1
|
Becker GM, Thorne JW, Burke JM, Lewis RM, Notter DR, Morgan JLM, Schauer CS, Stewart WC, Redden RR, Murdoch BM. Genetic diversity of United States Rambouillet, Katahdin and Dorper sheep. Genet Sel Evol 2024; 56:56. [PMID: 39080565 PMCID: PMC11290166 DOI: 10.1186/s12711-024-00905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/23/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Managing genetic diversity is critically important for maintaining species fitness. Excessive homozygosity caused by the loss of genetic diversity can have detrimental effects on the reproduction and production performance of a breed. Analysis of genetic diversity can facilitate the identification of signatures of selection which may contribute to the specific characteristics regarding the health, production and physical appearance of a breed or population. In this study, breeds with well-characterized traits such as fine wool production (Rambouillet, N = 745), parasite resistance (Katahdin, N = 581) and environmental hardiness (Dorper, N = 265) were evaluated for inbreeding, effective population size (Ne), runs of homozygosity (ROH) and Wright's fixation index (FST) outlier approach to identify differential signatures of selection at 36,113 autosomal single nucleotide polymorphisms (SNPs). RESULTS Katahdin sheep had the largest current Ne at the most recent generation estimated with both the GONe and NeEstimator software. The most highly conserved ROH Island was identified in Rambouillet with a signature of selection on chromosome 6 containing 202 SNPs called in an ROH in 50 to 94% of the individuals. This region contained the DCAF16, LCORL and NCAPG genes that have been previously reported to be under selection and have biological roles related to milk production and growth traits. The outlier regions identified through the FST comparisons of Katahdin with Rambouillet and Dorper contained genes with known roles in milk production and mastitis resistance or susceptibility, and the FST comparisons of Rambouillet with Katahdin and Dorper identified genes related to wool growth, suggesting these traits have been under natural or artificial selection pressure in these populations. Genes involved in the cytokine-cytokine receptor interaction pathways were identified in all FST breed comparisons, which indicates the presence of allelic diversity between these breeds in genomic regions controlling cytokine signaling mechanisms. CONCLUSIONS In this paper, we describe signatures of selection within diverse and economically important U.S. sheep breeds. The genes contained within these signatures are proposed for further study to understand their relevance to biological traits and improve understanding of breed diversity.
Collapse
Affiliation(s)
- Gabrielle M Becker
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
| | - Jacob W Thorne
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
- Texas A&M AgriLife Extension, Texas A&M University, San Angelo, TX, USA
| | - Joan M Burke
- USDA, ARS, Dale Bumpers Small Farms Research Center, Booneville, AR, USA
| | - Ronald M Lewis
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - David R Notter
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Christopher S Schauer
- Hettinger Research Extension Center, North Dakota State University, Hettinger, ND, USA
| | - Whit C Stewart
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - R R Redden
- Texas A&M AgriLife Extension, Texas A&M University, San Angelo, TX, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
2
|
Willoughby O, Karrow NA, Marques Freire Cunha S, Asselstine V, Mallard BA, Cánovas Á. Characterization of the Hepatic Transcriptome for Divergent Immune-Responding Sheep Following Natural Exposure to Gastrointestinal Nematodes. Genes (Basel) 2024; 15:713. [PMID: 38927648 PMCID: PMC11202434 DOI: 10.3390/genes15060713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Infections with gastrointestinal nematodes (GINs) reduce the economic efficiency of sheep operations and compromise animal welfare. Understanding the host's response to GIN infection can help producers identify animals that are naturally resistant to infection. The objective of this study was to characterize the hepatic transcriptome of sheep that had been naturally exposed to GIN parasites. The hepatic transcriptome was studied using RNA-Sequencing technology in animals characterized as high (n = 5) or medium (n = 6) based on their innate immune acute-phase (AP) response phenotype compared with uninfected controls (n = 4), and with biased antibody-mediated (AbMR, n = 5) or cell-mediated (CMR, n = 5) adaptive immune responsiveness compared to uninfected controls (n = 3). Following the assessment of sheep selected for innate responses, 0, 136, and 167 genes were differentially expressed (DE) between high- and medium-responding animals, high-responding and uninfected control animals, and medium-responding and uninfected control animals, respectively (false discovery rate (FDR) < 0.05, and fold change |FC| > 2). When adaptive immune responses were assessed, 0, 53, and 57 genes were DE between antibody- and cell-biased animals, antibody-biased and uninfected control animals, and cell-biased and uninfected control animals, respectively (FDR < 0.05, |FC| > 2). Functional analyses identified enriched gene ontology (GO) terms and metabolic pathways related to the innate immune response and energy metabolism. Six functional candidate genes were identified for further functional and validation studies to better understand the underlying biological mechanisms of host responses to GINs. These, in turn, can potentially help improve decision making and management practices to increase the overall host immune response to GIN infection.
