1
|
Cheifetz TR, Knoop KA. The right educational environment: Oral tolerance in early life. Immunol Rev 2024; 326:17-34. [PMID: 39001685 PMCID: PMC11436309 DOI: 10.1111/imr.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Oral tolerance promotes the suppression of immune responses to innocuous antigen and is primarily mediated by regulatory T cell (Tregs). The development of oral tolerance begins in early life during a "window of tolerance," which occurs around weaning and is mediated by components in breastmilk. Herein, we review the factors dictating this window and how Tregs are uniquely educated in early life. In early life, the translocation of luminal antigen for Treg induction is primarily dictated by goblet cell-associated antigen passages (GAPs). GAPs in the colon are negatively regulated by maternally-derived epidermal growth factor and the microbiota, restricting GAP formation to the "periweaning" period (postnatal day 11-21 in mice, 4-6 months in humans). The induction of solid food also promotes the diversification of the bacteria such that bacterially-derived metabolites known to promote Tregs-short-chain fatty acids, tryptophan metabolites, and bile acids-peak during the periweaning phase. Further, breastmilk immunoglobulins-IgA and IgG-regulate both microbial diversity and the interaction of microbes with the epithelium, further controlling which antigens are presented to T cells. Overall, these elements work in conjunction to induce a long-lived population of Tregs, around weaning, that are crucial for maintaining homeostasis in adults.
Collapse
Affiliation(s)
- Talia R. Cheifetz
- Department of Immunology, Mayo Clinic, Rochester MN
- Mayo Graduate School of Biomedical Sciences, Rochester MN
| | - Kathryn A. Knoop
- Department of Immunology, Mayo Clinic, Rochester MN
- Department of Pediatrics, Mayo Clinic, Rochester MN
| |
Collapse
|
2
|
Aves KL, Guerra PR, Fresno AH, Saraiva MMS, Cox E, Bækbo PJ, Nielsen MA, Sander AF, Olsen JE. A Virus-like Particle-Based F4 Enterotoxigenic Escherichia coli Vaccine Is Inhibited by Maternally Derived Antibodies in Piglets but Generates Robust Responses in Sows. Pathogens 2023; 12:1388. [PMID: 38133272 PMCID: PMC10745950 DOI: 10.3390/pathogens12121388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
F4-positive enterotoxigenic Escherichia coli is associated with diarrhea and poor growth outcomes in neonatal and newly weaned piglets and is thus a major economic and welfare burden in the swine industry. Vaccination of sows with F4 fimbriae protects against the neonatal disease via passive transfer of maternal immunity. However, this strategy does not protect against infection post-weaning. Consequently, prevention and treatment methods in weaner pigs heavily rely on the use of antimicrobials. Therefore, in order to reduce antimicrobial consumption, more effective prophylactic alternatives are needed. In this study, we describe the development of a capsid virus-like particle (cVLP)-based vaccine targeting the major F4 fimbriae subunit and adhesion molecule, FaeG, and evaluate its immunogenicity in mice, piglets, and sows. cVLP-display significantly increased systemic and mucosal antibody responses towards the recombinant FaeG antigen in mice models. However, in piglets, the presence of anti-F4 maternally derived antibodies severely inhibited the induction of active humoral responses towards the FaeG antigen. This inhibition could not be overcome, even with the enhanced immunogenicity achieved via cVLP display. However, in sows, intramuscular vaccination with the FaeG.cVLP vaccine was able to generate robust IgG and IgA responses that were comparable with a commercial fimbriae-based vaccine, and which were effectively transferred to piglets via colostrum intake. These results demonstrate that cVLP display has the potential to improve the systemic humoral responses elicited against low-immunogenic antigens in pigs; however, this effect is dependent on the use of antigens, which are not the targets of pre-existing maternal immunity.
