Illinois at Chicago, Chicago, Illinois
| | - Ron C. Gaba
- Radiology/Interventional Radiology, University of Illinois at Chicago, Chicago, Illinois
| | - Lu Mao
- Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin
| | - Adnan Said
- Medicine, Gastroenterology, and Hepatology, University of Wisconsin–Madison, Madison, Wisconsin;,William S. Middleton VA Medical Center, Madison, Wisconsin
| | - Alan Blair McMillan
- Radiology and Medical Physics, University of Wisconsin–Madison, Madison, Wisconsin
| | - Paul F. Laeseke
- Radiology and Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin
| | - Dhanansayan Shanmuganayagam
- Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, Wisconsin;,Surgery, University of Wisconsin–Madison, Madison, Wisconsin; and,Center for Biomedical Swine Research and Innovation, University of Wisconsin–Madison, Madison, Wisconsin
| |
Collapse
|
14
|
Quantitative Assessment of Liver Impairment in Chronic Viral Hepatitis with [99mTc]Tc-Mebrofenin: A Noninvasive Attempt to Stage Viral Hepatitis-Associated Liver Fibrosis. Medicina (B Aires) 2022; 58:medicina58101333. [PMID: 36295494 PMCID: PMC9612220 DOI: 10.3390/medicina58101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background and objectives—Chronic viral hepatitis B and C infections are one of the leading causes of chronic liver impairment, resulting in liver fibrosis and liver cirrhosis. An early diagnosis with accurate liver fibrosis staging leads to a proper diagnosis, thus tailoring correct treatment. Both invasive and noninvasive techniques are used in the diagnosis and staging of chronic liver impairment. Those techniques include liver biopsy, multiple serological markers (as either single tests or combined panels), and imaging examinations, such as ultrasound or magnetic resonance elastography. Nuclear medicine probes may also be employed in staging liver fibrosis, although the literature scarcely reports this. The purpose of our study was to investigate whether a dynamic liver scintigraphy with [99mTc]Tc-mebrofenin has any value in staging or grading chronic liver damage. Materials and Methods—We prospectively enrolled patients with chronic viral hepatitis B and C infection referred for liver biopsy. All patient underwent dynamic liver scintigraphy with 99mTc-mebrofenin prior to liver biopsy. Dynamic liver scintigraphy was performed immediately after intravenous tracer injection for 30 min scanning time. Multiple scintigraphy parameters were calculated (whole liver lobe and focal area time to peak (TTP), 30 min to peak ratio (30/peak), whole lobe and focal area slope index in 350 s (slope_350). Liver biopsy took place shortly after imaging. Results—We found that many dynamic scintigraphic parameters are positively or negatively associated with different stages of liver fibrosis. The main parameters that showed most value are the ratio between 30 min and the peak of the dynamic curve (30/peak_dex (ratio)), and liver clearance corrected for body surface area and liver area (LCL_m2_dm2 (%/min/m2/dm2)). Conclusions—Our present study proves that conducting dynamic liver scintigraphies with [99mTc]Tc-mebrofenin has potential value in staging liver fibrosis. The benefits of this method, including whole liver imaging and direct imaging of the liver function, provide an advantage over presently used quantitative imaging modalities.
Collapse
|
15
|
Duan N, Chen H, Pi L, Ali Y, Cao Q. Cis-4-[18F]fluoro-L-proline PET/CT molecular imaging quantifying liver collagenogenesis: No existing fibrotic deposition in experimental advanced-stage alcoholic liver fibrosis. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:952943. [PMID: 39354960 PMCID: PMC11440931 DOI: 10.3389/fnume.2022.952943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/12/2022] [Indexed: 10/03/2024]
Abstract
Background and purpose Heavy alcohol drinking-induced alcoholic fatty liver, steatohepatitis, and early-stage alcoholic liver fibrosis may progress to advanced-stage alcoholic liver fibrosis (AALF)/cirrhosis. The lack of non-invasive imaging techniques for the diagnosising collagenogenesis in activated hepatic stellate cells (HSCs) can lead to incurable liver fibrosis at the early reversible stage. Proline has been known as the most abundant amino acid of collagen type 1 synthesized by activated HSC with the transportation of proline transporter. cis-4-[18F]fluoro-L-proline ([18F]proline) was reported as a useful tool to quantify collagenogenesis in experimental alcoholic steatohepatitis. This study aims to use [18F]proline micro PET as non-invasive imaging to quantify liver collagenogenesis in HSC of experimental AALF. Methods AALF model was set up by a modified Lieber-DeCarli liquid ethanol diet for 12 weeks along with intraperitoneal injection (IP) of CCl 4 (0.5 ml/kg) between the 5th and 12th weeks. Controls were fed an isocaloric liquid diet and IP. PBS. In vitro [3H]proline uptake by HSCs isolated from livers was quantified using a liquid scintillation counter. Collagen