1
|
Cull B, Burkhardt NY, Khoo BS, Oliver JD, Wang XR, Price LD, Khanipov K, Fang R, Munderloh UG. Development of a Recombinase-Mediated Cassette Exchange System for Gene Knockout and Expression of Non-Native Gene Sequences in Rickettsia. Vaccines (Basel) 2025; 13:109. [PMID: 40006656 PMCID: PMC11861799 DOI: 10.3390/vaccines13020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Incidence of vector-borne diseases, including rickettsioses and anaplasmosis, has been increasing in many parts of the world. The obligate intracellular nature of rickettsial pathogens has hindered the development of robust genetic tools for the study of gene function and the identification of therapeutic targets. Transposon mutagenesis has contributed to recent progress in the identification of virulence factors in this important group of pathogens. METHODS Combining the efficiency of the himar1 transposon method with a recombinase-mediated system, we aimed to develop a genetic tool enabling the exchange of the transposon with a cassette encoding non-native sequences. RESULTS This approach was used in Rickettsia parkeri to insert a himar1 transposon encoding fluorescent protein and antibiotic resistance genes for visualization and selection, flanked by mismatched loxP sites to enable subsequent recombinase-mediated cassette exchange (RMCE). RMCE mediated by a plasmid-encoded Cre recombinase was then employed to replace the transposon with a different cassette containing alternate fluorescent and selection markers and epitopes of Anaplasma phagocytophilum antigens. The resulting genetically modified R. parkeri was trialed as a live-attenuated vaccine against spotted fever rickettsiosis and anaplasmosis in mice. CONCLUSIONS The use of this system provides a well-established and relatively efficient way of inserting non-native sequences into the rickettsial genome, with applications for the study of gene function and vaccine development.
Collapse
Affiliation(s)
- Benjamin Cull
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA; (N.Y.B.); (X.-R.W.); (L.D.P.); (U.G.M.)
| | - Nicole Y. Burkhardt
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA; (N.Y.B.); (X.-R.W.); (L.D.P.); (U.G.M.)
| | - Benedict S. Khoo
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.K.); (J.D.O.)
| | - Jonathan D. Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.K.); (J.D.O.)
| | - Xin-Ru Wang
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA; (N.Y.B.); (X.-R.W.); (L.D.P.); (U.G.M.)
| | - Lisa D. Price
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA; (N.Y.B.); (X.-R.W.); (L.D.P.); (U.G.M.)
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Rong Fang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ulrike G. Munderloh
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA; (N.Y.B.); (X.-R.W.); (L.D.P.); (U.G.M.)
| |
Collapse
|
2
|
Quiroz-Castañeda RE, Aguilar-Díaz H, Coronado-Villanueva E, Catalán-Ochoa DI, Amaro-Estrada I. Molecular Identification and Bioinformatics Analysis of Anaplasma marginale Moonlighting Proteins as Possible Antigenic Targets. Pathogens 2024; 13:845. [PMID: 39452716 PMCID: PMC11510912 DOI: 10.3390/pathogens13100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Diseases of veterinary importance, such as bovine Anaplasmosis, cause significant economic losses. Due to this, the study of various proteins of the causal agent Anaplasma marginale has focused on surface proteins. However, a vaccine for this disease is not yet available. To this end, in this work, moonlighting proteins (MLPs) are presented as an alternative approach for the design of immunogens against A. marginale. METHODS The proteins of the strain MEX-15-099-01 were analyzed, and its MLPs were identified. Subsequently, four virulence-associated MLP genes were selected and identified using PCR. The proteins were analyzed using a structural homology approach and the collection of B-cell epitopes was predicted for each MLP. Finally, a pair of AmEno peptides were synthesized and the antigenic potential was tested using an iELISA. RESULTS Our bioinformatics analysis revealed the potential of AmEno, AmGroEl, AmEF-Tu, and AmDnaK proteins as promising candidates for designing immunogens. The PCR allowed the gene sequence identification in the genome of the strain MEX-15-099-01. Notably, AmEno-derived synthetic peptides showed antigenicity in an ELISA. CONCLUSIONS Our study has shed light on the potential use of MLPs for immunogen design, demonstrating the antigenic potential of AmEno.