Collapse
Affiliation(s)
- Kara-Lee Aves
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Priscila R. Guerra
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Ana H. Fresno
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Mauro M. S. Saraiva
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Poul J. Bækbo
- SEGES Innovation, Danish Pig Research Centre, Agro Food Park 15, DK-8200 Aarhus, Denmark
| | - Morten A. Nielsen
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Adam F. Sander
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
- AdaptVac, Ole Maaløes Vej 3, DK-2200 Copenhagen, Denmark
| | - John E. Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| |
Collapse
|
3
|
Zhao H, Xu Y, Li X, Yin J, Li G, Zhao H, Li S, Li J, Wang L. Protective efficacy of a recombinant enterotoxin antigen in a maternal immunization model and the inhibition of specific maternal antibodies to neonatal oral vaccination. J Reprod Immunol 2023; 157:103946. [PMID: 37031607 DOI: 10.1016/j.jri.2023.103946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/19/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
ETEC (enterotoxigenic Escherichia coli) infection is the leading cause of profuse watery diarrhea in mammals, especially among pre-weaning and post-weaning piglets in swine industry. Maternal immunization is a current rational strategy for providing protection to susceptive piglets and reducing the incidence of ETEC-associated diarrhea. Here we evaluated the protective efficiency of a recombinant antigen (MBP-SLS) fused by major enterotoxin subunits (STa-LTB-STb) via a maternal immunization model, and the impacts of maternal antibodies to neonatal oral vaccination were also investigated in the neonates. The high titers of specific IgG and sIgA in pups shown that the maternal antibodies could be transferred passively. Furthermore, the increases of IL-6 and IL-10 cytokines in breast milk and pup serum indicated that immunization on mother could effectively boost the immune system of neonates. Newborn rats from immunized mothers showed a 70% survival rate after ETEC infection. However, the mucosal immune responses of neonates were inhibited by the high level of maternal specific antibodies. Among the oral-vaccinated neonates, born from mock-immunized rats reached the highest survival after ETEC challenge. Collectively, the fusion MBP-SLS antigen could effectively induce strong immune responses in rats during pregnancy and the pups could receive passive protection through specific antibodies transferred via milk and placenta. However, the specific maternal antibodies exhibited an inhibition effect on the mucosal immune responses in offspring.
Collapse
Affiliation(s)
- Hong Zhao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian 116600, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jiajun Yin
- Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Haofei Zhao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Shuying Li
- Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian 116600, China
| | - Jibin Li
- Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
4
|
Vaccination Failures in Pigs-The Impact of Chosen Factors on the Immunisation Efficacy. Vaccines (Basel) 2023; 11:vaccines11020230. [PMID: 36851108 PMCID: PMC9964700 DOI: 10.3390/vaccines11020230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Infectious diseases that often lead to economic losses still pose a severe problem in the pig production sector. Because of increasing restrictions on antibiotic usage, vaccines may become one of the major approaches to controlling infectious diseases; much research has proved that they could be very efficient. Nevertheless, during their life, pigs are exposed to various factors that can interfere with vaccination efficacy. Therefore, in the present paper, we reviewed the influence of chosen factors on the pig immunisation process, such as stress, faecal microbiota, host genetics, the presence of MDAs, infections with immunosuppressive pathogens, and treatment with antibiotics and mycotoxins. Many of them turned out to have an adverse impact on vaccine efficacy.