Collapse
Affiliation(s)
- Olivia Willoughby
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agriculture College, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (O.W.); (N.A.K.); (S.M.F.C.); (V.A.)
| | - Niel A. Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agriculture College, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (O.W.); (N.A.K.); (S.M.F.C.); (V.A.)
| | - Samla Marques Freire Cunha
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agriculture College, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (O.W.); (N.A.K.); (S.M.F.C.); (V.A.)
| | - Victoria Asselstine
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agriculture College, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (O.W.); (N.A.K.); (S.M.F.C.); (V.A.)
| | - Bonnie A. Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada;
| | - Ángela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agriculture College, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (O.W.); (N.A.K.); (S.M.F.C.); (V.A.)
| |
Collapse
|
3
|
Pacheco A, Banos G, Lambe N, McLaren A, McNeilly TN, Conington J. Genome-wide association studies of parasite resistance, productivity and immunology traits in Scottish Blackface sheep. Animal 2024; 18:101069. [PMID: 38296768 DOI: 10.1016/j.animal.2023.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024] Open
Abstract
Gastrointestinal parasitism represents a global problem for grazing ruminants, which can be addressed sustainably by breeding animals to be more resistant against infection by parasites. The aim of this study was to assess the genetic architecture underlying traits associated with gastrointestinal parasite resistance, immunological profile and production in meat sheep, and identify and characterise candidate genes affecting these traits. Data on gastrointestinal parasite infection (faecal egg counts for Strongyles (FECS) and Nematodirus (FECN) and faecal oocyst counts for Coccidia, along with faecal soiling scores (DAG), characterised by the accumulation of faeces around the perineum) and production (live weight (LWT)) were gathered from a flock Scottish Blackface lambs at three and four months of age. Data on the immune profile were also collected from a subset of these lambs at two and five months of age. Immune traits included the production of Interferon-γ (IFN-γ), Interleukin (IL)-4 and IL-10 following stimulation of whole blood with pokeweed mitogen (PWM) or antigen from the gastric parasite Teladorsagia circumcincta (T-ci), and serum levels of T. circumcincta-specific immunoglobulin A (IgA). Animals were genotyped with genome-wide DNA arrays, and a total of 1 766 animals and 45 827 Single Nucleotide Polymorphisms (SNPs) were retained following quality control and imputation. Genome-wide association studies were performed for 24 traits. The effects of individual markers with significant effects were estimated, and the genotypic effect solutions were used to estimate additive and dominance effects, and the proportion of additive genetic variance attributed to each SNP locus. A total of 15 SNPs were associated at least at a suggestive level with FECS, FECN, DAG, IgA, PWM-induced IFN-γ and IL-4, and T-ci-induced IL-10. This study uncovered 52 genes closely related to immune function in proximity to these SNPs. A number of genes encoding C-type lectins and killer cell lectin-like family members were close to a SNP associated with FECN, while several genes encoding IL-1 cytokine family members were found to be associated with IgA. Potential candidate genes belonging to or in close proximity with the Major Histocompatibility Complex (MHC) were revealed, including Homeostatic Iron Regulator and butyrophilin coding genes associated with IFN-γ(PWM), and IL-17 coding genes associated with IgA. Due to the importance of the MHC in the control of immune responses, these genes may play an important role in resistance to parasitic infections. Our results reveal a largely complex and polygenic genetic profile of the studied traits in this Scottish Blackface sheep population.
Collapse
Affiliation(s)
- A Pacheco
- Scotland's Rural College, Roslin Institute Building, Easter Bush, Midlothian EH25 9RG, United Kingdom.
| | - G Banos
- Scotland's Rural College, Roslin Institute Building, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - N Lambe
- Scotland's Rural College, Roslin Institute Building, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - A McLaren
- Scotland's Rural College, Roslin Institute Building, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - T N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, United Kingdom
| | - J Conington
- Scotland's Rural College, Roslin Institute Building, Easter Bush, Midlothian EH25 9RG, United Kingdom
| |
Collapse
|
4
|
Bilbao-Arribas M, Jugo BM. Transcriptomic meta-analysis reveals unannotated long non-coding RNAs related to the immune response in sheep. Front Genet 2022; 13:1067350. [PMID: 36482891 PMCID: PMC9725098 DOI: 10.3389/fgene.2022.1067350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in several biological processes, including the immune system response to pathogens and vaccines. The annotation and functional characterization of lncRNAs is more advanced in humans than in livestock species. Here, we take advantage of the increasing number of high-throughput functional experiments deposited in public databases in order to uniformly analyse, profile unannotated lncRNAs and integrate 422 ovine RNA-seq samples from the ovine immune system. We identified 12302 unannotated lncRNA genes with support from independent CAGE-seq and histone modification ChIP-seq assays. Unannotated lncRNAs showed low expression levels and sequence conservation across other mammal species. There were differences in expression levels depending on the genomic location-based lncRNA classification. Differential expression analyses between unstimulated and samples stimulated with pathogen infection or vaccination resulted in hundreds of lncRNAs with changed expression. Gene co-expression analyses revealed immune gene-enriched clusters associated with immune system activation and related to interferon signalling, antiviral response or endoplasmic reticulum stress. Besides, differential co-expression networks were constructed in order to find condition-specific relationships between coding genes and lncRNAs. Overall, using a diverse set of immune system samples and bioinformatic approaches we identify several ovine lncRNAs associated with the response to an external stimulus. These findings help in the improvement of the ovine lncRNA catalogue and provide sheep-specific evidence for the implication in the general immune response for several lncRNAs.
