1
|
Yan H, Li J, Zhang K, Duan H, Sun A, Zhang B, Li F, Chen N, Lei C, Yi K. Local Ancestry and Adaptive Introgression in Xiangnan Cattle. BIOLOGY 2024; 13:1000. [PMID: 39765667 PMCID: PMC11673051 DOI: 10.3390/biology13121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/17/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
Exploring the genetic landscape of native cattle is an exciting avenue for elucidating nuanced patterns of genetic variation and adaptive dynamics. Xiangnan cattle, a native Chinese cattle breed mainly produced in Hunan Province, are well adapted to the high temperature and humidity of the local environment and exhibit strong disease resistance. Herein, we employed whole-genome sequences of 16 Xiangnan cattle complemented by published genome data from 81 cattle. Our findings revealed that Xiangnan cattle are pure East Asian indicine cattle with high genetic diversity and low inbreeding. By annotating the selection signals obtained by the CLR, θπ, FST, and XP-EHH methods, genes associated with immunity (ITGB3, CD55, OTUD1, and PRLH) and heat tolerance (COX4I2, DNAJC18, DNAJC1, EIF2AK4, and ASIC2) were identified. In addition, the considerable introgression from banteng and gaur also contributed to the rapid adaptation of Xiangnan cattle to the environment of Southern China. These results will provide a basis for the further conservation and exploitation of Xiangnan cattle genetic resources.
Collapse
Affiliation(s)
- Huixuan Yan
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.Y.); (J.L.); (H.D.); (A.S.); (B.Z.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (K.Z.); (N.C.)
| | - Jianbo Li
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.Y.); (J.L.); (H.D.); (A.S.); (B.Z.)
| | - Kunyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (K.Z.); (N.C.)
| | - Hongfeng Duan
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.Y.); (J.L.); (H.D.); (A.S.); (B.Z.)
| | - Ao Sun
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.Y.); (J.L.); (H.D.); (A.S.); (B.Z.)
| | - Baizhong Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.Y.); (J.L.); (H.D.); (A.S.); (B.Z.)
| | - Fuqiang Li
- Hunan Tianhua Industrial Corporation Ltd., Lianyuan 417000, China;
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (K.Z.); (N.C.)
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (K.Z.); (N.C.)
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.Y.); (J.L.); (H.D.); (A.S.); (B.Z.)
| |
Collapse
|
2
|
Liu J, Wei X, Zhang Y, Ran Y, Qu B, Wang C, Zhao F, Zhang L. dCas9-guided demethylation of the AKT1 promoter improves milk protein synthesis in a bovine mastitis mammary gland epithelial model induced by using Staphylococcus aureus. Cell Biol Int 2024; 48:300-310. [PMID: 38100153 DOI: 10.1002/cbin.12106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/16/2023] [Accepted: 11/20/2023] [Indexed: 02/15/2024]
Abstract
Mastitis is among the main factors affecting milk quality and yield. Although DNA methylation is associated with mastitis, its role in mastitis remains unclear. In this study, a bovine mastitis mammary epithelial cells (BMMECs) model was established via Staphylococcus aureus infection of bovine mammary gland epithelial cells (BMECs). Bisulfite sequencing PCR was used to determine the methylation status of the AKT1 promoter in BMMECs. We found that the degree of the AKT1 promoter methylation in BMMECs was significantly greater than that in BMECs, and the expression levels of genes related to milk protein synthesis were significantly decreased. We used the pdCas9-C-Tet1-SgRNA 2.0 system to regulate the methylation status of the AKT1 promoter. High-efficiency sgRNAs were screened and dCas9-guided AKT1 promoter demethylation vectors were constructed. Following transfection with the vectors, the degree of methylation of the AKT1 promoter was significantly reduced in BMMECs, while AKT1 protein levels increased. When the methylation level of the AKT1 promoter decreased, the synthesis of milk proteins and the expression levels of genes related to milk protein synthesis increased significantly. The viability of the BMMECs was enhanced. Taken together, these results indicate that demethylation guided by the pdCas9-C-Tet1-SgRNA 2.0 system on the AKT1 promoter can reactivate the expression of AKT1 and AKT1/mTOR signaling pathway-related proteins by reducing the AKT1 promoter methylation level and promoting the recovery milk protein expression in BMMECs, thereby alleviating the symptoms of mastitis.
Collapse
Affiliation(s)
- Jie Liu
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Xiangfei Wei
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Yan Zhang
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Yaoxiang Ran
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Bo Qu
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Chunmei Wang
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Feng Zhao
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Li Zhang
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Zhang K, Shen X, Han L, Wang M, Lian S, Wang K, Li C. Effects on the intestinal morphology, inflammatory response and microflora in piglets challenged with enterotoxigenic Escherichia coli K88. Res Vet Sci 2023; 157:50-61. [PMID: 36871456 DOI: 10.1016/j.rvsc.2023.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in piglets, which leads to great economic losses. In this study, the ternary crossbred weaned piglets were orally administered with 1.5 × 1011 CFU ETEC K88 for three days. The results showed the ratio of villus length to crypt depth decreased in the duodenum and ileum after ETEC K88 infection. The expression of tight junction proteins ZO-1 in the jejunum and ileum, occludin in the jejunum and colon, and claudin-1 in the colon were down-regulated. The expression of IL-8 in the duodenum and jejunum, IL-13 in the colon, and TNF-α in the jejunum and colon were up-regulated. The expression of pBD1 in the colon, pBD2 in the jejunum, and pBD3 in the duodenum increased after infection. Meanwhile, the expression of TLR4, p38 MAPK and NF-κB p65 increased in all intestinal segments. Moreover, the expression of IL-8 in superficial cervical lymph nodes (SCLN), TNF-α in mesenteric lymph nodes (MLN), and IL-13 in inguinal lymph nodes (ILN) and MLN were up-regulated. The expression of pBD1 and pBD2 in SCLN and MLN, and pBD3 in SCLN were up-regulated. Acidobacteria and Proteobacteria were the most abundant phyla in both groups by analysis of intestinal microflora using 16 s rRNA sequencing, and the relative abundances of bacteria were found to be changed by Metastats software and LEfSe analysis. Our results indicated that cytokines and pBDs had different roles in different intestinal segments or different lymph nodes against ETEC K88, and gut microbiota was influenced after infection.