Collapse
|
3
|
Deusdará TT, Félix MKC, de S Brito H, Cangussu EWS, de S Moura W, Albuquerque B, Silva MG, Dos Santos GR, de Morais PB, da Silva EF, Chaves YO, Mariúba LAM, Nogueira PA, Astolfi-Filho S, Assunção EN, Epiphanio S, Marinho CRF, Brandi IV, Viana KF, Oliveira EE, Cangussu ASR. Using an Aluminum Hydroxide–Chitosan Matrix Increased the Vaccine Potential and Immune Response of Mice against Multi-Drug-Resistant Acinetobacter baumannii. Vaccines (Basel) 2023; 11:vaccines11030669. [PMID: 36992253 DOI: 10.3390/vaccines11030669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Acinetobacter baumannii is a Gram-negative, immobile, aerobic nosocomial opportunistic coccobacillus that causes pneumonia, septicemia, and urinary tract infections in immunosuppressed patients. There are no commercially available alternative antimicrobials, and multi-drug resistance is an urgent concern that requires emergency measures and new therapeutic strategies. This study evaluated a multi-drug-resistant A. baumannii whole-cell vaccine, inactivated and adsorbed on an aluminum hydroxide–chitosan (mAhC) matrix, in an A. baumannii sepsis model in immunosuppressed mice by cyclophosphamide (CY). CY-treated mice were divided into immunized, non-immunized, and adjuvant-inoculated groups. Three vaccine doses were given at 0D, 14D, and 28D, followed by a lethal dose of 4.0 × 108 CFU/mL of A. baumannii. Immunized CY-treated mice underwent a significant humoral response, with the highest IgG levels and a higher survival rate (85%); this differed from the non-immunized CY-treated mice, none of whom survived (p < 0.001), and from the adjuvant group, with 45% survival (p < 0.05). Histological data revealed the evident expansion of white spleen pulp from immunized CY-treated mice, whereas, in non-immunized and adjuvanted CY-treated mice, there was more significant organ tissue damage. Our results confirmed the proof-of-concept of the immune response and vaccine protection in a sepsis model in CY-treated mice, contributing to the advancement of new alternatives for protection against A. baumannii infections.
Collapse
Affiliation(s)
- Túllio T Deusdará
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
| | - Mellanie K C Félix
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
| | - Helio de S Brito
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
| | - Edson W S Cangussu
- Graduate Program in Biotechnology, Federal University of Tocantins, Gurupi 77425-000, TO, Brazil
| | - Wellington de S Moura
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
| | - Benedito Albuquerque
- Graduate Program in Biotechnology, Federal University of Tocantins, Gurupi 77425-000, TO, Brazil
| | - Marcos G Silva
- Graduate Program in Biotechnology, Federal University of Tocantins, Gurupi 77425-000, TO, Brazil
| | - Gil R Dos Santos
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
- Graduate Program in Biotechnology, Federal University of Tocantins, Gurupi 77425-000, TO, Brazil
| | - Paula B de Morais
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
| | - Elizangela F da Silva
- Instituto Leônidas e Maria Deane, Oswaldo Cruz Foundation-Fiocruz Amazônia, Manaus 69057-070, AM, Brazil
| | - Yury O Chaves
- Instituto Leônidas e Maria Deane, Oswaldo Cruz Foundation-Fiocruz Amazônia, Manaus 69057-070, AM, Brazil
| | - Luis Andre M Mariúba
- Instituto Leônidas e Maria Deane, Oswaldo Cruz Foundation-Fiocruz Amazônia, Manaus 69057-070, AM, Brazil
| | - Paulo A Nogueira
- Instituto Leônidas e Maria Deane, Oswaldo Cruz Foundation-Fiocruz Amazônia, Manaus 69057-070, AM, Brazil
| | - Spartaco Astolfi-Filho
- Laboratory of DNA Technology, Biotechnology Department, Multidisciplinary Support Center, Federal University of Amazonas, Manaus 69080-900, AM, Brazil