type 1 production in HSCs culture medium was assayed by ELISA. Ex vivo liver collagen type 1 and proline transporter protein were compared between AALF rats (n = 8) and mice (n = 8). [3H]Proline uptake specificity in ex vivo liver tissues was tested using unlabeled proline and transporter inhibitor benztropine at different doses. Liver H&E, trichrome stain, and blood biochemistry were tested in rats and mice. In vivo, at varying times after instillation, dynamic and static [18F]proline micro PET/CT were done to quantify tracer uptake in AALF mice (n = 3). Correlation among liver collagen, liver SUVmax, normalized liver-to-brain ratio, normalized liver-to-thigh ratio, and fluoro-proline-induced collagen levels in ex vivo liver tissues were analyzed. Results In vitro HSCs study showed significant higher [3H]proline uptake (23007.9 ± 5089.2 vs. 1075.4 ± 119.3 CPM/mg, p < 0.001) in HSCs isolated from AALF rats than controls and so was collagen type 1 production (24.3 ± 5.8 vs. 3.0 ± 0.62 mg/ml, p < 0.001) in HSCs culture medium. Highly positive correlation between [3H]proline uptake and collagen type 1 by HSCs of AALF rats was found (r value = 0.92, p < 0.01). Ex vivo liver tissue study showed no significant difference in collagen type 1 levels between AALF rats (14.83 ± 5.35 mg/g) and AALF mice (12.91 ± 3.62 mg/g, p > 0.05), so was proline transporter expression between AALF rats (7.76 ± 1.92-fold) and AALF mice (6.80 ± 0.97-fold). Unlabeled fluoro-proline induced generation of liver tissue collagen type 1 and [3H]proline uptake were specifically blocked by transporter inhibitor. In vivo [18F]proline micro PET/CT imaging showed higher SUVmax in liver (4.90 ± 0.91 vs. 1.63 ± 0.38, p < 0.01), higher normalized liver/brain ratio (12.54 ± 0.72 vs. 2.33 ± 0.41, p < 0.01), and higher normalized liver/thigh ratio (6.03 ± 0.78 vs. 1.09 ± 0.09, p < 0.01) in AALF mice than controls, which are all positively correlated with fluoro-proline-induced levels of collagen in liver tissue (r value ≥ 0.93, p < 0.01) in AALF mice, but not correlated with existing liver collagen. Liver histology showed increased collagen in the liver of AALF mice. Blood serum ALT and AST levels were remarkably higher in AALF mice than in controls, but there is no significant difference in blood fibrotic parameters HA, A2M, TGFβ1, and MMP1. Conclusions [18F]proline micro PET/CT might be useful to visualize collagenogenesis in activated HSC of experimental AALF but fails to quantify existing liver collagen in AALF mice. [18F]proline has the potential sensitivity to assess the activity and severity of liver fibrosis.
Collapse
Affiliation(s)
- Na Duan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongxia Chen
- School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Liya Pi
- University of Maryland Medical Center, Tulane University, New Orleans, LA, United States
| | - Youssef Ali
- School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Qi Cao
- School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
16
|
Kang S, Kim JD, Choi DL, Choi B. Predicting the Recurrence of Hepatocellular Carcinoma after Primary Living Donor Liver Transplantation Using Metabolic Parameters Obtained from 18F-FDG PET/CT. J Clin Med 2022; 11:jcm11020354. [PMID: 35054048 PMCID: PMC8778128 DOI: 10.3390/jcm11020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/26/2022] Open
Abstract
This study evaluated the prognostic value of metabolic parameters based on the standardized uptake value (SUV) normalized by total body weight (bwSUV) and by lean body mass (SUL) measured on 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) for predicting tumor recurrence after primary living donor liver transplantation (LDLT) in patients with hepatocellular carcinoma (HCC) without transplantation locoregional therapy. This retrospective study enrolled 49 patients with HCC. The maximum tumor bwSUV (T-bwSUVmax) and SUL (T-SULmax) were measured on PET. The maximum bwSUV (L-bwSUVmax), mean bwSUV (L-bwSUVmean), maximum SUL (L-SULmax), and mean SUL (L-SULmean) were measured in the liver. All metabolic parameters were evaluated using survival analyses and compared to clinicopathological factors. Tumor recurrence occurred in 16/49 patients. Kaplan–Meier analysis revealed that all metabolic parameters were significant (p < 0.05). Univariate analysis revealed that prothrombin-induced by vitamin K absence or antagonist-II; T-stage; tumor number; tumor size; microvascular invasion; the Milan criteria, University of California, San Francisco (UCSF), and up-to-seven criteria; T-bwSUVmax/L-bwSUVmean; T-SULmax; T-SULmax/L-SULmax; and T-SULmax/L-SULmean were significant predictors. Multivariate analysis revealed that the T-SULmax/L-SULmean (hazard ratio = 115.6; p = 0.001; cut-off, 1.81) and UCSF criteria (hazard ratio = 172.1; p = 0.010) were independent predictors of tumor recurrence. SUL-based metabolic parameters, especially T-SULmax/L-SULmean, were significant, independent predictors of HCC recurrence post-LDLT.