Collapse
|
5
|
Castilla Gómez de Agüero V, Esteban-Blanco C, Argüello H, Valderas-García E, Andrés S, Balaña-Fouce R, Arranz JJ, Gutiérrez-Gil B, Martínez-Valladares M. Microbial community in resistant and susceptible Churra sheep infected by Teladorsagia circumcincta. Sci Rep 2022; 12:17620. [PMID: 36271016 PMCID: PMC9587209 DOI: 10.1038/s41598-022-21058-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/22/2022] [Indexed: 01/13/2023] Open
Abstract
Gastrointestinal nematodes (GIN) are a major threat to health and welfare in small ruminants worldwide. Teladorsagia circumcincta is a nematode that inhabits the abomasum of sheep, especially in temperate regions, causing important economic losses. Given that T. circumcincta and microbiome share the same niche, interactions between them and the host are expected. Although it is known that within a sheep breed there are animals that are more resistant than others to infection by GIN, it is not known if the microbiome influences the phenotype of these animals. Under this condition, 12 sheep were classified according to their cumulative faecal egg count (cFEC) at the end of a first experimental infection, 6 as resistant group (RG) and 6 as susceptible group (SG) to T. circumcincta infection. Then, all sheep were experimentally infected with 70,000 L3 of T. circumcincta and at day 7 days post-infection were euthanized. At necropsy, gastric mucosa and gastric content from abomasum were collected to extract bacterial DNA and sequence V3-V4 region from 16S rRNA gene using Ilumina technology. After bioanalysis performed, results showed that α-diversity and β-diversity remained similar in both groups. However, resistant phenotype sheep showed a higher number of bacteria butyrate-fermenting species as Clostridium sensu stricto 1 (abundance in RG: 1.29% and in SG: 0.069%; p = 0.05), and Turicibacter (abundance in RG: 0.31% and in SG: 0.027%; p = 0.07) in gastric content but also Serratia spp in gastric mucosa (abundance in RG: 0.12% and in SG: 0.041%; p = 0.07). A trend towards a significant negative correlation between cFEC and Clostridium sensu stricto 1 abundance in gastric content was detected (r = - 0.537; p = 0.08). These data suggest that microbiome composition could be another factor associated with the development of the resistant phenotype modifying the interaction with the host and the in last instance affecting the individual risk of infection.
Collapse
Affiliation(s)
- Verónica Castilla Gómez de Agüero
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, 24346, Grulleros, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Cristina Esteban-Blanco
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Héctor Argüello
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Elora Valderas-García
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, 24346, Grulleros, León, Spain
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Sonia Andrés
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, 24346, Grulleros, León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Juan José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, 24346, Grulleros, León, Spain.
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain.
| |
Collapse
|
6
|
Carracelas B, Navajas EA, Vera B, Ciappesoni G. Genome-Wide Association Study of Parasite Resistance to Gastrointestinal Nematodes in Corriedale Sheep. Genes (Basel) 2022; 13:genes13091548. [PMID: 36140716 PMCID: PMC9498675 DOI: 10.3390/genes13091548] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Selection of genetically resistant animals is one alternative to reduce the negative impact of gastrointestinal nematodes (GIN) on sheep production. The aim of this study was to identify genomic regions associated with GIN resistance in Corriedale sheep by single-step genome-wide association studies (ssGWAS) using 170, 507 and 50K single nucleotide polymorphisms (SNPs). Analysis included 19,547 lambs with faecal egg counts (FEC) records, a pedigree file of 40,056 animals and 454, 711 and 383 genotypes from 170, 507 and 50K SNPs, respectively. Genomic estimated breeding values (GEBV) were obtained with single-step genomic BLUP methodology (ssGBLUP), using a univariate animal model, which included contemporary group, type of birth and age of dam as class fixed effects and age at FEC recording as covariate. The SNP effects as wells as p-values were estimated with POSTGSF90 program. Significance level was defined by a chromosome-wise False Discovery Rate of 5%. Significant genomic regions were identified in chromosomes 1, 3, 12 and 19 with the 170 SNP set, in chromosomes 7, 12 and 24 using the 507 SNP chip and only in chromosome 7 with the 50K SNP chip. Candidate genes located in these regions, using Oar_v4.0 as reference genome, were TIMP3, TLR5, LEPR and TLR9 (170 SNPs), SYNDIG1L and MGRN1 (507 SNP chip) and INO80, TLN2, TSHR and EIF2AK4 (50K SNP chip). These results validate genomic regions associated with FEC previously identified in Corriedale and other breeds and report new candidate regions for further investigation.
