1
|
Zhong H, Zhu D, Dong B, Wu L, Lu K, Fu Z, Liu J, Guan G, Jin Y. Comparative microRNAs profile of Schistosoma japonicum male worms derived from single-sex and bisexual infections: Implications of the multifunctional role of microRNA. Parasitol Res 2025; 124:43. [PMID: 40272512 PMCID: PMC12021732 DOI: 10.1007/s00436-025-08489-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
Schistosoma japonicum is a dioecious parasite that requires constant pairing between male and female worms for female maturation and egg production. MicroRNAs (miRNAs) play crucial roles in regulating various biological processes, including parasite development and host-pathogen interactions, but their functions in schistosomes remain largely unexplored. This study aimed to investigate the differentially expressed miRNAs (DEMs) between mated male (MM) and single-sex male (SM) worms to gain insights into their regulatory roles in schistosome reproduction. Total RNA was extracted from 28-day-old MM and SM worms, followed by small RNA sequencing to identify DEMs. Bioinformatics analyses were used to predict the biological functions of DEM target genes. Comparative analysis with previously published miRNA datasets helped identify potentially significant miRNAs. Quantitative PCR (qPCR) validated the expression of selected miRNAs and mRNA levels of some target genes. A total of 20 DEMs were identified, with 9 upregulated in MM worms and 11 in SM worms. These DEMs may regulate processes such as intracellular transport, RNA processing, and cellular homeostasis. The study provides novel insights into the biological differences between SM and MM worms, suggesting that these miRNAs could be key regulators of parasite development and host adaptation, with potential diagnostic and therapeutic applications in schistosomiasis.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China
| | - Danlin Zhu
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China
| | - Bowen Dong
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China
| | - Luobin Wu
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China
- College of Life Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Ke Lu
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China
| | - Zhiqiang Fu
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China
| | - Jinming Liu
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China.
| |
Collapse
|
2
|
Sivapornnukul P, Khamwut A, Chanchaem P, Chusongsang P, Chusongsang Y, Poodeepiyasawat P, Limpanont Y, Reamtong O, Payungporn S. Comprehensive analysis of miRNA profiling in Schistosoma mekongi across life cycle stages. Sci Rep 2024; 14:2347. [PMID: 38281987 PMCID: PMC10822868 DOI: 10.1038/s41598-024-52835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024] Open
Abstract
Schistosoma mekongi, a significant schistosome parasite, has various life stages, including egg, cercaria, female, and male, that play crucial roles in the complex life cycle. This study aimed to explore the microRNA (miRNA) profiles across these developmental stages to understand their potential functions and evolutionary significance, which have not been studied. Pre-processed sequencing reads of small RNA (sRNA) were obtained, and annotations were performed against the S. japonicum reference miRNA database. Results indicated marked variations in miRNA profiles across different life stages, with notable similarities observed between female and male S. mekongi. Principal Coordinate Analysis (PCoA) and unsupervised clustering revealed distinct miRNA signatures for each stage. Gene ontology (GO) analysis unveiled the potential roles of these miRNAs in various biological processes. The differential expression of specific miRNAs was prominent across stages, suggesting their involvement in crucial developmental processes. Furthermore, orthologous miRNA analysis against various worm species revealed distinct presence-absence patterns, providing insights into the evolutionary relationships of these miRNAs. In conclusion, this comprehensive investigation into the miRNA profiles of S. mekongi offers valuable insights into the functional and evolutionary aspects of miRNAs in schistosome biology.