Collapse
Affiliation(s)
- Sungmin Kang
- Department of Nuclear Medicine, Daegu Catholic University Medical Center, Daegu Catholic University School of Medicine, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea;
| | - Joo Dong Kim
- Division of Hepatobiliary Pancreas Surgery and Abdominal Organ Transplantation, Department of Surgery, Daegu Catholic University Medical Center, Daegu Catholic University School of Medicine, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea; (J.D.K.); (D.L.C.)
| | - Dong Lak Choi
- Division of Hepatobiliary Pancreas Surgery and Abdominal Organ Transplantation, Department of Surgery, Daegu Catholic University Medical Center, Daegu Catholic University School of Medicine, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea; (J.D.K.); (D.L.C.)
| | - Byungwook Choi
- Department of Nuclear Medicine, Daegu Catholic University Medical Center, Daegu Catholic University School of Medicine, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea;
- Correspondence: ; Tel.: +82-53-650-4789
| |
Collapse
|
17
|
Comparison of 18F-FDG, 18F-Fluoroacetate, and 18F-FEPPA for Imaging Liver Fibrosis in a Bile Duct-Ligated Rat Model. Mol Imaging 2021; 2021:7545284. [PMID: 34934405 PMCID: PMC8654319 DOI: 10.1155/2021/7545284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
Abstract
Developing sensitive diagnostic methods for a longitudinal evaluation of the status of liver fibrosis is a priority. This study is aimed at assessing the significance of longitudinal positron emission tomography (PET) imaging with 18F-labeling tracers for assessing liver fibrosis in a rat model with bile duct ligation (BDL). Twenty-one 6-week-old Sprague-Dawley male rats were used in this study. Longitudinal PET images using [18F]N-2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)acetamide ([18F]FEPPA) (n = 3), [18F]fluoroacetate ([18F]FAc) (n = 3), and 18F-fluoro-2-deoxy-D-glucose ([18F]FDG) (n = 3) were obtained at 0, 1, and 2 weeks after BDL. Biochemical assays, histological assays, immunohistochemical staining assays, and next generation sequencing analyses were also performed at 0 (n = 3), 1 (n = 3), 2 (n = 3), and 3 (n = 3) weeks after BDL, which demonstrated the severe damage in rat livers after BDL. Regarding [18F]FEPPA and [18F]FDG, there was a significantly higher uptake in the liver after BDL (both P < 0.05), which lasted until week 2. However, the uptake of [18F]FAc in the liver was not significantly different before and after BDL (P = 0.28). Collectively, both [18F]FEPPA and [18F]FDG can serve as sensitive probes for detecting the liver fibrosis. However, [18F]FAc is not recommended to diagnose liver fibrosis.
Collapse
|
18
|
Einspieler I, Mergen V, Wendorff H, Haller B, Eiber M, Schwaiger M, Nekolla SG, Mustafa M. Diagnostic performance of quantitative and qualitative parameters for the diagnosis of aortic graft infection using [ 18F]-FDG PET/CT. J Nucl Cardiol 2021; 28:2220-2228. [PMID: 31907856 DOI: 10.1007/s12350-019-02011-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE The aim of this study was the evaluation of quantitative and qualitative parameters for the diagnosis of aortic graft infection (AGI) using [18F]-FDG PET/CT. METHODS PET/CT was performed in 50 patients with clinically suspected AGI. 12 oncological patients with aortic repair but without suspicion of AGI were included in the analysis to serve as control cohort. The [18F]-FDG uptake pattern around the graft was assessed using (a) a five-point visual grading scale (VGS), (b) SUVmax and (c) different graft-to-background ratios (GBRs). The diagnostic performance of VGS, SUVmax and GBRs was assessed and compared by ROC analysis. RESULTS 28 infected and 34 uninfected grafts were identified by standard of reference. SUVmax and VGS were the most powerful predictors for the diagnosis of AGI according to the area under the curve (AUC 0.988 and 0.983, respectively) without a significant difference compared to GBRs. SUVmax and VGS showed congruent and accurate findings in 54 patients (i.e. either both positive or negative), yielding sensitivity and specificity (100%) in this subgroup of patients. CONCLUSION Quantitative analysis by SUVmax and qualitative analysis by VGS are highly effective in the diagnosis of AGI and should be tested as an outcome measure in prospective trials.