Collapse
Affiliation(s)
- Kun Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China
| | - Xiaoyang Shen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China
| | - Lu Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China; Henan Animal Husbandry Service, Zhengzhou, Henan, People's Republic of China
| | - Mengyun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China
| | - Shaoqiang Lian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China.
| | - Chunli Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China.
| |
Collapse
|
4
|
Zou Y, Wang X, Xu J, Wang S, Li S, Zhu Y, Wang J. Z. morio Hemolymph Relieves E. coli-Induced Mastitis by Inhibiting Inflammatory Response and Repairing the Blood-Milk Barrier. Int J Mol Sci 2022; 23:13279. [PMID: 36362066 PMCID: PMC9657162 DOI: 10.3390/ijms232113279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2024] Open
Abstract
Escherichia coli (E. coli) is a major environmental pathogen causing coliform mastitis, characterized by cell death and mammary tissue damage. Our previous study has shown the antimicrobial effect of Zophobas morio (Z. morio) hemolymph against mastitis pathogens. In this study, we established E. coli-induced cellular and animal models for mastitis, aiming to evaluate the protective effect of Z. morio hemolymph against E. coli-induced mastitis in vivo and in vitro. In mice with E. coli, Z. morio hemolymph attenuated bacterial burden and histopathological impairment, reduced the production of interleukin (IL)-1β, IL-18, tumor necrosis factor-α (TNF-α) and the ratio of CD4+ T/CD8+ T, and increased the production of IL-2 triggered by E. coli. Z. morio hemolymph also enhanced the integrity of the blood-milk barrier in E. coli-induced mastitis. In E. coli-stimulated porcine mammary epithelial cells, Z. morio hemolymph inhibited E. coli-induced inflammatory responses and upregulated tight junction proteins (ZO-1, Claudin-3 and Occludin). Moreover, we found that the anti-inflammatory effect of Z. morio hemolymph was mediated by inhibiting E. coli-induced NLRP3 inflammasome assembly, Caspase-1 activation, and reversing the inhibitory effect of E. coli on autophagy. Besides, Z. morio hemolymph augmented ATG5/ATG16L1-mediated autophagy activation, negatively regulated NLRP3 inflammasome activation. Our results reveal that Z. morio hemolymph alleviates E. coli-induced mastitis via lessening the inflammatory response by regulating the NLRP3 and ATG5/ATG16L1 signaling pathway, as well as repairing the blood-milk barrier.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Zhang K, Lian S, Shen X, Zhao X, Zhao W, Li C. Recombinant porcine beta defensin 2 alleviates inflammatory responses induced by Escherichia coli in IPEC-J2 cells. Int J Biol Macromol 2022; 208:890-900. [PMID: 35364205 DOI: 10.1016/j.ijbiomac.2022.03.178] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 01/02/2023]
Abstract
pBD2 is one of the porcine beta defensins with broad antimicrobial activity, and plays an important role in immune regulation. However, the activities and mechanisms of pBD2 regulating host resistance to Escherichia coli infection are unclear. In this study, the immunomodulatory activity and mechanisms of recombinant pBD2 against Escherichia coli infection were explored in IPEC-J2 cells. Recombinant pBD2 had no obvious effect on the growth of cells below 80 μg/mL, however, it reduced the number of E. coli adhering to cells. Furthermore, pBD2 restored the abnormal expression of ZO-1 and occludin in cells challenged with E. coli. pBD2 treatment also reduced cell apoptosis and decreased the expression of the apoptosis-related genes Cox-2 and Caspase-3, and decreased the expression of the pro-inflammatory IL-6, IL-8, IL-1α and TNF-α, and Cxcl2 and Ccl20. pBD2 also reduced the expression of TAK1, and inhibited the phosphorylation of NF-κB p65 following E. coli infection. In addition, pBD2 was localized in the cytoplasm. Collectively, pBD2 appeared to penetrate cells and alleviate inflammatory responses via the TAK1-NF-κB signaling pathway. Our results revealed the immunomodulatory activity of recombinant pBD2 against E. coli and provided insights into the molecular mechanisms that protected cells from E. coli infection.
Collapse
Affiliation(s)
- Kun Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 460045, Henan, People's Republic of China
| | - Shaoqiang Lian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 460045, Henan, People's Republic of China
| | - Xiaoyang Shen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 460045, Henan, People's Republic of China
| | - Xinhao Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 460045, Henan, People's Republic of China
| | - Weidong Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 460045, Henan, People's Republic of China
| | - Chunli Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 460045, Henan, People's Republic of China.
| |
Collapse
|
6
|
Preliminary study on gene regulation and its pathways in Chinese Holstein cows with clinical mastitis caused by Staphylococcus aureus. J Vet Res 2022; 66:179-187. [PMID: 35892111 PMCID: PMC9281521 DOI: 10.2478/jvetres-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
Clinical mastitis (CM) is one of the most common diseases of dairy cows globally, has a complex aetiology and recurs easily. Staphylococcus aureus is a frequently isolated pathogen responsible for bovine mastitis and remains difficult to eradicate.
Material and Methods
To characterise the transcriptional profiles of dairy cows infected by S. aureus, we performed an RNA-seq analysis of peripheral blood leukocytes in lactating Chinese Holstein dairy cows with CM and did the same with healthy cows’ samples as controls.