Collapse
Affiliation(s)
- Pavaret Sivapornnukul
- Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ariya Khamwut
- Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Phiraphol Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Yupa Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Paporn Poodeepiyasawat
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Sun C, Luo F, You Y, Gu M, Yang W, Yi C, Zhang W, Feng Z, Wang J, Hu W. MicroRNA-1 targets ribosomal protein genes to regulate the growth, development and reproduction of Schistosoma japonicum. Int J Parasitol 2023; 53:637-649. [PMID: 37355197 DOI: 10.1016/j.ijpara.2023.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/26/2023]
Abstract
Eggs laid by mature female schistosomes are primarily responsible for the pathogenesis of schistosomiasis and critical for transmission. Consequently, elucidating the mechanism of sexual maturation as well as egg production may lead to new strategies for the control of schistosomiasis. MicroRNAs (miRNAs) are involved in multiple biological processes including reproduction in many organisms, yet their roles have not been well characterized in schistosomes. Here, we investigated microRNA-1 (miR-1), which was downregulated gradually in both male and female Schistosoma japonicum after they reached sexually maturity. The expression of miR-1, as shown with quantitative reverse transcription PCR (qRT-PCR), was lower in the reproductive organs of adult females compared with the somatic tissues. Overexpression of miR-1 in adult worms destroyed the morphological architecture of reproductive organs and reduced the subsequent oviposition, which may be due to the activation of apoptosis pathways. Through in silico analysis, 34 potential target genes of miR-1 were identified, including five ribosomal protein genes, called rp-s13, rp-l7ae, rp-l14, rp-l11 and rp-s24e. In vitro dual-luciferase reporter gene assays and miRNA overexpression experiments further validated that these ribosomal protein genes were directly regulated by miR-1. In contrast to the gene expression of miR-1, qRT-PCR and in situ hybridization experiments demonstrated these ribosomal protein genes were enriched in the sexual organs of adult females. Using RNA interference to silence the ribosomal protein genes in different developmental stages in a mouse model system, we demonstrated that these miR-1 target genes not only participated in the reproductive development of S. japonicum, but also were required for the growth and survival of the parasite in the early developmental stages. Taken together, our data suggested that miR-1 may affect the growth, reproduction and oviposition of S. japonicum by targeting the ribosomal protein genes, which provides insights for exploration of new anti-schistosome strategies.
Collapse
Affiliation(s)
- Chengsong Sun
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China; Anhui Provincial Institute of Parasitic Diseases, No. 12560 Fanhua Avenue, Shushan District, Hefei 230601, Anhui Province, China
| | - Fang Luo
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Yanmin You
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Mengjie Gu
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Wenbin Yang
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Cun Yi
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Wei Zhang
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Zheng Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention and Fudan University, No.207 Ruijin Road II, Shanghai 200025, China
| | - Jipeng Wang
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China.
| | - Wei Hu
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China; National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention and Fudan University, No.207 Ruijin Road II, Shanghai 200025, China; College of Life Sciences, Inner Mongolia University, No. 235 Daxue West Road, Saihan District, Hohhot 010021, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
4
|
Zhong H, Jin Y. Single-sex schistosomiasis: a mini review. Front Immunol 2023; 14:1158805. [PMID: 37153566 PMCID: PMC10154636 DOI: 10.3389/fimmu.2023.1158805] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by dioecious blood flukes of the genus Schistosoma and second to malaria as a parasitic disease with significant socio-economic impacts. Mating is essential for maturation of male and female schistosomes and for females to lay of eggs, which are responsible for the pathogenesis and propagation of the life cycle beyond the mammalian host. Single-sex schistosomes, which do not produce viable eggs without mating, have been overlooked given the symptomatic paucity of the single-sex schistosomiasis and limited diagnostic toolkit. Besides, single-sex schistosomes are less sensitive to praziquantel. Therefore, these issues should be considered to achieve the elimination of this infection disease. The aim of this review is to summarize current progress in research of single-sex schistosomes and host-parasite interactions.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Yamei Jin,
| |
Collapse
|
5
|
Leija-Montoya AG, González-Ramírez J, Martínez-Coronilla G, Mejía-León ME, Isiordia-Espinoza M, Sánchez-Muñoz F, Chávez-Cortez EG, Pitones-Rubio V, Serafín-Higuera N. Roles of microRNAs and Long Non-Coding RNAs Encoded by Parasitic Helminths in Human Carcinogenesis. Int J Mol Sci 2022; 23:ijms23158173. [PMID: 35897749 PMCID: PMC9331937 DOI: 10.3390/ijms23158173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 12/14/2022] Open
Abstract
Infectious agents such as viruses, bacteria, and parasites can lead to cancer development. Infection with the helminthic parasite Schistosoma haematobium can cause cancer of the urinary bladder in humans, and infection with the parasites Clonorchis sinensis and Opisthorchis viverrini can promote cholangiocarcinoma. These three pathogens have been categorized as “group 1: carcinogenic to humans” by the International Agency for Research on Cancer (IARC). Additionally, the parasite Schistosoma japonicum has been associated with liver and colorectal cancer and classified as “group 2B: possibly carcinogenic to humans”. These parasites express regulatory non-coding RNAs as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), which modulate genic expression in different biological processes. In this review, we discuss the potential roles of miRNAS and lncRNAs encoded by helminthic parasites that are classified by the IARC as carcinogenic and possibly carcinogenic to humans. The miRNAs of these parasites may be involved in carcinogenesis by modulating the biological functions of the pathogen and the host and by altering microenvironments prone to tumor growth. miRNAs were identified in different host fluids. Additionally, some miRNAs showed direct antitumoral effects. Together, these miRNAs show potential for use in future therapeutic and diagnostic applications. LncRNAs have been less studied in these parasites, and their biological effects in the parasite–host interaction are largely unknown.