Collapse
Affiliation(s)
- Ingo Einspieler
- Department of Nuclear Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
- Department of Radiology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| | - Victor Mergen
- Department of Nuclear Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Heiko Wendorff
- Vascular Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Bernhard Haller
- Medical Statistics and Epidemiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. Partner site Munich Heart Alliance, Munich, Germany
| | - Stephan G Nekolla
- Department of Nuclear Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. Partner site Munich Heart Alliance, Munich, Germany
| | - Mona Mustafa
- Department of Nuclear Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
19
|
Chen ZW, Tang K, Zhao YF, Chen YZ, Tang LJ, Li G, Huang OY, Wang XD, Targher G, Byrne CD, Zheng XW, Zheng MH. Radiomics based on fluoro-deoxyglucose positron emission tomography predicts liver fibrosis in biopsy-proven MAFLD: a pilot study. Int J Med Sci 2021; 18:3624-3630. [PMID: 34790034 PMCID: PMC8579290 DOI: 10.7150/ijms.64458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/30/2021] [Indexed: 01/14/2023] Open
Abstract
Rationale: Since non-invasive tests for prediction of liver fibrosis have a poor diagnostic performance for detecting low levels of fibrosis, it is important to explore the diagnostic capabilities of other non-invasive tests to diagnose low levels of fibrosis. We aimed to evaluate the performance of radiomics based on 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in predicting any liver fibrosis in individuals with biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). Methods: A total of 22 adults with biopsy-confirmed MAFLD, who underwent 18F-FDG PET/CT, were enrolled in this study. Sixty radiomics features were extracted from whole liver region of interest in 18F-FDG PET images. Subsequently, the minimum redundancy maximum relevance (mRMR) method was performed and a subset of two features mostly related to the output classes and low redundancy between them were selected according to an event per variable of 5. Logistic regression, Support Vector Machine, Naive Bayes, 5-Nearest Neighbor and linear discriminant analysis models were built based on selected features. The predictive performances were assessed by the receiver operator characteristic (ROC) curve analysis. Results: The mean (SD) age of the subjects was 38.5 (10.4) years and 17 subjects were men. 12 subjects had histological evidence of any liver fibrosis. The coarseness of neighborhood grey-level difference matrix (NGLDM) and long-run emphasis (LRE) of grey-level run length matrix (GLRLM) were selected to predict fibrosis. The logistic regression model performed best with an AUROC of 0.817 [95% confidence intervals, 0.595-0.947] for prediction of liver fibrosis. Conclusion: These preliminary data suggest that 18F-FDG PET radiomics may have clinical utility in assessing early liver fibrosis in MAFLD.
Collapse
Affiliation(s)
- Zhong-Wei Chen
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kun Tang
- Department of Nuclear Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - You-Fan Zhao
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yang-Zong Chen
- Department of Nuclear Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang-Jie Tang
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Li
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ou-Yang Huang
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Dong Wang
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Christopher D. Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Xiang-Wu Zheng
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Nuclear Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
Pijl JP, Nienhuis PH, Kwee TC, Glaudemans AWJM, Slart RHJA, Gormsen LC. Limitations and Pitfalls of FDG-PET/CT in Infection and Inflammation. Semin Nucl Med 2021; 51:633-645. [PMID: 34246448 DOI: 10.1053/j.semnuclmed.2021.06.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
White blood cells activated by either a pathogen or as part of a systemic inflammatory disease are characterized by high energy consumption and are therefore taking up the glucose analogue PET tracer FDG avidly. It is therefore not surprising that a steadily growing body of research and clinical reports now supports the use of FDG PET/CT to diagnose a wide range of patients with non-oncological diseases. However, using FDG PET/CT in patients with infectious or inflammatory diseases has some limitations and potential pitfalls that are not necessarily as pronounced in oncology FDG PET/CT. Some of these limitations are of a general nature and related to the laborious acquisition of PET images in patients that are often acutely ill, whereas others are more disease-specific and related to the particular metabolism in some of the organs most commonly affected by infections or inflammatory disease. Both inflammatory and infectious diseases are characterized by a more diffuse and less pathognomonic pattern of FDG uptake than oncology FDG PET/CT and the affected organs also typically have some physiological FDG uptake. In addition, patients referred to PET/CT with suspected infection or inflammation are rarely treatment naïve and may have received varying doses of antibiotics, corticosteroids or other immune-modulating drugs at the time of their examination. Combined, this results in a higher rate of false positive FDG findings and also in some cases a lower sensitivity to detect active disease. In this review, we therefore discuss the limitations and pitfalls of FDG PET/CT to diagnose infections and inflammation taking these issues into consideration. Our review encompasses the most commonly encountered inflammatory and infectious diseases in head and neck, in the cardiovascular system, in the abdominal organs and in the musculoskeletal system. Finally, new developments in the field of PET/CT that may help overcome some of these limitations are briefly highlighted.