Collapse
|
5
|
Zhao H, Xu Y, Li G, Liu X, Li X, Wang L. Protective efficacy of a novel multivalent vaccine in the prevention of diarrhea induced by enterotoxigenic Escherichia coli in a murine model. J Vet Sci 2021; 23:e7. [PMID: 34841745 PMCID: PMC8799940 DOI: 10.4142/jvs.21068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/26/2021] [Accepted: 09/05/2021] [Indexed: 11/23/2022] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) infection is a primary cause of livestock diarrhea. Therefore, effective vaccines are needed to reduce the incidence of ETEC infection. Objectives Our study aimed to develop a multivalent ETEC vaccine targeting major virulence factors of ETEC, including enterotoxins and fimbriae. Methods SLS (STa-LTB-STb) recombinant enterotoxin and fimbriae proteins (F4, F5, F6, F18, and F41) were prepared to develop a multivalent vaccine. A total of 65 mice were immunized subcutaneously by vaccines and phosphate-buffered saline (PBS). The levels of specific immunoglobulin G (IgG) and pro-inflammatory cytokines were determined at 0, 7, 14 and 21 days post-vaccination (dpv). A challenge test with a lethal dose of ETEC was performed, and the survival rate of the mice in each group was recorded. Feces and intestine washes were collected to measure the concentrations of secretory immunoglobulin A (sIgA). Results Anti-SLS and anti-fimbriae-specific IgG in serums of antigen-vaccinated mice were significantly higher than those of the control group. Immunization with the SLS enterotoxin and multivalent vaccine increased interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) concentrations. Compared to diarrheal symptoms and 100% death of mice in the control group, mice inoculated with the multivalent vaccine showed an 80% survival rate without any symptom of diarrhea, while SLS and fimbriae vaccinated groups showed 60 and 70% survival rates, respectively. Conclusions Both SLS and fimbriae proteins can serve as vaccine antigens, and the combination of these two antigens can elicit stronger immune responses. The results suggest that the multivalent vaccine can be successfully used for preventing ETEC in important livestock.
Collapse
Affiliation(s)
- Hong Zhao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.,Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China
| | - Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xin Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
6
|
Zhao H, Xu Y, Li G, Liu X, Li X, Wang L. Protective efficacy of a novel multivalent vaccine in the prevention of diarrhea induced by enterotoxigenic Escherichia coli in a murine model. J Vet Sci 2021. [DOI: 10.4142/jvs.2021.22.e90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hong Zhao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China
| | - Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xin Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
7
|
Detection of allergen-specific antibody-secreting cells in dogs by ELISPOT. Vet Immunol Immunopathol 2020; 228:110101. [PMID: 32861056 DOI: 10.1016/j.vetimm.2020.110101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 11/24/2022]
Abstract
Current laboratory tests are unable to distinguish healthy from allergic dogs. Unlike serum antibody responses, circulating antibody-secreting cells (ASC) are temporarily induced after each contact with the antigen. These ASC can be identified using ELISPOT and the observation of allergen-specific ASC might correlate with the causative allergens in dogs with an allergic dermatitis. In this study, blood was sampled from six privately-owned allergic dogs and six non-allergic laboratory beagles to determine the frequency of circulating allergen-specific ASC for common allergens. Blood IgE+, IgA + and IgG + cells were magnetically isolated to determine the number of allergen-specific ASC with ELISPOT for Dermatophagoides farinae, Dermatophagoides pteronyssinus, Alternaria alternata, birch, timothy grass, wheat, cow's milk, bovine, chicken and lamb meat. For IgA and IgG, allergen-specific spots were observed, however for IgE, no spots were detected for any of the allergens. ELISPOT could not differentiate allergic from non-allergic dogs. When the responses to the different allergens were compared, more IgA ASC for D. pteronyssinus were observed compared to some of the other allergens which was statistically significant for the non-allergic dogs and approached significance in the allergic dogs. These findings indicate that ELISPOT can be used to identify circulating allergen-specific IgA- and IgG-secreting cells. The technique did however not detect allergen-specific IgE ASC and was unable to distinguish allergic from non-allergic dogs. Only a small number of studies have studied allergen-specific IgA in dogs. The finding that dogs have higher numbers of D. pteronyssinus-specific IgA ASC points out that apart from IgE and IgG, it might be interesting to include IgA measurements for certain allergens to analyse the complete spectrum of both the protective and pro-allergic antibody responses.