Collapse
Affiliation(s)
- Beatriz Carracelas
- Department of Animal Breeding, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48 Km 10, Canelones 90100, Uruguay
- National Research Program on Meat and Wool Production, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48 Km 10, Canelones 90100, Uruguay
| | - Elly A. Navajas
- Department of Animal Breeding, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48 Km 10, Canelones 90100, Uruguay
- National Research Program on Meat and Wool Production, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48 Km 10, Canelones 90100, Uruguay
| | - Brenda Vera
- National Research Program on Meat and Wool Production, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48 Km 10, Canelones 90100, Uruguay
| | - Gabriel Ciappesoni
- National Research Program on Meat and Wool Production, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48 Km 10, Canelones 90100, Uruguay
- Correspondence: ; Tel.: +598-98-816-004
| |
Collapse
|
7
|
Hassan SU, Chua EG, Paz EA, Kaur P, Tay CY, Greeff JC, Liu S, Martin GB. Investigating the development of diarrhoea through gene expression analysis in sheep genetically resistant to gastrointestinal helminth infection. Sci Rep 2022; 12:2207. [PMID: 35140270 PMCID: PMC8828848 DOI: 10.1038/s41598-022-06001-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal helminths infect livestock causing health problems including severe diarrhoea. To explore the underlying biological mechanisms relating to development and control of diarrhoea, we compared 4 sheep that were susceptible to development of diarrhoea with 4 sheep that were diarrhoea-resistant. Transcriptomes in the tissues where the parasites were located were analyzed using RNASeq. By considering low-diarrhoea sheep as control, we identified 114 genes that were down-regulated and 552 genes that were up-regulated genes in the high-diarrhoea phenotype. Functional analysis of DEGs and PPI sub-network analysis showed that down-regulated genes in the high-diarrhoea phenotype were linked to biological processes and pathways that include suppression of ‘antigen processing and presentation’, ‘immune response’, and a list of biological functional terms related to ‘suppression in immune tolerance’. On the other hand, up-regulated genes in the high-diarrhoea phenotype probably contribute to repair processes associated with tissue damage, including ‘extracellular matrix organization’, ‘collagen fibril organization’, ‘tissue morphogenesis’, ‘circulatory system development’, ‘morphogenesis of an epithelium’, and ‘focal adhesion’. The genes with important roles in the responses to helminth infection could be targeted in breeding programs to prevent diarrhoea.
Collapse
Affiliation(s)
- Shamshad Ul Hassan
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia.,Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Eng Guan Chua
- Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Erwin A Paz
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia.,Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Chin Yen Tay
- Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Johan C Greeff
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia.,Department of Primary Industries and Regional Development, Western Australia, 3 Baron Hay Court, South Perth, WA, 6151, Australia
| | - Shimin Liu
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Graeme B Martin
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
8
|
Casu S, Usai MG, Sechi T, Salaris SL, Miari S, Mulas G, Tamponi C, Varcasia A, Scala A, Carta A. Association analysis and functional annotation of imputed sequence data within genomic regions influencing resistance to gastro-intestinal parasites detected by an LDLA approach in a nucleus flock of Sarda dairy sheep. Genet Sel Evol 2022; 54:2. [PMID: 34979909 PMCID: PMC8722200 DOI: 10.1186/s12711-021-00690-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022] Open
Abstract
Background Gastroinestinal nematodes (GIN) are one of the major health problem in grazing sheep. Although genetic variability of the resistance to GIN has been documented, traditional selection is hampered by the difficulty of recording phenotypes, usually fecal egg count (FEC). To identify causative mutations or markers in linkage disequilibrium (LD) to be used for selection, the detection of quantitative trait loci (QTL) for FEC based on linkage disequilibrium-linkage analysis (LDLA) was performed on 4097 ewes (from 181 sires) all genotyped with the OvineSNP50 Beadchip. Identified QTL regions (QTLR) were imputed from whole-genome sequences of 56 target animals of the population. An association analysis and a functional annotation of imputed polymorphisms in the identified QTLR were performed to pinpoint functional variants with potential impact on candidate genes identified from ontological classification or differentially expressed in previous studies. Results After clustering close significant locations, ten QTLR were defined on nine Ovis aries chromosomes (OAR) by LDLA. The ratio between the ANOVA estimators of the QTL variance and the total phenotypic variance ranged from 0.0087 to 0.0176. QTL on OAR4, 12, 19, and 20 were the most significant. The combination of association analysis and functional annotation of sequence data did not highlight any putative causative mutations. None of the most significant SNPs showed a functional effect on genes’ transcript. However, in the most significant QTLR, we identified genes that contained polymorphisms with a high or moderate impact, were differentially expressed in previous studies, contributed to enrich the most represented GO process (regulation of immune system process, defense response). Among these, the most likely candidate genes were: TNFRSF1B and SELE on OAR12, IL5RA on OAR19, IL17A, IL17F, TRIM26, TRIM38, TNFRSF21, LOC101118999, VEGFA, and TNF on OAR20. Conclusions This study performed on a large experimental population provides a list of candidate genes and polymorphisms which could be used in further validation studies. The expected advancements in the quality of the annotation of the ovine genome and the use of experimental designs based on sequence data and phenotypes from multiple breeds that show different LD extents and gametic phases may help to identify causative mutations. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00690-7.