Results
A total of 4,286 genes were detected in the CM cases infected with S. aureus which were differentially expressed compared to the controls, 3,085 of which were upregulated, the remainder being downregulated. Notably, we observed that some differentially expressed genes (DEGs) had strong protein–protein interaction. Of these, six downregulated DEGs (AKR1C4, PTGS2, HNMT, EPHX2, CMBL, and IDH1) were involved in the metabolic pathway, while eight upregulated DEGs (VWF, GP9, MYLK, GP6, F2RL3, ITGB3, GP5, and PRKG1) were associated with the platelet activation pathway.
Conclusion
The transcriptome dataset of CM cases would be a valuable resource for clinical guidance on anti-inflammatory medication and for deeper understanding of the biological processes of CM response to S. aureus infection, and it would enable us to identify specific genes for diagnostic markers and possibly for targeted therapy.
Collapse
|
7
|
Wu C, Cui C, Zheng X, Wang J, Ma Z, Zhu P, Lin G, Zhang S, Guan W, Chen F. The Selenium Yeast vs Selenium Methionine on Cell Viability, Selenoprotein Profile and Redox Status via JNK/ P38 Pathway in Porcine Mammary Epithelial Cells. Front Vet Sci 2022; 9:850935. [PMID: 35433920 PMCID: PMC9011133 DOI: 10.3389/fvets.2022.850935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/14/2022] [Indexed: 01/04/2023] Open
Abstract
Comprehensive studies have been conducted to compare the effect of organic and inorganic selenium previously, but there is still limited knowledge about the difference between organic selenium (Se) from varied sources despite the widely use of organic Se in both animal and human being nutrient additives. In the present study, we systemically compared the effect of two different types of organic Se including selenium yeast (SeY) and selenium methionine (Sel-Met) on cell viability, selenoprotein transcriptome, and antioxidant status in porcine mammary epithelial cells (PMECs) and the results indicated that appropriate addition of SeY and Sel-Met both significantly promoted cell viability and up-regulated the mRNA expression of most selenopreoteins including DIOs, GPXs, and TrxRs family et al. (P < 0.05). Besides, two different sources of Se supplementation both greatly improved redox status with higher levels of T-AOC, SOD, and CAT (P < 0.05), while less content of MDA (P < 0.05), and reduced protein expression of cleaved-caspase-3 (P < 0.05) to mitigate cell apoptosis. Furthermore, the key proteins related to p38/JNK pathway including p38, p-p38, JNK, and p-JNK were apparently reduced in the groups with both of SeY and Sel-Met (P < 0.05). Interestingly we found that the changes induced by SeY supplementation in cell viability, selenoprotein transcriptome, antioxidative capacity, and anti-apoptosis were comprehensively greater compared with same levels addition of Sel-Met in PEMCs (P < 0.05). In conclusion, both SeY and Sel-Met promoted cell viability and attenuated cell apoptosis by regulating the selenoprotein expression and antioxidative capacity via p38/JNK signaling pathway in PMEC, but SeY has more efficient benefits than that of Sel-Met.
Collapse
Affiliation(s)
- Caichi Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Chang Cui
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ziwei Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Pengwei Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gang Lin
- Key Laboratory of Agrifood Safety and Quality, Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Wutai Guan
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- *Correspondence: Fang Chen
| |
Collapse
|
8
|
Li Q, Yu C, Chen Y, Liu S, Azevedo P, Gong J, O K, Yang C. Citral alleviates peptidoglycan-induced inflammation and disruption of barrier functions in porcine intestinal epithelial cells. J Cell Physiol 2021; 237:1768-1779. [PMID: 34791644 DOI: 10.1002/jcp.30640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 11/11/2022]
Abstract
Peptidoglycan (PGN) is a major polymer in bacterial cell walls and may constrain gut functionality and lower intestinal efficiencies in livestock. Citral has been reported to exhibit antibacterial and anti-inflammatory biological activities, improving the gastrointestinal function of swine. However, the protective effect of citral against PGN-elicited cellular responses and possible underlying mechanisms are unknown. In this study, the porcine jejunal epithelial cell line (IPEC-J2) was challenged with PGN from Staphylococcus aureus (S. aureus) or Bacillus subtilis (B. subtilis) to explore PGN-induced inflammatory responses. Our data showed that the inflammatory response stimulated by PGN from harmful bacteria (S. aureus) was more potent than that from commensal bacteria (B. subtilis) in IPEC-J2 cells. Based on the inflammatory model by PGN from S. aureus, it was demonstrated that PGN could significantly induce inflammatory cytokine production and influence nutrient absorption and barrier function in a dose-dependent manner. However, the PGN-mediated immune responses were remarkably suppressed by citral. In addition, citral significantly attenuated the effect of PGN on the intestine nutrient absorption and barrier function. The expression of TLR2 was strongly induced by PGN stimulation, which was suppressed by citral. All data nominated that citral downregulated PGN-induced inflammation via TLR2-mediated activation of the NF-κB signaling pathway in IPEC-J2 cells. Furthermore, the results also indicate that the PGN degradation through the inclusion of enzymes (e.g., muramidase) as well as the inclusion of citral for attenuating inflammation may improve pig gut health and functionality.