Collapse
Affiliation(s)
- Jordy P Pijl
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen
| | - Pieter H Nienhuis
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen
| | - Thomas C Kwee
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen
| | - Andor W J M Glaudemans
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen
| | - Riemer H J A Slart
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen; Faculty of Science and Technology, Department of Biomedical Photonic Imaging, University of Twente, Enschede
| | - Lars C Gormsen
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, Aarhus N.
| |
Collapse
|
21
|
Su S, Xiang X, Lin L, Xiong Y, Ma H, Yuan G, Zhao J, Zhang Z, Liu S, Nie D, Tang G. Cell death PET/CT imaging of rat hepatic fibrosis with 18F-labeled small molecule tracer. Nucl Med Biol 2021; 98-99:76-83. [PMID: 34062322 DOI: 10.1016/j.nucmedbio.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/16/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the potential feasibility of Al[18F]F-1,4,7-triazacyclononane-1,4,7-triaceticacid (NOTA)-tripolyethylene glycol (PEG3)-Duramycin (Al[18F]F-NOTA-PEG3-Duramycin) positron emission tomography (PET) for imaging of rat hepatic fibrosis. PROCEDURES Hepatic fibrosis rat models were injected with thioacetamide (TAA), control rats received saline (n = 12 per group). Rats in the two groups underwent PET imaging using Al[18F]F-NOTA-PEG3-Duramycin and [18F]FDG at multiple time points (2, 4, 6, and 8 weeks after TAA or saline treatment). Between-group differences in the apoptosis rate, fibrotic activity, and liver uptake of Al[18F]F-NOTA-PEG3-Duramycin or [18F]FDG were assessed using Student's t-test. Imaging results were cross-validated using histopathology detection and Pearson's correlation test was used to assess the association relationships between radioactive uptake value and quantified histopathological data. RESULTS Compared with control group at multiple time points, each TAA group showed a higher radioactive liver uptake of Al[18F]F-NOTA-PEG3-Duramycin (each P < 0.05). Furthermore, the increase in the liver uptake of Al[18F]F-NOTA-PEG3-Duramycin was proportional to the progression of fibrosis (R2 = 0.8846, P < 0.001) and apoptosis rate (R2 = 0.9208, P < 0.001) in the TAA group. Meanwhile, there were also between-group differences in [18F]FDG uptake in each phase (P < 0.05), however, no relationship between [18F]FDG uptake and the fibrotic activity was observed. CONCLUSIONS Al[18F]F-NOTA-PEG3-Duramycin PET/CT could be applied to monitor the progression of liver fibrosis, whereas [18F]FDG PET/CT could not. Implications of this work for noninvasive diagnosis of liver fibrosis, assessment of fibrotic activity, and evaluation of antifibrotic therapy are expected.
Collapse
Affiliation(s)
- Shu Su
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China.
| | - Xianhong Xiang
- Department of Interventional Radiology, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China.
| | - Liping Lin
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Ying Xiong
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Hui Ma
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Gongjun Yuan
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Jing Zhao
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Zhanwen Zhang
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Shaoyu Liu
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Dahong Nie
- Department of Radiation Oncology, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China.
| | - Ganghua Tang
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Nanfang PET Center, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China.
| |
Collapse
|
22
|
Radiomics, Radiogenomics, and Next-Generation Molecular Imaging to Augment Diagnosis of Hepatocellular Carcinoma. ACTA ACUST UNITED AC 2021; 26:108-115. [PMID: 32205534 DOI: 10.1097/ppo.0000000000000435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ultrasound, computed tomography, magnetic resonance imaging, and [F]F-fluorodeoxyglucose positron emission tomography are invaluable in the clinical evaluation of human cancers. Radiomics and radiogenomics tools may allow clinicians to standardize interpretation of these conventional imaging modalities, while better linking radiographic hallmarks to disease biology and prognosis. These advances, coupled with next-generation positron emission tomography imaging tracers capable of providing biologically relevant tumor information, may further expand the tools available in our armamentarium against human cancers. We present current imaging methods and explore emerging research that may improve diagnosis and monitoring of local, oligometastatic, and disseminated cancers exhibiting heterogeneous uptake of [F]F-fluorodeoxyglucose, using hepatocellular carcinoma as an example.
Collapse
|
23
|
He X, Caoili EM, Avram AM, Miller BS, Else T. 18F-FDG-PET/CT Evaluation of Indeterminate Adrenal Masses in Noncancer Patients. J Clin Endocrinol Metab 2021; 106:1448-1459. [PMID: 33524123 PMCID: PMC8063258 DOI: 10.1210/clinem/dgab005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 01/17/2023]
Abstract
CONTEXT Adrenal tumors in noncancer patients are common. OBJECTIVE Evaluate performance of 18F-fluorodeoxyglucose positron emission tomography computed tomography (18F-FDG-PET/CT) in distinguishing between benign and malignant adrenal tumors. DESIGN Retrospective chart review 2010-2019. SETTING Academic institution. PATIENTS One hundred and seventeen noncancer patients, defined as having no history of cancer or with cancer in remission for ≥5 years, completed 18F-FDG-PET/CT to evaluate adrenal masses, with pathologic diagnoses or imaging follow-up (≥12 months). INTERVENTION 18F-FDG-PET/CT of 117 indeterminate adrenal masses. MAIN OUTCOME MEASURES Receiver operator characteristic curve of the ratios of adrenal lesion standardized uptake value (SUV)max to liver SUVmean and of adrenal lesion SUVmax to aortic arch blood pool SUVmean were constructed. RESULTS Seventy benign and 47 malignant masses (35 adrenocortical carcinomas [ACCs], 12 adrenal metastases) were identified. Malignant masses had higher median liver SUV and blood pool SUV ratios than benign masses (6.2 and 7.4 vs 1.4 and 2.0, P < .001). Median liver and blood pool SUV ratios of ACC (6.1 and 7.3, respectively) and metastases (6.7 and 7.7, respectively) were higher than those of than adenomas (1.4 and 2.2, P < .05 for all comparisons). Optimal liver SUV ratio to discern between benign and malignant masses was 2.5, yielding 85% sensitivity, 90% specificity, and 7 false negative results (including 3 ACCs). Optimal blood pool SUV ratio was 3.4, yielding 83% sensitivity, 90% specificity, and 8 false negative results (including 4 ACCs). CONCLUSION When used in conjunction with other clinical assessments, 18F-FDG-PET/CT can be a valuable tool in evaluating adrenal masses in noncancer patients.