Collapse
Affiliation(s)
- Sara Casu
- Genetics and Biotechnology - Agris Sardegna, Olmedo, Italy
| | | | - Tiziana Sechi
- Genetics and Biotechnology - Agris Sardegna, Olmedo, Italy
| | | | - Sabrina Miari
- Genetics and Biotechnology - Agris Sardegna, Olmedo, Italy
| | - Giuliana Mulas
- Genetics and Biotechnology - Agris Sardegna, Olmedo, Italy
| | - Claudia Tamponi
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Antonio Varcasia
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Antonio Scala
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | |
Collapse
|
9
|
Use of a short-term nutritional supplementation for transcriptional profiling of liver tissues in sheep. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Chitneedi PK, Weikard R, Arranz JJ, Martínez-Valladares M, Kuehn C, Gutiérrez-Gil B. Identification of Regulatory Functions of LncRNAs Associated With T. circumcincta Infection in Adult Sheep. Front Genet 2021; 12:685341. [PMID: 34194481 PMCID: PMC8236958 DOI: 10.3389/fgene.2021.685341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Several recent studies have demonstrated the role of long non-coding RNAs (lncRNAs) in regulating the defense mechanism against parasite infections, but no studies are available that investigated their relevance for immune response to nematode infection in sheep. Thus, the aim of the current study was to (i) detect putative lncRNAs that are expressed in the abomasal lymph node of adult sheep after an experimental infection with the gastrointestinal nematode (GIN) Teladorsagia circumcincta and (ii) to elucidate their potential functional role associated with the differential host immune response. We hypothesized that putative lncRNAs differentially expressed (DE) between samples from animals that differ in resistance to infection may play a significant regulatory role in response to nematode infection in adult sheep. To obtain further support for our hypothesis, we performed co-expression and functional gene enrichment analyses with the differentially expressed lncRNAs (DE lncRNAs). In a conservative approach, we included for this predictive analysis only those lncRNAs that are confirmed and supported by documentation of expression in gastrointestinal tissues in the current sheep gene atlas. We identified 9,105 putative lncRNA transcripts corresponding to 7,124 gene loci. Of these, 457 were differentially expressed lncRNA loci (DELs) with 683 lncRNA transcripts. Based on a gene co-expression analysis via weighted gene co-expression network analysis, 12 gene network modules (GNMs) were found significantly correlated with at least one of 10 selected target DE lncRNAs. Based on the principle of “guilt-by-association,” the DE genes from each of the three most significantly correlated GNMs were subjected to a gene enrichment analysis. The significant pathways associated with DE lncRNAs included ERK5 Signaling, SAPK/JNK Signaling, RhoGDI Signaling, EIF2 Signaling, Regulation of eIF4 and p70S6K Signaling and Oxidative Phosphorylation pathways. They belong to signaling pathway categories like Cellular Growth, Proliferation and Development, Cellular Stress and Injury, Intracellular and Second Messenger Signaling and Apoptosis. Overall, this lncRNA study conducted in adult sheep after GIN infection provided first insights into the potential functional role of lncRNAs in the differential host response to nematode infection.
Collapse
Affiliation(s)
| | - Rosemarie Weikard
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Juan J Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - María Martínez-Valladares
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain.,Instituto de Ganadería de Montaña, CSIC-Universidad de León, León, Spain
| | - Christa Kuehn
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
11
|
Genomic variants from RNA-seq for goats resistant or susceptible to gastrointestinal nematode infection. PLoS One 2021; 16:e0248405. [PMID: 33720948 PMCID: PMC7959398 DOI: 10.1371/journal.pone.0248405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal nematodes (GIN) are an important constraint in small ruminant production. Genetic selection for resistant animals is a potential sustainable control strategy. Advances in molecular genetics have led to the identification of several molecular genetic markers associated with genes affecting economic relevant traits. In this study, the variants in the genome of Creole goats resistant or susceptible to GIN were discovered from RNA-sequencing. We identified SNPs, insertions and deletions that distinguish the two genotypes, resistant and susceptible and we characterized these variants through functional analysis. The T cell receptor signalling pathway was one of the top significant pathways that distinguish the resistant from the susceptible genotype with 78% of the genes involved in this pathway showing genomic variants. These genomic variants are expected to provide useful resources especially for molecular breeding for GIN resistance in goats.