Collapse
Affiliation(s)
- Ana Gabriela Leija-Montoya
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico; (A.G.L.-M.); (G.M.-C.); (M.E.M.-L.)
| | - Javier González-Ramírez
- Facultad de Enfermería, Universidad Autónoma de Baja California, Av. Álvaro Obregón y Calle “G” S/N, Col. Nueva, Mexicali 21100, BC, Mexico;
| | - Gustavo Martínez-Coronilla
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico; (A.G.L.-M.); (G.M.-C.); (M.E.M.-L.)
| | - María Esther Mejía-León
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico; (A.G.L.-M.); (G.M.-C.); (M.E.M.-L.)
| | - Mario Isiordia-Espinoza
- Instituto de Investigación en Ciencias Médicas, Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de Los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, JAL, Mexico;
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología, Juan Badiano No. 1, Col. Sección XVI, Tlapan 140080, DF, Mexico;
| | - Elda Georgina Chávez-Cortez
- Centro de Ciencias de la Salud, Facultad de Odontología, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (E.G.C.-C.); (V.P.-R.)
| | - Viviana Pitones-Rubio
- Centro de Ciencias de la Salud, Facultad de Odontología, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (E.G.C.-C.); (V.P.-R.)
| | - Nicolas Serafín-Higuera
- Centro de Ciencias de la Salud, Facultad de Odontología, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (E.G.C.-C.); (V.P.-R.)
- Correspondence:
| |
Collapse
|
6
|
Zhong H, Jin Y. Multifunctional Roles of MicroRNAs in Schistosomiasis. Front Microbiol 2022; 13:925386. [PMID: 35756064 PMCID: PMC9218868 DOI: 10.3389/fmicb.2022.925386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022] Open
Abstract
Schistosomiasis is a parasitic disease that is caused by helminths of the genus Schistosoma. The dioecious schistosomes mate and lay eggs after undergoing a complex life cycle. Schistosome eggs are mostly responsible for the transmission of schistosomiasis and chronic fibrotic disease induced by egg antigens is the main cause of the high mortality rate. Currently, chemotherapy with praziquantel (PZQ) is the only effective treatment against schistosomiasis, although the potential of drug resistance remains a concern. Hence, there is an urgent demand for new and effective strategies to combat schistosomiasis, which is the second most prevalent parasitic disease after malaria. MicroRNAs (miRNAs) are small non-coding RNAs that play pivotal regulatory roles in many organisms, including the development and sexual maturation of schistosomes. Thus, miRNAs are potential targets for treatment of schistosomiasis. Moreover, miRNAs can serve as multifunctional “nano-tools” for cross-species delivery in order to regulate host-parasite interactions. In this review, the multifunctional roles of miRNAs in the growth and development of schistosomes are discussed. The various regulatory functions of host-derived and worm-derived miRNAs on the progression of schistosomiasis are also thoroughly addressed, especially the promotional and inhibitory effects on schistosome-induced liver fibrosis. Additionally, the potential of miRNAs as biomarkers for the diagnosis and treatment of schistosomiasis is considered.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
7
|
Zhou X, Hong Y, Shang Z, Abuzeid AMI, Lin J, Li G. The Potential Role of MicroRNA‐124‐3p in Growth, Development, and Reproduction of Schistosoma japonicum. Front Cell Infect Microbiol 2022; 12:862496. [PMID: 35493736 PMCID: PMC9043613 DOI: 10.3389/fcimb.2022.862496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