Collapse
Affiliation(s)
- Xin He
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes University of Michigan, Ann Arbor, MI, USA
| | - Elaine M Caoili
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Anca M Avram
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Barbra S Miller
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH, USA
| | - Tobias Else
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes University of Michigan, Ann Arbor, MI, USA
- Correspondence: Tobias Else, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
24
|
Bezborodkina NN, Okovityi SV, Kudryavtsev BN. Postprandial Glycogen Content Is Increased in the Hepatocytes of Human and Rat Cirrhotic Liver. Cells 2021; 10:cells10050976. [PMID: 33919385 PMCID: PMC8143336 DOI: 10.3390/cells10050976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/25/2022] Open
Abstract
Chronic hepatitises of various etiologies are widespread liver diseases in humans. Their final stage, liver cirrhosis (LC), is considered to be one of the main causes of hepatocellular carcinoma (HCC). About 80-90% of all HCC cases develop in LC patients, which suggests that cirrhotic conditions play a crucial role in the process of hepatocarcinogenesis. Carbohydrate metabolism in LC undergoes profound disturbances characterized by altered glycogen metabolism. Unfortunately, data on the glycogen content in LC are few and contradictory. In this study, the material was obtained from liver biopsies of patients with LC of viral and alcohol etiology and from the liver tissue of rats with CCl4-induced LC. The activity of glycogen phosphorylase (GP), glycogen synthase (GS), and glucose-6-phosphatase (G6Pase) was investigated in human and rat liver tissue by biochemical methods. Total glycogen and its labile and stable fractions were measured in isolated individual hepatocytes, using the cytofluorometry technique of PAS reaction in situ. The development of LC in human and rat liver was accompanied by an increase in fibrous tissue (20- and 8.8-fold), an increase in the dry mass of hepatocytes (by 25.6% and 23.7%), and a decrease in the number of hepatocytes (by 50% and 28%), respectively. The rearrangement of the liver parenchyma was combined with changes in glycogen metabolism. The present study showed a significant increase in the glycogen content in the hepatocytes of the human and the rat cirrhotic liver, by 255% and 210%, respectively. An increased glycogen content in cells of the cirrhotic liver can be explained by a decrease in glycogenolysis due to a decreased activity of G6Pase and GP.
Collapse
Affiliation(s)
- Natalia N. Bezborodkina
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia
- Correspondence: or
| | - Sergey V. Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical Pharmaceutical University, 197022 St. Petersburg, Russia;
| | - Boris N. Kudryavtsev
- Scientific-Clinical Centre, Pavlov First Saint Petersburg State Medical University, L’va Tolstogo str. 6-8, 197022 St. Petersburg, Russia;
| |
Collapse
|
25
|
Pijl JP, Londema M, Kwee TC, Nijsten MWN, Slart RHJA, Dierckx RAJO, van der Voort PHJ, Glaudemans AWJM, Pillay J. FDG-PET/CT in intensive care patients with bloodstream infection. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:133. [PMID: 33827655 PMCID: PMC8028784 DOI: 10.1186/s13054-021-03557-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022]
Abstract
Background 2-Deoxy-2-[18F]fluoro-D-glucose (FDG) positron emission tomography (PET)/computed tomography (CT) is an advanced imaging technique that can be used to examine the whole body for an infection focus in a single examination in patients with bloodstream infection (BSI) of unknown origin. However, literature on the use of this technique in intensive care patients is scarce. The purpose of this study was to evaluate the diagnostic yield of FDG-PET/CT in intensive care patients with BSI. Methods In this retrospective cohort study, all intensive care patients from our Dutch university medical center who had culture-proven BSI between 2010 and 2020 and underwent FDG-PET/CT to find the focus of infection were included. Diagnostic performance was calculated and logistic regression analysis was performed to evaluate the association between FDG-PET/CT outcome and C-reactive protein level (CRP), leukocyte count, duration of antibiotic treatment, duration of ICU stay, quality of FDG-PET/CT, and dependency on mechanical ventilation. In addition, the impact of FDG-PET/CT on clinical treatment was evaluated. Results 30 intensive care patients with BSI were included. In 21 patients, an infection focus was found on FDG-PET/CT which led to changes in clinical management in 14 patients. FDG-PET/CT achieved a sensitivity of 90.9% and specificity of 87.5% for identifying the focus of infection. Poor quality of the FDG-PET images significantly decreased the likelihood of finding an infection focus as compared to reasonable or good image quality (OR 0.16, P = 0.034). No other variables were significantly associated with FDG-PET/CT outcome. No adverse events during the FDG-PET/CT procedure were reported. Conclusion FDG-PET/CT has a high diagnostic yield for detecting the infection focus in patients with BSI admitted to intensive care. Poor PET image quality was significantly associated with a decreased likelihood of finding the infection focus in patients with BSI. This could be improved by adequate dietary preparation and cessation of intravenous glucose and glucose-regulating drugs. Recent advances in PET/CT technology enable higher image quality with shorter imaging time and may contribute to routinely performing FDG-PET/CT in intensive care patients with BSI of unknown origin.