Collapse
|
12
|
Castilla-Gómez de Agüero V, González JF, Hernández JN, Valderas-García E, Rojo Vázquez FA, Arranz JJ, Gutiérrez-Gil B, Martínez-Valladares M. Differences within Churra breed sheep in the early immune response to the infection by Teladorsagia circumcincta. Parasitol Res 2021; 120:1115-1120. [PMID: 33179152 DOI: 10.1007/s00436-020-06953-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/28/2020] [Indexed: 01/22/2023]
Abstract
This study describes early immunological mechanisms that underlie resistance to Teladorsagia circumcincta infection in adult Churra sheep. After a first experimental infection, 6 animals were classified as resistant (RG) and 6 as susceptible (SG) to T. circumcincta infection based on their cumulative faecal egg count (cFEC) at the end of the infection. RG showed higher IgA levels against somatic antigen of T. circumcincta fourth-larvae stage (L4) in serum at day 3 post-infection (pi) (p < 0.05) and close to significance at day 21 pi (p = 0.06). Moreover, a strong negative correlation between cFEC and specific IgA was only significant in RG at day 3 pi (r = - 0.870; p < 0.05), but absent in SG. At the end of this infection, sheep were treated with moxidectin and infected again 3 weeks later to be slaughtered at day 7 pi. At necropsy, the specific IgA levels in gastric mucosa were similar between groups; the absence differences at day 7 pi could be due to a previous increase in the IgA response, probably around day 3 pi, as described during the first infection. L4 burden, 68% lower in RG than in SG, was influenced by the specific IgA in gastric mucus and the number of γδ T cells. RG group showed a positive correlation between γδ T cells and eosinophils (r = 0.900; p = 0.037); however, this correlation was not found in SG. These results show that these two phenotypes show different early immune response pattern to T. circumcincta infection in Churra sheep.
Collapse
Affiliation(s)
- Verónica Castilla-Gómez de Agüero
- Instituto de Ganadería de Montaña, Centro mixto CSIC-Universidad de León, Grulleros, Leon, Spain
- Departamento de Sanidad Animal, Universidad de León, Leon, Spain
| | - Jorge F González
- Instituto Universitario de Sanidad Animal, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Julia N Hernández
- Instituto Universitario de Sanidad Animal, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Elora Valderas-García
- Instituto de Ganadería de Montaña, Centro mixto CSIC-Universidad de León, Grulleros, Leon, Spain
- Departamento de Ciencias Biomédicas, Universidad de León, Leon, Spain
| | - Francisco A Rojo Vázquez
- Instituto de Ganadería de Montaña, Centro mixto CSIC-Universidad de León, Grulleros, Leon, Spain
- Departamento de Sanidad Animal, Universidad de León, Leon, Spain
| | - Juan José Arranz
- Departamento de Producción Animal, Universidad de León, Leon, Spain
| | | | - María Martínez-Valladares
- Instituto de Ganadería de Montaña, Centro mixto CSIC-Universidad de León, Grulleros, Leon, Spain.
- Departamento de Sanidad Animal, Universidad de León, Leon, Spain.
| |
Collapse
|
13
|
Raschia MA, Donzelli MV, Medus PD, Cetrá BM, Maizon DO, Suarez VH, Pichler R, Periasamy K, Poli MA. Single nucleotide polymorphisms from candidate genes associated with nematode resistance and resilience in Corriedale and Pampinta sheep in Argentina. Gene 2020; 770:145345. [PMID: 33333217 DOI: 10.1016/j.gene.2020.145345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/29/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022]
Abstract
Selective breeding of genetically resistant animals is considered a promising strategy to face the problem of nematode resistance to anthelmintics and mitigate concerns about the presence of chemical residues in animal food products and the environment. Gastrointestinal nematode resistance is a complex, multifactorial trait related to host immunity. However, the mechanisms underlying host resistance and response to infection remain to be fully elucidated. In this context, the objective of this study was to provide insight into the chromosomal regions determining nematode resistance and resilience in Corriedale and resistance in Pampinta sheep breeds. A total of 170 single nucleotide polymorphisms (SNP) from 76 candidate genes for immune response were studied in 624 Corriedale and 304 Pampinta animals. Lambs underwent artificial or natural challenges with infective larvae mainly from Haemonchus contortus. Fecal egg counts, estimated breeding values for fecal egg counts, and rate of packed cell volume change and FAMACHA© score change over the challenge were used, when available, as indicators of host parasite resistance or resilience. Phenotype-genotype association studies were conducted and significance values obtained were adjusted for multiple testing errors. Eight SNPs, located on OARs 3, 6, 12, and 20, reached significance in Corriedale sheep under artificial challenge. Those SNP represent allelic variants from the MHC-Ovine Lymphocyte Antigen-DRA, two C-type lectin domain families, the Interleukin 2 receptor β, the Toll-like receptor 10, the Mannan binding lectin serine peptidase 2, and the NLR family, CARD domain containing 4 genes. On Pampinta lambs under natural challenge, we found three significant SNPs, located in the TIMP metallopeptidase inhibitor 3, the FBJ murine osteosarcoma viral oncogene homolog, and the Interleukin 20 receptor alpha genes, on OARs 3, 7, and 8, respectively. The results obtained herein confirm genomic regions previously reported as associated with nematode resistance in other sheep breeds, reinforcing their role in host response to parasites. These findings contribute to gain knowledge on parasite resistance and resilience in Corriedale sheep and report for the first time SNPs associated with resistance to gastrointestinal parasite infections in Pampinta breed.