| | - Enedina N Assunção
- Laboratory of DNA Technology, Biotechnology Department, Multidisciplinary Support Center, Federal University of Amazonas, Manaus 69080-900, AM, Brazil
| | - Sabrina Epiphanio
- Department of Immunology, Biomedical Science Institute, University of São Paulo (USP), São Paulo 05508-060, SP, Brazil
| | - Claudio R F Marinho
- Department of Immunology, Biomedical Science Institute, University of São Paulo (USP), São Paulo 05508-060, SP, Brazil
| | - Igor V Brandi
- Institute of Agricultural Sciences, Federal University of Minas Gerais, Montes Claros 39400-310, MG, Brazil
- Department of Biotchnology, State University of Montes Claros, Montes Claros 39401-089, MG, Brazil
| | - Kelvinson F Viana
- Interdisciplinary Center for Life Sciences and Nature, Federal University of Latin American Integration (UNILA), Foz do Iguaçu 85866-000, PR, Brazil
| | - Eugenio E Oliveira
- Graduate Program in Biotechnology, Federal University of Tocantins, Gurupi 77425-000, TO, Brazil
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Alex Sander R Cangussu
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
- Graduate Program in Biotechnology, Federal University of Tocantins, Gurupi 77425-000, TO, Brazil
| |
Collapse
|
4
|
Arnuphapprasert A, Nugraheni YR, Poofery J, Aung A, Kaewlamun W, Chankeaw W, Tasanaganjanakorn T, Wattanamethanont J, Kaewthamasorn M. Genetic characterization of genes encoding the major surface proteins of Anaplasma marginale from cattle isolates in Thailand reveals multiple novel variants. Ticks Tick Borne Dis 2023; 14:102110. [PMID: 36577307 DOI: 10.1016/j.ttbdis.2022.102110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Bovine anaplasmosis is a serious tick-borne disease that is responsible for economic loss worldwide. The major surface proteins (MSPs), encoded by msp1 to msp5 genes of Anaplasma marginale, play an important role in host-pathogen and tick-pathogen interactions. These markers have been used for genetic characterization and phylogenetic studies. Despite domestic reports concerning suspected outbreaks of anaplasmosis in Thailand, genetic analysis of A. marginale in the country remains largely limited. Therefore, we aim to investigate the infection rate of the rickettsia organism in the Anaplasmataceae family throughout five regions of Thailand and to further characterize the key genetic markers: msp1a, msp2, and msp5 of A. marginale. From 2016 to 2021, we collected a total of 384 cattle blood samples across 18 provinces. Overall, the infection rate of the rickettsia organism in the Anaplasmataceae family was 46.1%. Over 65% of the positive samples were confirmed as A. marginale. We successfully obtained a total of 138 A. marginale msp1a (38), msp2 (79), and msp5 (21) sequences from all regions of the country. The msp1a and msp2 genes exhibit a high degree of genetic diversity, while the msp5 gene is highly conserved among the Thai isolates. Our findings regarding msp1a corroborated the genetic heterogeneity of A. marginale strains in endemic regions worldwide. Additionally, we found multiple novel variants for the first time in the current nationwide survey. We found 45 tandem repeat characters of the msp1a sequence. Among them, 24 characters were not shared with other countries. Collectively, we expanded the extent of genetic diversity in key markers; msp1a and msp2 genes, and further confirmed the previous finding that msp5 was highly conserved. The msp1a and msp2 genes could be useful for the surveillance of newly introduced strains. The current data may also be useful in designing a vaccine containing potential epitopes of different antigens in the future.