Collapse
Affiliation(s)
- Jordy P Pijl
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| | - Mark Londema
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Thomas C Kwee
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Maarten W N Nijsten
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Riemer H J A Slart
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.,Faculty of Science and Technology, Department of Biomedical Photonic Imaging, University of Twente, Enschede, The Netherlands
| | - Rudi A J O Dierckx
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Peter H J van der Voort
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Janesh Pillay
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
26
|
Hutchinson JA, Kronenberg K, Riquelme P, Wenzel JJ, Glehr G, Schilling HL, Zeman F, Evert K, Schmiedel M, Mickler M, Drexler K, Bitterer F, Cordero L, Beyer L, Bach C, Koestler J, Burkhardt R, Schlitt HJ, Hellwig D, Werner JM, Spang R, Schmidt B, Geissler EK, Haferkamp S. Virus-specific memory T cell responses unmasked by immune checkpoint blockade cause hepatitis. Nat Commun 2021; 12:1439. [PMID: 33664251 PMCID: PMC7933278 DOI: 10.1038/s41467-021-21572-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
Treatment of advanced melanoma with combined PD-1/CTLA-4 blockade commonly causes serious immune-mediated complications. Here, we identify a subset of patients predisposed to immune checkpoint blockade-related hepatitis who are distinguished by chronic expansion of effector memory CD4+ T cells (TEM cells). Pre-therapy CD4+ TEM cell expansion occurs primarily during autumn or winter in patients with metastatic disease and high cytomegalovirus (CMV)-specific serum antibody titres. These clinical features implicate metastasis-dependent, compartmentalised CMV reactivation as the cause of CD4+ TEM expansion. Pre-therapy CD4+ TEM expansion predicts hepatitis in CMV-seropositive patients, opening possibilities for avoidance or prevention. 3 of 4 patients with pre-treatment CD4+ TEM expansion who received αPD-1 monotherapy instead of αPD-1/αCTLA-4 therapy remained hepatitis-free. 4 of 4 patients with baseline CD4+ TEM expansion given prophylactic valganciclovir and αPD-1/αCTLA-4 therapy remained hepatitis-free. Our findings exemplify how pathogen exposure can shape clinical reactions after cancer therapy and how this insight leads to therapeutic innovations.