Collapse
Affiliation(s)
- Qiao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Changning Yu
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yanhong Chen
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Paula Azevedo
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, Ontario, Canada
| | - Karmin O
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Chen J, Zhang Y, Lv Y, Tian M, You J, Chen F, Zhang S, Guan W. Effects of Selenomethionine on Cell Viability, Selenoprotein Expression and Antioxidant Function in Porcine Mammary Epithelial Cells. Front Nutr 2021; 8:665855. [PMID: 34381803 PMCID: PMC8349979 DOI: 10.3389/fnut.2021.665855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/28/2021] [Indexed: 01/29/2023] Open
Abstract
This study investigated the effects of selenomethionine (Se-Met) on the cell viability, selenoprotein expression, and antioxidant function of porcine mammary epithelial cells (pMECs) to reveal the underlying molecular mechanism of Se-Met on the lactation performance and antioxidant capacity of sows in vitro. The pMECs were used as an in vitro model and were treated with various concentrations of Se-Met (0, 0.5, 1, 2, and 4 μM). Cells were analyzed for cell viability, selenoprotein transcriptome, selenoprotein expression, and antioxidant enzyme activities. The results showed that, with increasing Se-Met concentrations, cell viability first increased and then decreased at 24, 48, or 72 h posttreatment with maximum values at 0.5-μM Se-Met. As the Se-Met concentrations increased, the mRNA expression of 17 selenoproteins first upregulated and then downregulated, with maximum values at 0.5-μM Se-Met. The 17 selenoproteins included SEPHS2, SELENOP, GPX1, GPX2, GPX3, GPX6, TXNRD1, SELENOK, SELENOW, DIO1, DIO2, DIO3, SELENOF, SELENOS, SELENOH, SELENOI, and SELENOT. Additionally, the protein expression levels of SEPHS2, SELENOP, GPX1, and TXNRD1 and the activities of glutathione peroxidase and thioredoxin were highest at 0.5-μM Se-Met. In conclusion, 0.5-μM Se-Met promotes cell viability partially by improving selenoprotein expression and antioxidant function in pMECs, which provides evidence for the potential ability of Se-Met to improve mammary gland health in sows.
Collapse
Affiliation(s)
- Jun Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Yinzhi Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yantao Lv
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Tian
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Devani K, Plastow G, Orsel K, Valente TS. Genome-wide association study for mammary structure in Canadian Angus cows. PLoS One 2020; 15:e0237818. [PMID: 32853245 PMCID: PMC7451565 DOI: 10.1371/journal.pone.0237818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022] Open
Abstract
Functional and enduring mammary structure is pivotal for producer profitability, and animal health and welfare in beef production. Genetic evaluations for teat and udder score in Canadian Angus cattle have previously been developed. The aim of this study was to identify genomic regions associated with teat and udder structure in Canadian Angus cows thereby enhancing knowledge of the biological architecture of these traits. Thus, we performed a weighted single-step genome wide association study (WssGWAS) to identify candidate genes for teat and udder score in 1,582 Canadian Angus cows typed with the GeneSeek® Genomic Profiler Bovine 130K SNP array. Genomically enhanced estimated breeding values (GEBVs) were converted to SNP marker effects using unequal variances for markers to calculate weights for each SNP over three iterations. At the genome wide level, we detected windows of 20 consecutive SNPs that explained more than 0.5% of the variance observed in these traits. A total of 35 and 28 windows were identified for teat and udder score, respectively, with two SNP windows in common for both traits. Using Ensembl, the SNP windows were used to search for candidate genes and quantitative trait loci (QTL). A total of 94 and 71 characterized genes were identified in the regions for teat and udder score, respectively. Of these, 7 genes were common for both traits. Gene network and enrichment analysis, using Ingenuity Pathway Analysis (IPA), signified key pathways unique to each trait. Genes of interest were associated with immune response and wound healing, adipose tissue development and morphology, and epithelial and vascular development and morphology. Genetic architecture from this GWAS confirms that teat and udder score are distinct, polygenic traits involving varying and complex biological pathways, and that genetic selection for improved teat and udder score is possible.
Collapse
Affiliation(s)
- Kajal Devani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Karin Orsel
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tiago S. Valente
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
11
|
Lactobacillus johnsonii L531 Ameliorates Escherichia coli-Induced Cell Damage via Inhibiting NLRP3 Inflammasome Activity and Promoting ATG5/ATG16L1-Mediated Autophagy in Porcine Mammary Epithelial Cells. Vet Sci 2020; 7:vetsci7030112. [PMID: 32823867 PMCID: PMC7558184 DOI: 10.3390/vetsci7030112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
Escherichia coli (E. coli), a main mastitis-causing pathogen in sows, leads to mammary tissue damage. Here, we explored the effects of Lactobacillus johnsonii L531 on attenuating E. coli-induced inflammatory damage in porcine mammary epithelial cells (PMECs). L. johnsonii L531 pretreatment reduced E. coli adhesion to PMECs by competitive exclusion and the production of inhibitory factors and decreased E. coli-induced destruction of cellular morphology and ultrastructure. E. coli induced activation of NLRP3 inflammasome associated with increased expression of NLRP3, ASC, and cleaved caspase-1, however, L. johnsonii L531 inhibited E. coli-induced activation of NLRP3 inflammasome. Up-regulation of interleukin (Il)-1β, Il-6, Il-8, Il-18, tumor necrosis factor alpha, and chemokine Cxcl2 expression after E. coli infection was attenuated by L. johnsonii L531. E. coli infection inhibited autophagy, whereas L. johnsonii L531 reversed the inhibitory effect of E. coli on autophagy by decreasing the expression of autophagic receptor SQSTM1/p62 and increasing the expression of autophagy-related proteins ATG5, ATG16L1, and light chain 3 protein by Western blotting analysis. Our findings suggest that L. johnsonii L531 pretreatment restricts NLRP3 inflammasome activity and induces autophagy through promoting ATG5/ATG16L1-mediated autophagy, thereby protecting against E. coli-induced inflammation and cell damage in PMECs.