Collapse
Affiliation(s)
- Apinya Arnuphapprasert
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Veterinary Pathobiology Graduate Program, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Yudhi Ratna Nugraheni
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Indonesia
| | - Juthathip Poofery
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Aung Aung
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Winai Kaewlamun
- School of Agricultural Resources, Chulalongkorn University, Bangkok, Thailand
| | - Wiruntita Chankeaw
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat, Thailand
| | - Tanuwong Tasanaganjanakorn
- Farmed Animal Hospital, Faculty of Veterinary Science, Chulalongkorn University, Nakorn Pathom, Thailand
| | - Juntra Wattanamethanont
- Department of Livestock Development, Parasitology Section, National Institute of Animal Health, Bangkok, Thailand
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
5
|
Garcia AB, Jusi MMG, Freschi CR, Ramos IAS, Mendes NS, Bressianini do Amaral R, Gonçalves LR, André MR, Machado RZ. High genetic diversity and superinfection by Anaplasma marginale strains in naturally infected Angus beef cattle during a clinical anaplasmosis outbreak in southeastern Brazil. Ticks Tick Borne Dis 2021; 13:101829. [PMID: 34798528 DOI: 10.1016/j.ttbdis.2021.101829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
Anaplasma marginale is an obligate intracellular Gram-negative bacterium that is parasitic to erythrocytes and is the main agent of bovine anaplasmosis. This disease causes severe anemia and reduces weight gain and milk production, thus giving rise to major economic losses relating to livestock worldwide. The genetic diversity of this bacterium has been characterized based on sequences of major surface proteins (MSPs), especially MSP1α. This has enabled identification of several geographical strains, according to different amino acid sequences. The aim of this study was to investigate the genetic diversity of A. marginale in naturally infected Angus beef cattle during a disease outbreak in southeastern Brazil. Four blood samples were collected over a four-month period from each of 20 animals on a cattle farm in Itú, São Paulo, Brazil. Serum samples were subjected to indirect ELISA to detect anti-A. marginale IgG antibodies. The 80 whole-blood samples obtained were subjected to DNA extraction, quantitative real-time PCR (qPCR) for the msp1β gene, semi-nested PCR (snPCR) for the msp1α gene, cloning of the target fragment and sequencing using the Sanger method. The sequences obtained were analyzed for genetic diversity using the RepeatAnalyzer software. Both iELISA tests, using recombinant MSP5 and the Anaplasma antibody test kit (VMRD), revealed high seroprevalence: 91.25% and 97.5%, respectively. In qPCR, 100% of the samples were positive, with between 103 and 107 DNA copies/μL. In the snPCR based on the msp1α gene, 57.5% (46/80) of the samples were positive. Microsatellite analysis on the 36 sequences obtained showed the presence of genotypes H (58.3%), F (25%), E (19.4%), C (2.7%) and G (2.7%). The RepeatAnalyzer software identified 36 strains in the study region, among which some had not previously been described in the literature (13 27 13 27 13 F; 16 FF; τ 27; 63 29 104 29; LJ1 13 LJ1 13; 16 F 17; 16 F 91). High genetic diversity of A. marginale bacteria was found on this farm in Itú, São Paulo.
Collapse
Affiliation(s)
- Amanda Barbosa Garcia
- Postgraduate Program in Agricultural Microbiology, Universidade Estadual Paulista (FCAV / UNESP), Jaboticabal, SP, Brazil; Immunoparasitology Laboratory, Department of Veterinary Pathology, Faculdade de Ciências Agrárias e Veterinárias - Universidade Estadual Paulista (FCAV / UNESP), Jaboticabal, SP, Brazil
| | - Márcia Mariza Gomes Jusi
- Postgraduate Program in Agricultural Microbiology, Universidade Estadual Paulista (FCAV / UNESP), Jaboticabal, SP, Brazil; Immunoparasitology Laboratory, Department of Veterinary Pathology, Faculdade de Ciências Agrárias e Veterinárias - Universidade Estadual Paulista (FCAV / UNESP), Jaboticabal, SP, Brazil
| | - Carla Roberta Freschi
- Postgraduate Program in Agricultural Microbiology, Universidade Estadual Paulista (FCAV / UNESP), Jaboticabal, SP, Brazil; Immunoparasitology Laboratory, Department of Veterinary Pathology, Faculdade de Ciências Agrárias e Veterinárias - Universidade Estadual Paulista (FCAV / UNESP), Jaboticabal, SP, Brazil
| | - Inalda Angélica Souza Ramos
- Immunoparasitology Laboratory, Department of Veterinary Pathology, Faculdade de Ciências Agrárias e Veterinárias - Universidade Estadual Paulista (FCAV / UNESP), Jaboticabal, SP, Brazil
| | - Natália Serra Mendes
- Postgraduate Program in Agricultural Microbiology, Universidade Estadual Paulista (FCAV / UNESP), Jaboticabal, SP, Brazil; Immunoparasitology Laboratory, Department of Veterinary Pathology, Faculdade de Ciências Agrárias e Veterinárias - Universidade Estadual Paulista (FCAV / UNESP), Jaboticabal, SP, Brazil