Collapse
|
8
|
Mani S, Toapanta FR, McArthur MA, Qadri F, Svennerholm AM, Devriendt B, Phalipon A, Cohen D, Sztein MB. Role of antigen specific T and B cells in systemic and mucosal immune responses in ETEC and Shigella infections, and their potential to serve as correlates of protection in vaccine development. Vaccine 2019; 37:4787-4793. [PMID: 31230883 PMCID: PMC7413037 DOI: 10.1016/j.vaccine.2019.03.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/07/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Abstract
The generation of robust systemic and mucosal antibody and cell-mediated immune (CMI) responses that are protective, long-lasting, and can quickly be recalled upon subsequent re-exposure to the cognate antigen is the key to the development of effective vaccine candidates. These responses, whether they represent mechanistic or non-mechanistic immunological correlates of protection, usually entail the activation of T cell memory and effector subsets (T-CMI) and induction of long-lasting memory B cells. However, for ETEC and Shigella, the precise role of these key immune cells in primary and secondary (anamnestic) immune responses remains ill-defined. A workshop to address immune correlates for ETEC and Shigella, in general, and to elucidate the mechanistic role of T-cell subsets and B-cells, both systemically and in the mucosal microenvironment, in the development of durable protective immunity against ETEC and Shigella was held at the recent 2nd Vaccines against Shigella and ETEC (VASE) conference in June 2018. This report is a summary of the presentations and the discussion that ensued at the workshop.
Collapse
Affiliation(s)
| | - Franklin R Toapanta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Monica A McArthur
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Firdausi Qadri
- Infectious Diseases Division, International Center for Diarrheal Diseases Research, Dhaka, Bangladesh
| | - Ann-Mari Svennerholm
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Bert Devriendt
- Faculty of Veterinary Medicine, Department of Virology, Parasitology, and Immunology, Ghent University, Belgium
| | - Armelle Phalipon
- Molecular Microbial Pathogenesis, INSERM U1202, Institut Pasteur, Paris, France
| | - Daniel Cohen
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
9
|
Luise D, Lauridsen C, Bosi P, Trevisi P. Methodology and application of Escherichia coli F4 and F18 encoding infection models in post-weaning pigs. J Anim Sci Biotechnol 2019; 10:53. [PMID: 31210932 PMCID: PMC6567477 DOI: 10.1186/s40104-019-0352-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023] Open
Abstract
The enterotoxigenic Escherichia coli (ETEC) expressing F4 and F18 fimbriae are the two main pathogens associated with post-weaning diarrhea (PWD) in piglets. The growing global concern regarding antimicrobial resistance (AMR) has encouraged research into the development of nutritional and feeding strategies as well as vaccination protocols in order to counteract the PWD due to ETEC. A valid approach to researching effective strategies is to implement piglet in vivo challenge models with ETEC infection. Thus, the proper application and standardization of ETEC F4 and F18 challenge models represent an urgent priority. The current review provides an overview regarding the current piglet ETEC F4 and F18 challenge models; it highlights the key points for setting the challenge protocols and the most important indicators which should be included in research studies to verify the effectiveness of the ETEC challenge. Based on the current review, it is recommended that the setting of the model correctly assesses the choice and preconditioning of pigs, and the timing and dosage of the ETEC inoculation. Furthermore, the evaluation of the ETEC challenge response should include both clinical parameters (such as the occurrence of diarrhea, rectal temperature and bacterial fecal shedding) and biomarkers for the specific expression of ETEC F4/F18 (such as antibody production, specific F4/F18 immunoglobulins (Igs), ETEC F4/F18 fecal enumeration and analysis of the F4/F18 receptors expression in the intestinal brush borders). On the basis of the review, the piglets’ response upon F4 or F18 inoculation differed in terms of the timing and intensity of the diarrhea development, on ETEC fecal shedding and in the piglets’ immunological antibody response. This information was considered to be relevant to correctly define the experimental protocol, the data recording and the sample collections. Appropriate challenge settings and evaluation of the response parameters will allow future research studies to comply with the replacement, reduction and refinement (3R) approach, and to be able to evaluate the efficiency of a given feeding, nutritional or vaccination intervention in order to combat ETEC infection.