Collapse
Affiliation(s)
- María Agustina Raschia
- Instituto Nacional de Tecnología Agropecuaria, CICVyA-CNIA, Instituto de Genética "Ewald A. Favret", Nicolás Repetto y de Los Reseros s/n, Hurlingham (B1686), Buenos Aires, Argentina; Animal Production and Health Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria.
| | - María Valeria Donzelli
- Instituto Nacional de Tecnología Agropecuaria, CICVyA-CNIA, Instituto de Genética "Ewald A. Favret", Nicolás Repetto y de Los Reseros s/n, Hurlingham (B1686), Buenos Aires, Argentina
| | - Pablo Daniel Medus
- Instituto Nacional de Tecnología Agropecuaria, E.E.A. Concepción del Uruguay, RP 39 Km 143.5, Concepción del Uruguay (3260), Entre Ríos, Argentina
| | - Bibiana M Cetrá
- Instituto Nacional de Tecnología Agropecuaria, E.E.A. Mercedes, Juan Pujol al Este s/n, Mercedes (3470), Corrientes, Argentina
| | - Daniel O Maizon
- Instituto Nacional de Tecnología Agropecuaria, E.E.A. Anguil, Ruta 5 Km 580, Anguil (6326), La Pampa, Argentina
| | - Víctor H Suarez
- Instituto Nacional de Tecnología Agropecuaria, E.E.A. Salta, RN 68 Km 172, Cerrillos (4403), Salta, Argentina
| | - Rudolf Pichler
- Animal Production and Health Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Kathiravan Periasamy
- Animal Production and Health Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria; Animal Genetics Resources Branch, Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Mario A Poli
- Instituto Nacional de Tecnología Agropecuaria, CICVyA-CNIA, Instituto de Genética "Ewald A. Favret", Nicolás Repetto y de Los Reseros s/n, Hurlingham (B1686), Buenos Aires, Argentina
| |
Collapse
|
14
|
Sweet-Jones J, Yurchenko AA, Igoshin AV, Yudin NS, Swain MT, Larkin DM. Resequencing and signatures of selection scan in two Siberian native sheep breeds point to candidate genetic variants for adaptation and economically important traits. Anim Genet 2020; 52:126-131. [PMID: 33107621 DOI: 10.1111/age.13015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Russian sheep breeds represent an important economic asset by providing meat and wool, whilst being adapted to extreme climates. By resequencing two Russian breeds from Siberia: Tuva (n = 20) and Baikal (n = 20); and comparing them with a European (UK) sheep outgroup (n = 14), 41 million variants were called, and signatures of selection were identified. High-frequency missense mutations on top of selection peaks were found in genes related to immunity (LOC101109746) in the Baikal breed and wool traits (IDUA), cell differentiation (GLIS1) and fat deposition (AADACL3) in the Tuva breed. In addition, genes found under selection owing to haplotype frequency changes were related to wool traits (DSC2), parasite resistance (CLCA1), insulin receptor pathway (SOCS6) and DNA repair (DDB2) in the Baikal breed, and vision (GPR179) in the Tuva breed. Our results present candidate genes and SNPs for future selection programmes, which are necessary to maintain and increase socioeconomic gain from Siberian breeds.
Collapse
Affiliation(s)
- J Sweet-Jones
- Royal Veterinary College, University of London, London, NW1 0TU, UK
| | - A A Yurchenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, 630090, Russia
| | - A V Igoshin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, 630090, Russia
| | - N S Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, 630090, Russia
| | - M T Swain
- Institute of Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth, SY23 3DA, UK
| | - D M Larkin
- Royal Veterinary College, University of London, London, NW1 0TU, UK.,The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, 630090, Russia
| |
Collapse
|
15
|
Lundregan SL, Niskanen AK, Muff S, Holand H, Kvalnes T, Ringsby T, Husby A, Jensen H. Resistance to gapeworm parasite has both additive and dominant genetic components in house sparrows, with evolutionary consequences for ability to respond to parasite challenge. Mol Ecol 2020; 29:3812-3829. [DOI: 10.1111/mec.15491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Sarah L. Lundregan
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Alina K. Niskanen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Ecology and Genetics Research Unit University of Oulu Oulu Finland
| | - Stefanie Muff
- Centre for Biodiversity Dynamics Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim Norway
| | - Håkon Holand
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Thomas Kvalnes
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Thor‐Harald Ringsby
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Arild Husby
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Evolutionary Biology Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Henrik Jensen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
16
|
Chitneedi PK, Arranz JJ, Suárez-Vega A, Martínez-Valladares M, Gutiérrez-Gil B. Identification of potential functional variants underlying ovine resistance to gastrointestinal nematode infection by using RNA-Seq. Anim Genet 2020; 51:266-277. [PMID: 31900978 DOI: 10.1111/age.12894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2019] [Indexed: 02/06/2023]
Abstract
In dairy sheep flocks from Mediterranean countries, replacement and adult ewes are the animals most affected by gastrointestinal nematode (GIN) infections. In this study, we have exploited the information derived from an RNA-Seq experiment with the aim of identifying potential causal mutations related to GIN resistance in sheep. Considering the RNA-Seq samples from 12 ewes previously classified as six resistant and six susceptible animals to experimental infection by Teladorsagia circumcincta, we performed a variant calling analysis pipeline using two different types of software, gatk version 3.7 and Samtools version 1.4. The variants commonly identified by the two packages (high-quality variants) within two types of target regions - (i) QTL regions previously reported in sheep for parasite resistance based on SNP-chip or sequencing technology studies and (ii) functional candidate genes selected from gene expression studies related to GIN resistance in sheep - were further characterised to identify mutations with a potential functional impact. Among the genes harbouring these potential functional variants (930 and 553 respectively for the two types of regions), we identified 111 immune-related genes in the QTL regions and 132 immune-related genes from the initially selected candidate genes. For these immune-related genes harbouring potential functional variants, the enrichment analyses performed highlighted significant GO terms related to apoptosis, adhesion and inflammatory response, in relation to the QTL related variants, and significant disease-related terms such as inflammation, adhesion and necrosis, in relation to the initial candidate gene list. Overall, the study provides a valuable list of potential causal mutations that could be considered as candidate causal mutations in relation to GIN resistance in sheep. Future studies should assess the role of these suggested mutations with the aim of identifying genetic markers that could be directly implemented in sheep breeding programmes considering not only production traits, but also functional traits such as resistance to GIN infections.