| | - Renan Bressianini do Amaral
- Postgraduate Program in Agricultural Microbiology, Universidade Estadual Paulista (FCAV / UNESP), Jaboticabal, SP, Brazil; Immunoparasitology Laboratory, Department of Veterinary Pathology, Faculdade de Ciências Agrárias e Veterinárias - Universidade Estadual Paulista (FCAV / UNESP), Jaboticabal, SP, Brazil
| | - Luiz Ricardo Gonçalves
- Postgraduate Program in Agricultural Microbiology, Universidade Estadual Paulista (FCAV / UNESP), Jaboticabal, SP, Brazil; Immunoparasitology Laboratory, Department of Veterinary Pathology, Faculdade de Ciências Agrárias e Veterinárias - Universidade Estadual Paulista (FCAV / UNESP), Jaboticabal, SP, Brazil
| | - Marcos Rogério André
- Immunoparasitology Laboratory, Department of Veterinary Pathology, Faculdade de Ciências Agrárias e Veterinárias - Universidade Estadual Paulista (FCAV / UNESP), Jaboticabal, SP, Brazil
| | - Rosangela Zacarias Machado
- Immunoparasitology Laboratory, Department of Veterinary Pathology, Faculdade de Ciências Agrárias e Veterinárias - Universidade Estadual Paulista (FCAV / UNESP), Jaboticabal, SP, Brazil.
| |
Collapse
|
6
|
Naupu PN, van Zyl AR, Rybicki EP, Hitzeroth II. Immunogenicity of Plant-Produced Human Papillomavirus (HPV) Virus-Like Particles (VLPs). Vaccines (Basel) 2020; 8:vaccines8040740. [PMID: 33291259 PMCID: PMC7762164 DOI: 10.3390/vaccines8040740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Cervical cancer is ranked fourth among the top cancers in women and is the second most common cancer in low- and middle-income regions, with ~570,000 new cases reported in 2018, which attributed to 84% of worldwide cervical cancer cases. Three commercially available prophylactic Human papillomavirus (HPV) vaccines are effective at preventing HPV infections. However, these vaccines are expensive due to their complex production systems, therefore limiting their use in developing countries. Recently, the use of plants to produce vaccines has emerged as a cost-effective alternative to conventionally used expression systems. Here, L1 proteins of eight high-risk (HPV 16, 18, 31, 33, 35, 45, 52, and 58) and two low risk (HPV 6 and 34) HPV types were successfully expressed in Nicotiana benthamiana, and transmission electron microscopy (TEM) analysis showed the presence of VLPs and/or capsomeres. Immunogenicity studies were conducted in mice utilizing HPV 35, 52, and 58 and showed that type-specific L1-specific antibodies were produced which were able to successfully neutralize homologous HPV pseudovirions in pseudovirion-based neutralization assays (PBNAs). This work demonstrated the potential for using plant-based transient expression systems to produce affordable and immunogenic HPV vaccines, particularly for developing countries.
Collapse
Affiliation(s)
- Paulina N. Naupu
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; (P.N.N.); (E.P.R.); (I.I.H.)
| | - Albertha R. van Zyl
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; (P.N.N.); (E.P.R.); (I.I.H.)
- Correspondence: ; Tel.: +27-21-650-5232
| | - Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; (P.N.N.); (E.P.R.); (I.I.H.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Inga I. Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; (P.N.N.); (E.P.R.); (I.I.H.)
| |
Collapse
|
7
|
Pimentel LS, Turini CA, Santos PS, Morais MAD, Souza AG, Barbosa MB, Martins EMDN, Coutinho LB, Furtado CA, Ladeira LO, Martins JR, Goulart LR, Faria PCBD. Balanced Th1/Th2 immune response induced by MSP1a functional motif coupled to multiwalled carbon nanotubes as anti-anaplasmosis vaccine in murine model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102137. [PMID: 31857182 DOI: 10.1016/j.nano.2019.102137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/02/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Anaplasmosis is one of the most prevalent tick-borne diseases of cattle caused by Anaplasma marginale. MSP1a surface protein has been shown to be involved in eliciting immunity to infected cattle. Carbon nanotubes (CNTs) has been increasingly highlighted due to their needle like structure, which contain multiple attachment sites for biomolecules and may interact with or cross biological membranes, increasing antigen availability to immune system. Here, we have successfully designed a nanocomplex of a synthetic peptide noncovalently attached to multiwalled CNT (MWCNT). Peptide comprising the core motif of the MSP1a was efficiently adsorb onto the nanoparticle surface. The MWCNT-Am1 nanocomplex exhibited high stability and good dispersibility and in vivo immunization showed high levels of IgG1 and IgG2a, followed by increased expression of pro-inflammatory and anti-inflammatory cytokines. This is a proof-of-concept of a nanovaccine that was able to generate a strong immune response compared to the common antigen-adjuvant vaccine without the nanoparticles.