Collapse
Affiliation(s)
- Diana Luise
- 1Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Charlotte Lauridsen
- 2Faculty of Science and Technology, Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Paolo Bosi
- 1Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- 1Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Oropeza-Moe M, Grøntvedt CA, Phythian CJ, Sørum H, Fauske AK, Framstad T. Zinc oxide enriched peat influence Escherichia coli infection related diarrhea, growth rates, serum and tissue zinc levels in Norwegian piglets around weaning: five case herd trials. Porcine Health Manag 2017; 3:14. [PMID: 28680702 PMCID: PMC5488422 DOI: 10.1186/s40813-017-0060-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/16/2017] [Indexed: 11/22/2022] Open
Abstract
Background Zinc oxide (ZnO), commonly used to control post-weaning diarrhea in piglets, has been highlighted as of potential concern from an environmental perspective. The aim of this field trial was to examine effects of different sources and levels of ZnO added to peat on average daily weight gain (ADG), fecal score in pens and serum and tissue zinc (Zn) levels around time of weaning in order to reduce the environmental impact without loss of the beneficial effect of ZnO on intestinal health and growth. Five case herds with enterotoxic colibacillosis challenges were included. The piglets entered the study aged three or five weeks. All piglets received a commercial diet containing <150 mg Zn/ per kg of complete feed. Four treatment groups received commercial peat added A: uncoated ZnO, B: lipid microencapsulated ZnO, C: solely commercial peat or D: no peat (Farms 2 and 3). Results At Farms 1, 2 and 3, a significant effect of treatment was identified for fecal score (P < 0.05). Treatment A led to lower fecal scores compared to treatments C (P < 0.05) and D (P < 0.01). At Farms 2 and 3, there was a significant difference in individual average daily weight gain (iADG) between treatment A and D (P < 0.05). The iADG of piglets receiving treatment B did not differ significantly from treatment A. Conclusions In 2016, The European Medicines Agency’s Committee on Veterinary Medicinal Products concluded that the benefits of ZnO for the prevention of diarrhea in pigs do not outweigh the risks to the environment. Effective alternative measures to reduce the accumulation of Zn in the environment have not been identified. Our results imply that peat added low concentration of both coated and uncoated ZnO influences the gut health of weaned piglets reflected by enhanced weight gain and reduced occurrence of diarrhea. This preventive approach certainly represents a favourable alternative in the “One Health” perspective. It will also contribute to reduced antibiotic use in pig farming while diminishing the environmental consequences caused by ZnO.
Collapse
Affiliation(s)
- M Oropeza-Moe
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences (NMBU) Faculty of Veterinary Medicine, Campus Sandnes, Sandnes, Norway
| | | | - C J Phythian
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences (NMBU) Faculty of Veterinary Medicine, Campus Sandnes, Sandnes, Norway
| | - H Sørum
- Faculty of Veterinary Medicine, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - A K Fauske
- Faculty of Veterinary Medicine, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - T Framstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences (NMBU) Faculty of Veterinary Medicine, Campus Adamstuen, Adamstuen, Norway
| |
Collapse
|
11
|
Fairbrother JM, Nadeau É, Bélanger L, Tremblay CL, Tremblay D, Brunelle M, Wolf R, Hellmann K, Hidalgo Á. Immunogenicity and protective efficacy of a single-dose live non-pathogenic Escherichia coli oral vaccine against F4-positive enterotoxigenic Escherichia coli challenge in pigs. Vaccine 2017; 35:353-360. [DOI: 10.1016/j.vaccine.2016.11.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 11/15/2022]
|
12
|
Liu H, Xue Q, Zeng Q, Zhao Z. Haemophilus parasuis vaccines. Vet Immunol Immunopathol 2016; 180:53-58. [DOI: 10.1016/j.vetimm.2016.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 11/24/2022]
|
13
|
Baert K, de Geest BG, de Rycke R, da Fonseca Antunes AB, de Greve H, Cox E, Devriendt B. β-glucan microparticles targeted to epithelial APN as oral antigen delivery system. J Control Release 2015; 220:149-159. [DOI: 10.1016/j.jconrel.2015.10.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/28/2015] [Accepted: 10/14/2015] [Indexed: 11/16/2022]
|