Collapse
|
12
|
Ventrella D, Forni M, Bacci ML, Annaert P. Non-clinical Models to Determine Drug Passage into Human Breast Milk. Curr Pharm Des 2020; 25:534-548. [PMID: 30894104 DOI: 10.2174/1381612825666190320165904] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Successful practice of clinical perinatal pharmacology requires a thorough understanding of the pronounced physiological changes during lactation and how these changes affect various drug disposition processes. In addition, pharmacokinetic processes unique to lactation have remained understudied. Hence, determination of drug disposition mechanisms in lactating women and their babies remains a domain with important knowledge gaps. Indeed, lack of data regarding infant risk during breastfeeding far too often results in discontinuation of breastfeeding and subsequent loss of all the associated benefits to the breastfed infant. In the absence of age-specific toxicity data, human lactation data alone are considered insufficient to rapidly generate the required evidence regarding risks associated with medication use during lactation. METHODS Systematic review of literature to summarize state-of-the art non-clinical approaches that have been developed to explore the mechanisms underlying drug milk excretion. RESULTS Several studies have reported methods to predict (to some extent) milk drug excretion rates based on physicochemical properties of the compounds. In vitro studies with primary mammary epithelial cells appear excellent approaches to determine transepithelial drug transport rates across the mammary epithelium. Several of these in vitro tools have been characterized in terms of transporter expression and activity as compared to the mammary gland tissue. In addition, with the advent of physiology-based pharmacokinetic (PBPK) modelling, these in vitro transport data may prove instrumental in predicting drug milk concentration time profiles prior to the availability of data from clinical lactation studies. In vivo studies in lactating animals have proven their utility in elucidating the mechanisms underlying drug milk excretion. CONCLUSION By combining various non-clinical tools (physicochemistry-based, in vitro and PBPK, in vivo animal) for drug milk excretion, valuable and unique information regarding drug milk concentrations during lactation can be obtained. The recently approved IMI project ConcePTION will address several of the challenges outlined in this review.
Collapse
Affiliation(s)
- Domenico Ventrella
- University of Bologna, Department of Veterinary Medical Science, 40064 Ozzano Emilia Bologna, Italy
| | - Monica Forni
- University of Bologna, Department of Veterinary Medical Science, 40064 Ozzano Emilia Bologna, Italy
| | - Maria Laura Bacci
- University of Bologna, Department of Veterinary Medical Science, 40064 Ozzano Emilia Bologna, Italy
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49-box 921, 3000 Leuven, Belgium
| |
Collapse
|
13
|
Mitra SD, Ganaie F, Bankar K, Velu D, Mani B, Vasudevan M, Shome R, Rahman H, Kumar Ghosh S, Shome BR. Genome-wide analysis of mammary gland shows modulation of transcriptome landscape with alternative splice variants in Staphylococcus aureus mastitis in mice. Gene 2019; 735:144278. [PMID: 31821873 DOI: 10.1016/j.gene.2019.144278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 01/25/2023]
Abstract
Epidemiological mapping shows Staphylococcus aureus to be the leading mastitis causing pathogen in India with diverse genetic lineages circulating in the dairy cattle population. We previously reported that endemic clonal strains of S. aureus isolated from subclinical mastitis lead to specific alteration of epigenetic modulators resulting in deviating immune response in intramammary infection mouse model. However, the extent of transcriptome modulation and associated alternative splicing in S. aureus mastitis is poorly understood. Hence, to gain a deeper insight of the extent of modulation of transcriptome landscape, we expanded the study here using high throughput, paired-end RNA sequencing analysis of the mouse mammary gland inoculated with three strains of S. aureus (SA1, SA2, and SA3) possessing specific genotype, virulence and enterotoxin traits. Overall, we detected 35,878 transcripts in S. aureus inoculated mammary gland, 23% more than those annotated in the reference genome. Expression of 20,756 transcripts was > 1 fragment per kilobase of transcript per million mapped fragments and 25.95% of multi-exonic genes were alternatively spliced. We noted Alternative Splicing (AS) events for > 100 immune-related genes. S. aureus infection quantitatively altered AS events in mice mammary gland. Collectively, the majority of differentially expressed significant genes clustered into immune-associated, cell adhesion and metabolic process categories. We observed AS events for 379 transcripts of genes putatively encoding several splicing associated proteins and transcription factors besides inflammatory mediators. The present analysis provides new insights into global transcriptome landscape and AS events in host-defense related genes in response to S. aureus intramammary infection, suggesting the need for studies focusing on multi-target and/or network therapeutics approach to combat mastitis.
Collapse
Affiliation(s)
- Susweta Das Mitra
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India; Department of Biotechnology, Assam University, Silchar, AS, India; School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, KA, India
| | - Feroze Ganaie
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India; Department of Medicine, Division of Pulmonary/Allergy/Critical care, University of Alabama at Birmingham, AL, USA
| | - Kiran Bankar
- Bionivid Technology Pvt. Ltd., Bangalore, KA, India
| | - Dhanikachalam Velu
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India
| | - Bhuvana Mani
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India
| | | | - Rajeswari Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India
| | - Habibur Rahman
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India; International Livestock Research Institute, Pusa, DL, India
| | | | - Bibek Ranjan Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India.