The microRNA‐124‐3p plays an important role in regulating development and neurogenesis. Previous microRNA sequencing analyses of Schistosoma japonicum revealed sja-miR-124-3p differential expression patterns in schistosomes from different hosts and at different developmental stages. This study explores the regulatory role of sja-miR-124-3p in S. japonicum development and reproduction. Quantitative reverse-transcription PCR (qRT-PCR) showed that the expression level of sja-miR-124-3p in S. japonicum from resistant hosts, such as Microtus fortis, and unsuitable hosts, such as rats and water buffalo, was significantly higher than that in mice and yellow cattle at the same developmental stage. Overexpressing sja-miR-124-3p in infected mice led to a hepatic egg reduction rate of 36.97%, smaller egg granulomas in the livers, increased liver weight, subsided hepatocyte necrosis, and diminished inflammatory cell infiltration. The width of female worms increased but decreased in males. The vitelline cells were irregular, swollen, or fused. The teguments and ventral sucker of males and females were swollen and broken, but the morphological changes were particularly notable in males. qRT-PCR and dual-luciferase reporter assay system were used to confirm the in-silico-predicted target genes, S. japonicum DEAD-box ATP-dependent RNA helicase 1 (sjDDX1) and DNA polymerase II subunit 2 (sjPOLE2). Our results showed that RNA interference (RNAi)-mediated sjDDX1 silencing in mice provided a 24.55% worm reduction rate and an 18.36% egg reduction rate, but the difference was not significant (p > 0.05). Thus, our findings suggest that sja-miR-124-3p has an important role in growth, development, and reproduction in S. japonicum. All these results will greatly contribute toward providing important clues for searching vaccine candidates and new drug targets against schistosomiasis.
Collapse
Affiliation(s)
- Xue Zhou
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yang Hong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Yang Hong, ; Jiaojiao Lin, ; Guoqing Li,
| | - Zheng Shang
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Asmaa M. I. Abuzeid
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Parasitology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Jiaojiao Lin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Yang Hong, ; Jiaojiao Lin, ; Guoqing Li,
| | - Guoqing Li
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- *Correspondence: Yang Hong, ; Jiaojiao Lin, ; Guoqing Li,
| |
Collapse
|
8
|
Fontenla S, Langleib M, de la Torre-Escudero E, Domínguez MF, Robinson MW, Tort J. Role of Fasciola hepatica Small RNAs in the Interaction With the Mammalian Host. Front Cell Infect Microbiol 2022; 11:812141. [PMID: 35155272 PMCID: PMC8824774 DOI: 10.3389/fcimb.2021.812141] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression being involved in many different biological processes and play a key role in developmental timing. Additionally, recent studies have shown that miRNAs released from parasites are capable of regulating the expression of host genes. In the present work, we studied the expression patterns of ncRNAs of various intra-mammalian life-cycle stages of the liver fluke, Fasciola hepatica, as well as those packaged into extracellular vesicles and shed by the adult fluke. The miRNA expression profile of the intra-mammalian stages shows important variations, despite a set of predominant miRNAs that are highly expressed across all stages. No substantial variations in miRNA expression between dormant and activated metacercariae were detected, suggesting that they might not be central players in regulating fluke gene expression during this crucial step in the invasion of the definitive host. We generated a curated pipeline for the prediction of putative target genes that reports only sites conserved between three different prediction approaches. This pipeline was tested against an iso-seq curated database of the 3’ UTR regions of F. hepatica genes to detect miRNA regulation networks within liver fluke. Several functions related to the host immune response or modulation were enriched among the targets of the most highly expressed parasite miRNAs, stressing that they might be key players during the establishment and maintenance of infection. Additionally, we detected fragments derived from the processing of tRNAs, in all developmental stages analyzed, and documented the presence of novel long tRNA fragments enriched in vesicles. We confirmed the presence of at least 5 putative vault RNAs (vtRNAs), that are expressed across different stages and enriched in vesicles. The presence of tRNA fragments and vtRNAs in vesicles raise the possibility that they could be involved in the host-parasite interaction.