Collapse
Affiliation(s)
- James A. Hutchinson
- grid.411941.80000 0000 9194 7179Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Katharina Kronenberg
- grid.411941.80000 0000 9194 7179Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Paloma Riquelme
- grid.411941.80000 0000 9194 7179Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Jürgen J. Wenzel
- grid.411941.80000 0000 9194 7179Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Gunther Glehr
- grid.7727.50000 0001 2190 5763Institute of Functional Genomics and Statistical Bioinformatics, University of Regensburg, Regensburg, Germany
| | - Hannah-Lou Schilling
- grid.411941.80000 0000 9194 7179Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Florian Zeman
- grid.411941.80000 0000 9194 7179Center for Clinical Studies, University Hospital Regensburg, Regensburg, Germany
| | - Katja Evert
- grid.411941.80000 0000 9194 7179Institute of Pathology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Schmiedel
- grid.411941.80000 0000 9194 7179Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Marion Mickler
- grid.411941.80000 0000 9194 7179Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Konstantin Drexler
- grid.411941.80000 0000 9194 7179Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Bitterer
- grid.411941.80000 0000 9194 7179Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Laura Cordero
- grid.411941.80000 0000 9194 7179Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Lukas Beyer
- grid.411941.80000 0000 9194 7179Institute of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Christian Bach
- grid.411668.c0000 0000 9935 6525Department of Medicine V, University Hospital Erlangen, Erlangen, Germany
| | - Josef Koestler
- grid.411941.80000 0000 9194 7179Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Ralph Burkhardt
- grid.411941.80000 0000 9194 7179Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Hans J. Schlitt
- grid.411941.80000 0000 9194 7179Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Dirk Hellwig
- grid.411941.80000 0000 9194 7179Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Jens M. Werner
- grid.411941.80000 0000 9194 7179Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Rainer Spang
- grid.7727.50000 0001 2190 5763Institute of Functional Genomics and Statistical Bioinformatics, University of Regensburg, Regensburg, Germany
| | - Barbara Schmidt
- grid.411941.80000 0000 9194 7179Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Edward K. Geissler
- grid.411941.80000 0000 9194 7179Department of Surgery, University Hospital Regensburg, Regensburg, Germany ,Personalised Tumour Therapy, Fraunhofer Institute for Experimental Medicine and Toxicology, Regensburg, Germany
| | - Sebastian Haferkamp
- grid.411941.80000 0000 9194 7179Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
27
|
Gheorghe G, Bungău S, Ceobanu G, Ilie M, Bacalbaşa N, Bratu OG, Vesa CM, Găman MA, Diaconu CC. The non-invasive assessment of hepatic fibrosis. J Formos Med Assoc 2021; 120:794-803. [PMID: 32861550 DOI: 10.1016/j.jfma.2020.08.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/30/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatic disease accounts for approximately 2 million deaths/year worldwide. Liver fibrosis, as the last stage of numerous chronic liver diseases, is one of the most relevant prognostic factors. The liver biopsy with the histopathological examination is considered to be the "gold standard" for the identification and staging of the hepatic fibrosis. However, liver biopsy is known as an invasive investigation that has multiple limitations. Research studies conducted in the last few years focused on identifying non-invasive type methods for the evaluation of hepatic fibrosis; usually, there are 2 categories of such investigations: serologic tests and imaging techniques. This narrative review presents the non-invasive investigation methods used in the liver fibrosis evaluation. New molecular perspectives on fibrogenesis and fibrosis regression, as well as the appearance of therapeutic antifibrotic agents, justify the necessity of non-invasive tools to detect and grade liver fibrosis.
Collapse
Affiliation(s)
- Gina Gheorghe
- Department of Gastroenterology, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania.
| | - Simona Bungău
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Gabriela Ceobanu
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania.
| | - Mădălina Ilie
- Department of Gastroenterology, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania.
| | - Nicolae Bacalbaşa
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania.
| | - Ovidiu Gabriel Bratu
- Department of Urology, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania.
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania.
| | - Mihnea-Alexandru Găman
- University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania; Department of Hematology, Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest 022328, Romania.
| | - Camelia Cristina Diaconu
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania; Department of Internal Medicine, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania.
| |
Collapse
|
28
|
Pan S, Wang L, Xin J. Combining 18F-FDG PET and Gd-EOB-DTPA-enhanced MRI for staging liver fibrosis. Life Sci 2021; 269:119086. [PMID: 33476634 DOI: 10.1016/j.lfs.2021.119086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/03/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
AIM To evaluate the diagnostic performance of combining 18F-2-fluoro-2-D-deoxyglucose-positron emission tomography (18F-FDG PET) and gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) for liver fibrosis staging. MATERIALS AND METHODS Male New Zealand white rabbits (n = 48) were treated with carbon tetrachloride (CCl4) to induce liver fibrosis, while control group rabbits (n = 8) received normal saline. The liver tissues of rabbits were histopathologically examined (classified according to the METAVIR classification system) for liver fibrosis staging and real-time polymerase chain reaction (RT-PCR) was used to ensure diagnostic accuracy. Integrated PET/MRI was performed. The mean standardised uptake value (SUVmean) and relative enhancement (RE) were evaluated for different liver fibrosis stages using a Mann-Whitney U test. The performance of PET/MRI was evaluated by using the receiver operating characteristic curve (ROC) and the area under the ROC curve (AUC). KEY FINDINGS In total, 10, 16, and 8 rabbits classified into no fibrosis (F0), mild fibrosis (F1-2), and severe fibrosis (F3-4) categories, respectively. There were significant differences in SUVmean and RE between F0 and F3-4 and between F1-2 and F3-4 (p < 0.01), but no significance between F0 and F1-2 (p > 0.5). Combined SUVmean and RE performed well in staging liver fibrosis, with AUC of 0.8 for F0 or greater, 0.744 for F0 or F1-2, 0.945 for F1-2 or F3-4, and 0.962 for F3-4. SIGNIFICANCE Combining SUVmean and RE provides high accuracy for grading liver fibrosis, especially in the differentiation between F1-2 and F3-4. 18F-FDG and Gd-EOB-DTPA-enhanced PET/MRI could be a non-invasive diagnostic method to guide the selection of clinical treatment options.
Collapse
Affiliation(s)
- Shen Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lu Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jun Xin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|