| |
Collapse
|
14
|
Sajjanar B, Trakooljul N, Wimmers K, Ponsuksili S. DNA methylation analysis of porcine mammary epithelial cells reveals differentially methylated loci associated with immune response against Escherichia coli challenge. BMC Genomics 2019; 20:623. [PMID: 31366318 PMCID: PMC6670134 DOI: 10.1186/s12864-019-5976-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Background Epigenetic changes such as cytosine (CpG) DNA methylations regulate gene expression patterns in response to environmental cues including infections. Microbial infections induce DNA methylations that play a potential role in modulating host-immune response. In the present study, we sought to determine DNA methylation changes induced by the mastitis causing Escherichia coli (E. coli) in porcine mammary epithelial cells (PMEC). Two time points (3 h and 24 h) were selected based on specific transcriptomic changes during the early and late immune responses, respectively. Results DNA methylation analysis revealed 561 and 898 significant (P < 0.01) differentially methylated CpG sites at 3 h and 24 h after E. coli challenge in PMEC respectively. These CpG sites mapped to genes that have functional roles in innate and adaptive immune responses. Significantly, hypomethylated CpG sites were found in the promoter regions of immune response genes such as SDF4, SRXN1, CSF1 and CXCL14. The quantitative transcript estimation indicated higher expression associated with the DNA CpG methylation observed in these immune response genes. Further, E. coli challenge significantly reduced the expression levels of DNMT3a, a subtype of de novo DNA methylation enzyme, in PMEC indicating the probable reason for the hypomethylation observed in the immune response genes. Conclusions Our study revealed E. coli infection induced DNA methylation loci in the porcine genome. The differentially methylated CpGs were identified in the regulatory regions of genes that play important role in immune response. These results will help to understand epigenetic mechanisms for immune regulation during coliform mastitis in pigs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5976-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Basavaraj Sajjanar
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Genomics Research Unit, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Genomics Research Unit, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| |
Collapse
|
15
|
Mintz D, Salamon H, Mintz M, Rosenshine I, Shpigel NY. Intraepithelial neutrophils in mammary, urinary and gall bladder infections. Vet Res 2019; 50:56. [PMID: 31324217 PMCID: PMC6642505 DOI: 10.1186/s13567-019-0676-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Neutrophil mobilization is a crucial response to protect the host against invading microorganisms. Neutrophil recruitment and removal have to be tightly regulated to prevent uncontrolled inflammation and excessive release of their toxic content causing tissue damage and subsequent organ dysfunctions. We show here the presence of live and apoptotic neutrophils in the cytoplasm of inflamed mammary, urinary and gall bladder epithelial cells following infection with E. coli and Salmonella bacteria. The entry process commenced with adherence of transmigrated neutrophils to the apical membrane of inflamed epithelial cells. Next, nuclear rearrangement and elongation associated with extensive actin polymerization enabled neutrophils to crawl and invaginate the apical membrane into cytoplasmic double membrane compartments. Scission of the invaginated cell membrane from the entry point and loss of these surrounding membranes released intracellular neutrophils into the cytoplasm where they undergone apoptotic death. The co-occurrence of this observation with bacterial invasion and formation of intracellular bacterial communities (IBCs) might link entry of infected neutrophils to the formation of IBCs and chronic carriage in E. coli mastitis and cystitis and Salmonella cholecystitis.
Collapse
Affiliation(s)
- Dvir Mintz
- The Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, POB 12, 76100, Rehovot, Israel
| | - Hagit Salamon
- The Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, POB 12, 76100, Rehovot, Israel
| | - Michal Mintz
- The Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, POB 12, 76100, Rehovot, Israel
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Nahum Y Shpigel
- The Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, POB 12, 76100, Rehovot, Israel.
| |
Collapse
|
16
|
Heine W, Beckstette M, Heroven AK, Thiemann S, Heise U, Nuss AM, Pisano F, Strowig T, Dersch P. Loss of CNFY toxin-induced inflammation drives Yersinia pseudotuberculosis into persistency. PLoS Pathog 2018; 14:e1006858. [PMID: 29390040 PMCID: PMC5811047 DOI: 10.1371/journal.ppat.1006858] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/13/2018] [Accepted: 01/05/2018] [Indexed: 12/16/2022] Open
Abstract
Gastrointestinal infections caused by enteric yersiniae can become persistent and complicated by relapsing enteritis and severe autoimmune disorders. To establish a persistent infection, the bacteria have to cope with hostile surroundings when they transmigrate through the intestinal epithelium and colonize underlying gut-associated lymphatic tissues. How the bacteria gain a foothold in the face of host immune responses is poorly understood. Here, we show that the CNFY toxin, which enhances translocation of the antiphagocytic Yop effectors, induces inflammatory responses. This results in extensive tissue destruction, alteration of the intestinal microbiota and bacterial clearance. Suppression of CNFY function, however, increases interferon-γ-mediated responses, comprising non-inflammatory antimicrobial activities and tolerogenesis. This process is accompanied by a preterm reprogramming of the pathogen's transcriptional response towards persistence, which gives the bacteria a fitness edge against host responses and facilitates establishment of a commensal-type life style.
Collapse
Affiliation(s)
- Wiebke Heine
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sophie Thiemann
- Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ulrike Heise
- Group Mouse Pathology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Aaron Mischa Nuss
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Fabio Pisano
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Till Strowig
- Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
17
|
Lustgarten MS, Fielding RA. Metabolites Associated With Circulating Interleukin-6 in Older Adults. J Gerontol A Biol Sci Med Sci 2017; 72:1277-1283. [PMID: 26975982 DOI: 10.1093/gerona/glw039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/15/2016] [Indexed: 12/23/2022] Open
Abstract
Background Circulating levels of the pro-inflammatory cytokine interleukin-6 (IL-6) levels are elevated in older adults, but mechanisms are unclear. In the current study, we used an untargeted metabolomic approach to develop an improved understanding about mechanisms related to circulating IL-6 in older adults. Methods Serum IL-6 values were log-transformed to normalize its distribution. Multivariable-adjusted linear regression was used to examine the association between 324 serum metabolites with log IL-6. Backward elimination linear regression was used to develop a metabolite predictor set representative of log IL-6. Results Thirty-six metabolites were significantly associated (p < 0.05 and q < 0.30) with log IL-6 in 73 older adults (average age, 78 years). Metabolites related to tryptophan metabolism (kynurenine, 3-indoxyl sulfate, indoleacetate, indolepropionate, C-glycosyltryptophan), infectious burden (C-glycosyltryptophan, N6-carbamoylthreonyladenosine, 1-methylurate, N-formylmethionine, N1-methyladenosine, 3-indoxyl sulfate, bilirubin (E,E), indoleacetate, γ-CEHC, N-acetylneuraminate), aryl hydrocarbon receptor activation and cytochrome P450 (CYP) 1A expression (kynurenine, 3-indoxyl sulfate, indoleacetate, N6-carbamoylthreonyladenosine, bilirubin, 1-methylurate) were positively associated, whereas metabolites related to CYP-mediated ω-oxidation (adipate, 8-hydroxyoctanoate, azelate, sebacate, undecanedioate, γ-CEHC), and peroxisome proliferator activated receptor-alpha (PPAR-α) activation (13 + 9-HODE, bilirubin, 5-oxoproline, cholesterol, glycerate, uridine) were negatively associated with log IL-6. The use of backward elimination regression identified tyrosine, cysteine, uridine, bilirubin, N-formylmethionine, indoleacetate, and 3-indoxyl sulfate to collectively explain 51% of the variance inherent in log IL-6. Conclusions These data suggest roles for tryptophan metabolism, infectious burden, activation of host defense, and detoxification through CYP1A-mediated pathways in mechanisms related to elevated inflammation, whereas CYP-mediated ω-oxidation and PPAR-α activation may be related to decreased inflammation in older adults.