Collapse
Affiliation(s)
- Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
- *Correspondence: Santiago Fontenla, ; José Tort,
| | - Mauricio Langleib
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | | | - Maria Fernanda Domínguez
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Mark W. Robinson
- School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland
| | - José Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
- *Correspondence: Santiago Fontenla, ; José Tort,
| |
Collapse
|
9
|
Comparative characterization of microRNAs of Schistosoma japonicum from SCID mice and BALB/c mice: Clues to the regulation of parasite growth and development. Acta Trop 2022; 225:106200. [PMID: 34740636 DOI: 10.1016/j.actatropica.2021.106200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022]
Abstract
Schistosomiasis, caused by a parasite with a wide range of mammalian hosts, remains one of the most prevailing parasitic diseases in the world. While numerous studies have reported that the growth and reproduction of schistosomes in immunodeficient mice was significantly retarded, the underlying molecular mechanisms have yet to be revealed. In this study, we comparatively analyzed the microRNA expression of Schistosoma japonicum derived from SCID and BALB/c mice on the 35th day post-infection by high-throughput RNA sequencing as prominent morphological abnormalities had been observed in schistosomes from SCID mice when compared with those from BALB/c mice. The results revealed that more than 72% and 61% of clean reads in the small RNA libraries of female and male schistosomes, respectively, could be mapped to the selected miRs in the miRBase or the sequences of species-specific genomes. Further analysis identified 122 miRNAs using TPM >0.01 as the threshold value, including 75 known and 47 novel miRNAs, 96 of which were commonly expressed across all the four tested schistosome libraries. Comparative analysis of the libraries of schistosomes from SCID and BALB/c mice identified 15 differentially expressed miRNAs (5 up-regulated and 10 down-regulated) among females and 16 among males (9 up-regulated and 7 down-regulated). Integrated analysis of the two sets of differentially expressed miRNAs of female and male worms identified 2 miRNAs (sja-miR-3488 and sja-miR-novel_29) that overlapped between female and male datasets. Prediction of miRNA targets and Gene Ontology (GO) term enrichment analysis of the predicted target genes revealed that these genes were involved in some important biological processes, such as nucleic acid metabolic process, macromolecule modification, and cellular aromatic compound metabolic process. The predicted target genes were further matched to the differentially expressed genes in male and female schistosomes from the above two hosts, obtaining 7 genes that may be responsible for regulating the growth, development and sex maturation of schistosomes. Taken together, this study provides the first identification of differentially expressed miRNAs in schistosomes from SCID and BALB/c mice. These miRNAs and their predicted target mRNAs are probably involved in the regulation of development, growth, and maturation of schistosomes. Therefore, this study expands our understanding of schistosome development regulation and host-parasite relationship, and also provides a valuable set of potential anti-schistosomal targets for prevention and control of schistosomiasis.
Collapse
|
10
|
Stitz M, Chaparro C, Lu Z, Olzog VJ, Weinberg CE, Blom J, Goesmann A, Grunau C, Grevelding CG. Satellite-Like W-Elements: Repetitive, Transcribed, and Putative Mobile Genetic Factors with Potential Roles for Biology and Evolution of Schistosoma mansoni. Genome Biol Evol 2021; 13:6361599. [PMID: 34469545 PMCID: PMC8490949 DOI: 10.1093/gbe/evab204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/17/2022] Open
Abstract
A large portion of animal and plant genomes consists of noncoding DNA. This part includes tandemly repeated sequences and gained attention because it offers exciting insights into genome biology. We investigated satellite-DNA elements of the platyhelminth Schistosoma mansoni, a parasite with remarkable biological features. Schistosoma mansoni lives in the vasculature of humans causing schistosomiasis, a disease of worldwide importance. Schistosomes are the only trematodes that have evolved separate sexes, and the sexual maturation of the female depends on constant pairing with the male. The schistosome karyotype comprises eight chromosome pairs, males are homogametic (ZZ) and females are heterogametic (ZW). Part of the repetitive DNA of S. mansoni are W-elements (WEs), originally discovered as female-specific satellite DNAs in the heterochromatic block of the W-chromosome. Based on new genome and transcriptome data, we performed a reanalysis of the W-element families (WEFs). Besides a new classification of 19 WEFs, we provide first evidence for stage-, sex-, pairing-, gonad-, and strain-specific/preferential transcription of WEs as well as their mobile nature, deduced from autosomal copies of full-length and partial WEs. Structural analyses suggested roles as sources of noncoding RNA-like hammerhead ribozymes, for which we obtained functional evidence. Finally, the variable WEF occurrence in different schistosome species revealed remarkable divergence. From these results, we propose that WEs potentially exert enduring influence on the biology of S. mansoni. Their variable occurrence in different strains, isolates, and species suggests that schistosome WEs may represent genetic factors taking effect on variability and evolution of the family Schistosomatidae.