Collapse
Affiliation(s)
- P K Chitneedi
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - J J Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - A Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - M Martínez-Valladares
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.,Instituto de Ganadería de Montaña, CSIC-ULE, 24346, Grulleros, León, Spain
| | - B Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| |
Collapse
|
17
|
Swan J, Sakthivel D, Cameron TC, Faou P, Downs R, Rajapaksha H, Piedrafita D, Beddoe T. Proteomic identification of galectin-11 and -14 ligands from Fasciola hepatica. Int J Parasitol 2019; 49:921-932. [PMID: 31560927 DOI: 10.1016/j.ijpara.2019.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022]
Abstract
Fasciola hepatica is a globally distributed zoonotic trematode that causes fasciolosis in livestock, wildlife, ruminants and humans. Fasciolosis causes a significant economic impact on the agricultural sector and affects human health. Due to the increasing prevalence of triclabendazole resistance in F. hepatica, alternative treatment methods are required. Many protein antigens have been trialled as vaccine candidates with low success, however, the tegument of F. hepatica is highly glycosylated and the parasite-derived glycoconjugate molecules have been identified as an important mediator in host-parasite interactions and as prime targets for the host immune system. Galectin-11 (LGALS-11) and galectin-14 (LGALS-14) are two ruminant-specific glycan-binding proteins, showing upregulation in the bile duct of sheep infected with F. hepatica, which are believed to mediate host-parasite interaction and innate immunity against internal parasites. For the first known time, this study presents the ligand profile of whole worm and tegument extracts of F. hepatica that interacted with immobilised LGALS-11 and LGALS-14. LGALS-14 interacted with a total of 255 F. hepatica proteins. The protein which had the greatest interaction was identified as an uncharacterised protein which contained a C-type lectin domain. Many of the other proteins identified were previously trialled vaccine candidates including glutathione S-transferase, paramyosin, cathepsin L, cathepsin B, fatty acid binding protein and leucine aminopeptidase. In comparison to LGALS-14, LGALS-11 interacted with only 49 F. hepatica proteins and it appears to have a much smaller number of binding partners in F. hepatica. This is, to our knowledge, the first time host-specific lectins have been used for the enrichment of F. hepatica glycoproteins and this study has identified a number of glycoproteins that play critical roles in host-parasite interactions which have the potential to be novel vaccine candidates.
Collapse
Affiliation(s)
- Jaclyn Swan
- Department of Animal, Plant and Soil Science and Centre for AgriBioscience (AgriBio), La Trobe University, Victoria 3086, Australia; Centre for Livestock Interactions with Pathogens (CLiP), La Trobe University, Victoria 3086, Australia
| | - Dhanasekaran Sakthivel
- Department of Animal, Plant and Soil Science and Centre for AgriBioscience (AgriBio), La Trobe University, Victoria 3086, Australia
| | - Timothy C Cameron
- Department of Animal, Plant and Soil Science and Centre for AgriBioscience (AgriBio), La Trobe University, Victoria 3086, Australia; Centre for Livestock Interactions with Pathogens (CLiP), La Trobe University, Victoria 3086, Australia
| | - Pierre Faou
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | - Rachael Downs
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | - Harinda Rajapaksha
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | - David Piedrafita
- School of Applied and Biomedical Sciences, Federation University, Churchill, Victoria 3842, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science and Centre for AgriBioscience (AgriBio), La Trobe University, Victoria 3086, Australia; Centre for Livestock Interactions with Pathogens (CLiP), La Trobe University, Victoria 3086, Australia.
| |
Collapse
|