Collapse
Affiliation(s)
- Michael S Lustgarten
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, Massachusetts
| | - Roger A Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, Massachusetts
| |
Collapse
|
18
|
Jaeger A, Hadlich F, Kemper N, Lübke-Becker A, Muráni E, Wimmers K, Ponsuksili S. MicroRNA expression profiling of porcine mammary epithelial cells after challenge with Escherichia coli in vitro. BMC Genomics 2017; 18:660. [PMID: 28836962 PMCID: PMC5571640 DOI: 10.1186/s12864-017-4070-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022] Open
Abstract
Background Coliform mastitis is a symptom of postpartum dysgalactia syndrome (PDS), a multifactorial infectious disease of sows. Our previous study showed gene expression profile change after bacterial challenge of porcine mammary epithelial cells (PMECs). These mRNA expression changes may be regulated through microRNAs (miRNAs) which play critical roles in biological processes. Therefore, miRNA expression profile was investigated in PMECs. Results PMECs were isolated from three lactating sows and challenged with heat-inactivated potential mastitis-causing pathogen Escherichia coli (E. coli) for 3 h and 24 h, in vitro. At 3 h post-challenge with E. coli, target gene prediction identified a critical role of miRNAs in regulation of host immune responses and homeostasis of PMECs mediated by affecting pathways including cytokine binding (miR-202, miR-3277, miR-4903); IL-10/PPAR signaling (miR-3277, miR-4317, miR-548); and NF-ĸB/TNFR2 signaling (miR-202, miR-2262, miR-885-3p). Target genes of miRNAs in PMECs at 24 h were significantly enriched in pathways associated with interferon signaling (miR-210, miR-23a, miR-1736) and protein ubiquitination (miR-125, miR-128, miR-1280). Conclusions This study provides first large-scale miRNA expression profiles and their predicted target genes in PMECs after contact with a potential mastitis-causing E. coli strain. Both, highly conserved miRNAs known from other species as well as novel miRNAs were identified in PMECs, representing candidate predictive biomarkers for PDS. Time-dependent pathogen clearance suggests an important role of PMECs in inflammatory response of the first cellular barrier of the porcine mammary gland. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4070-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Jaeger
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - F Hadlich
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - N Kemper
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, D-30559, Hannover, Germany
| | - A Lübke-Becker
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine at the Freie Universität Berlin, D-14163, Berlin, Germany
| | - E Muráni
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - K Wimmers
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - S Ponsuksili
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| |
Collapse
|
19
|
Priya GB, Nagaleekar VK, Milton AAP, Saminathan M, Kumar A, Sahoo AR, Wani SA, Kumar A, Gupta SK, Sahoo AP, Tiwari AK, Agarwal RK, Gandham RK. Genome wide host gene expression analysis in mice experimentally infected with Pasteurella multocida. PLoS One 2017; 12:e0179420. [PMID: 28704394 PMCID: PMC5509158 DOI: 10.1371/journal.pone.0179420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 05/30/2017] [Indexed: 12/25/2022] Open
Abstract
Pasteurella multocida causes acute septicemic and respiratory diseases, including haemorrhagic septicaemia, in cattle and buffalo with case fatality of 100%. In the present study, mice were infected with P. multocida (1.6 × 103 cfu, intraperitoneal) to evaluate host gene expression profile at early and late stages of infection using high throughput microarray transcriptome analyses. Several differentially expressed genes (DEGs) at both the time points were identified in P.multocida infected spleen, liver and lungs. Functional annotation of these DEGs showed enrichment of key pathways such as TLR, NF-κB, MAPK, TNF, JAK-STAT and NOD like receptor signaling pathways. Several DEGs overlapped across different KEGG pathways indicating a crosstalk between them. The predicted protein—protein interaction among these DEGs suggested, that the recognition of P. multocida LPS or outer membrane components by TLR4 and CD14, results in intracellular signaling via MyD88, IRAKs and/or TRAF6 leading to activation of NFκB and MAPK pathways and associated cytokines.