Collapse
Affiliation(s)
- Leticia Santos Pimentel
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Carolina Alvarenga Turini
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Paula Souza Santos
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Mariana Abilio de Morais
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Aline Gomes Souza
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Mariana Botelho Barbosa
- Laboratory of Chemistry of Carbon Nanostructures, Nuclear Technology Development Center, CDTN, Belo Horizonte, MG, Brazil
| | | | | | - Clascídia Aparecida Furtado
- Laboratory of Chemistry of Carbon Nanostructures, Nuclear Technology Development Center, CDTN, Belo Horizonte, MG, Brazil
| | - Luiz Orlando Ladeira
- Laboratory of Nanomaterials, Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Ricardo Martins
- Laboratory of Parasitology, Institute of Veterinary Research Desidério Finamor, Eldorado do Sul, RS, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | |
Collapse
|
8
|
Inactivated alpha toxin from Clostridium novyi type B in nano-emulsion protect partially protects Swiss mice from lethal alpha toxin challenge. Sci Rep 2019; 9:14082. [PMID: 31575942 PMCID: PMC6773766 DOI: 10.1038/s41598-019-50683-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/11/2019] [Indexed: 11/08/2022] Open
Abstract
Nano-emulsions are promising carriers for antigen delivery. Here, we evaluated the efficacy of a water-oil nano-emulsion containing concentrated, inactivated Clostridium novyi (C. novyi) type B supernatant culture (nano-iCnB) in protecting Swiss mice against a lethal dose of alpha toxin concentrated extract. Proteins were confirmed in the nano-iCnB and their stabilities were determined according physical parameters such as Zeta Potential (ZP). Biochemical, hematological parameters and morphological appearance of liver, spleen and thigh muscle alterations were examined to determine the safety of the compound. Partial protection against lethal doses was achieved in immunized mice despite low IgG titers. These data suggest that our nano-emulsion is a simple and efficient method of promoting antigen delivery for toxin-related diseases.
Collapse
|
9
|
Liu Z, Peasley AM, Yang J, Li Y, Guan G, Luo J, Yin H, Brayton KA. The Anaplasma ovis genome reveals a high proportion of pseudogenes. BMC Genomics 2019; 20:69. [PMID: 30665414 PMCID: PMC6341658 DOI: 10.1186/s12864-018-5374-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/16/2018] [Indexed: 01/07/2023] Open
Abstract
Background The genus Anaplasma is made up of organisms characterized by small genomes that are undergoing reductive evolution. Anaplasma ovis, one of the seven recognized species in this genus, is an understudied pathogen of sheep and other ruminants. This tick-borne agent is thought to induce only mild clinical disease; however, small deficits may add to larger economic impacts due to the wide geographic distribution of this pathogen. Results In this report we present the first complete genome sequence for A. ovis and compare the genome features with other closely related species. The 1,214,674 bp A. ovis genome encodes 933 protein coding sequences, the split operon arrangement for ribosomal RNA genes, and more pseudogenes than previously recognized for other Anaplasma species. The metabolic potential is similar to other Anaplasma species. Anaplasma ovis has a small repertoire of surface proteins and transporters. Several novel genes are identified. Conclusions Analyses of these important features and significant gene families/genes with potential to be vaccine candidates are presented in a comparative context. The availability of this genome will significantly facilitate research for this pathogen.
Collapse
Affiliation(s)
- Zhijie Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Austin M Peasley
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | - Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases, Yangzhou, China
| | - Kelly A Brayton
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA.
| |
Collapse
|