Collapse
Affiliation(s)
- G. Bhuvana Priya
- Division of Bacteriology & Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Viswas Konasagara Nagaleekar
- Division of Bacteriology & Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
- * E-mail: (RKG); (VKN); (RKA)
| | - A. Arun Prince Milton
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - M. Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amod Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amit Ranjan Sahoo
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sajad Ahmad Wani
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amit Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - S. K. Gupta
- Division of Livestock and Fishery Management, ICAR Research Complex for Eastern Region (ICAR-RCER), Patna, Bihar, India
| | - Aditya P. Sahoo
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - A. K. Tiwari
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - R. K. Agarwal
- Division of Bacteriology & Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
- * E-mail: (RKG); (VKN); (RKA)
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
- * E-mail: (RKG); (VKN); (RKA)
| |
Collapse
|
20
|
Kosciuczuk EM, Lisowski P, Jarczak J, Majewska A, Rzewuska M, Zwierzchowski L, Bagnicka E. Transcriptome profiling of Staphylococci-infected cow mammary gland parenchyma. BMC Vet Res 2017; 13:161. [PMID: 28587645 PMCID: PMC5477815 DOI: 10.1186/s12917-017-1088-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/31/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genome-wide gene expression profiling allows for identification of genes involved in the defense response of the host against pathogens. As presented here, transcriptomic analysis and bioinformatics tools were applied in order to identify genes expressed in the mammary gland parenchyma of cows naturally infected with coagulase-positive and coagulase-negative Staphylococci. RESULTS In cows infected with coagulase-positive Staphylococci, being in 1st or 2nd lactation, 1700 differentially expressed genes (DEGs) were identified. However, examination of the 3rd or 4th lactations revealed 2200 DEGs. Gene ontology functional classification showed the molecular functions of the DEGs overrepresented the activity of cytokines, chemokines, and their receptors. In cows infected with coagulase-negative Staphylococci, in the 1st or 2nd lactations 418 DEGs, while in the 3rd or 4th lactations, 1200 DEGs were identified that involved in molecular functions such as protein, calcium ion and lipid binding, chemokine activity, and protein homodimerization. Gene network analysis showed DEGs associated with inflammation, cell migration, and immune response to infection, development of cells and tissues, and humoral responses to infections caused by both types of Staphylococci. CONCLUSION A coagulase-positive Staphylococci infection caused a markedly stronger host response than that of coagulase-negative, resulting in vastly increased DEGs. A significant increase in the expression of the FOS, TNF, and genes encoding the major histocompatibility complex proteins (MHC) was observed. It suggests these genes play a key role in the synchronization of the immune response of the cow's parenchyma against mastitis-causing bacteria. Moreover, the following genes that belong to several physiological pathways (KEGG pathways) were selected for further studies as candidate genes of mammary gland immune response for use in Marker Assisted Selection (MAS): chemokine signaling pathway (CCL2, CXCL5, HCK, CCR1), cell adhesion molecules (CAMs) pathway (BOLA-DQA2, BOLA-DQA1, F11R, ITGAL, CD86), antigen processing and presentation pathway (CD8A, PDIA3, LGMN, IFI30, HSPA1A), and NOD-like receptor signaling pathway (TNF, IL8, IL18, NFKBIA).
Collapse
Affiliation(s)
- Ewa M Kosciuczuk
- Department of Animal Improvement, Institute of Genetics and Animal Breeding Polish Academy of Sciences, 36a Postepu str., Jastrzebiec, 05-552, Poland.,Present address: Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Paweł Lisowski
- Department of Animal Improvement, Institute of Genetics and Animal Breeding Polish Academy of Sciences, 36a Postepu str., Jastrzebiec, 05-552, Poland
| | - Justyna Jarczak
- Department of Animal Improvement, Institute of Genetics and Animal Breeding Polish Academy of Sciences, 36a Postepu str., Jastrzebiec, 05-552, Poland
| | - Alicja Majewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-776, Warsaw, Poland
| | - Magdalena Rzewuska
- Department of Pre-Clinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-776, Warsaw, Poland
| | - Lech Zwierzchowski
- Department of Animal Improvement, Institute of Genetics and Animal Breeding Polish Academy of Sciences, 36a Postepu str., Jastrzebiec, 05-552, Poland
| | - Emilia Bagnicka
- Department of Animal Improvement, Institute of Genetics and Animal Breeding Polish Academy of Sciences, 36a Postepu str., Jastrzebiec, 05-552, Poland.
| |
Collapse
|
21
|
Staphylococcus aureus and Lipopolysaccharide Modulate Gene Expressions of Drug Transporters in Mouse Mammary Epithelial Cells Correlation to Inflammatory Biomarkers. PLoS One 2016; 11:e0161346. [PMID: 27584666 PMCID: PMC5008833 DOI: 10.1371/journal.pone.0161346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/03/2016] [Indexed: 12/26/2022] Open
Abstract
Inflammation in the mammary gland (mastitis) is the most common disease in dairy herds worldwide, often caused by the pathogens Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Little is known about the effects of mastitis on drug transporters and the impact on transporter-mediated excretion of drugs into milk. We used murine mammary epithelial HC11 cells, after lactogenic differentiation into a secreting phenotype, and studied gene expressions of ABC- and SLC- transporters after treatment of cells with S. aureus and lipopolysaccharide, an endotoxin secreted by E. coli. The studied transporters were Bcrp, Mdr1, Mrp1, Oatp1a5, Octn1 and Oct1. In addition, Csn2, the gene encoding β-casein, was analyzed. As biomarkers of the inflammatory response, gene expressions of the cytokines Il6 and Tnfα and the chemokine Cxcl2 were determined. Our results show that S. aureus and LPS treatment of cells, at non-cytotoxic concentrations, induced an up-regulation of Mdr1 and of the inflammatory biomarkers, except that Tnfα was not affected by lipopolysaccharide. By simple regression analysis we could demonstrate statistically significant positive correlations between each of the transporters with each of the inflammatory biomarkers in cells treated with S. aureus. The coefficients of determination (R2) were 0.7–0.9 for all but one correlation. After treatment of cells with lipopolysaccharide, statistically significant correlations were only found between Mdr1 and the two parameters Cxcl2 and Il6. The expression of Csn2 was up-regulated in cells treated with S. aureus, indicating that the secretory function of the cells was not impaired. The strong correlation in gene expressions between transporters and inflammatory biomarkers may suggest a co-regulation and that the transporters have a role in the transport of cytokines and chemokines. Our results demonstrate that transporters in mammary cells can be affected by infection, which may have an impact on transport of essential compounds and contaminants into milk.
Collapse
|