Collapse
Affiliation(s)
- Maria Stitz
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Cristian Chaparro
- IHPE, CNRS, IFREMER, UPVD, University Montpellier, Perpignan, France
| | - Zhigang Lu
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | | | | | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Germany
| | - Christoph Grunau
- IHPE, CNRS, IFREMER, UPVD, University Montpellier, Perpignan, France
| | | |
Collapse
|
11
|
Abreu FC, Mota EA, Pereira RV, Oliveira VF, Costa MP, Gomes MDS, Jannotti-Passos LK, Borges WC, Guerra-Sá R. Differential expression profiles of miRNAs and their putative targets in Schistosoma mansoni during its life cycle. Mem Inst Oswaldo Cruz 2021; 116:e200326. [PMID: 34008737 PMCID: PMC8128373 DOI: 10.1590/0074-02760200326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Schistosomiasis is a disease caused by Schistosoma. Due to its complex life cycle, evolutionary position and sexual dimorphism, schistosomes have several mechanisms of gene regulation. MicroRNAs (miRNAs) are short endogenous RNAs that regulate gene expression at the post-transcriptional level by targeting mRNA transcripts. OBJECTIVES Here, we tested 12 miRNAs and identified their putative targets using a computational approach. METHODS We performed the expression profiles of a set of miRNAs and their putative targets during the parasite's life cycle by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). FINDINGS Our results showed differential expression patterns of the mature miRNAs sma-miR-250; sma-miR-92a; sma-miR-new_4-3p; sma-miR-new_4-5p; sma-miR-new_5-5p; sma-miR-new_12-5p; sma-miR-new_13-3p and sma-miR-new_13-5p. Interestingly, many of the putative target genes are linked to oxidative phosphorylation and are up-regulated in adult-worms, which led us to suggest that miRNAs might play important roles in the post-transcriptional regulation of genes related to energetic metabolism inversion during parasite development. It is noteworthy that the expression of sma-miR-new_13-3p exhibited a negative correlation on SmNADH:ubiquinone oxidoreductase complex I. MAIN CONCLUSIONS Our analysis revealed putative miRNA genes related to important biological processes, such as transforming growth factor beta (TGF-β) signaling, proteasome regulation, glucose and lipid metabolism, immune system evasion and transcriptional regulation.
Collapse
Affiliation(s)
- Fabiano Cp Abreu
- Universidade Federal de Ouro Preto, Núcleo de Pesquisas em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - Ester Alves Mota
- Universidade Federal de Ouro Preto, Núcleo de Pesquisas em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - Roberta V Pereira
- Universidade Federal de Ouro Preto, Núcleo de Pesquisas em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - Victor F Oliveira
- Universidade Federal de Ouro Preto, Núcleo de Pesquisas em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - Marcela P Costa
- Universidade Federal de Ouro Preto, Núcleo de Pesquisas em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - Matheus de S Gomes
- Universidade Federal de Uberlândia, Instituto de Genética e Bioquímica, Patos de Minas, MG, Brasil
| | | | - William C Borges
- Universidade Federal de Ouro Preto, Núcleo de Pesquisas em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - Renata Guerra-Sá
- Universidade Federal de Ouro Preto, Núcleo de Pesquisas em Ciências Biológicas, Ouro Preto, MG, Brasil
| |
Collapse
|
12
|
Differential expression of microRNAs and tRNA fragments mediate the adaptation of the liver fluke Fasciola gigantica to its intermediate snail and definitive mammalian hosts. Int J Parasitol 2021; 51:405-414. [PMID: 33513403 DOI: 10.1016/j.ijpara.2020.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
The tropical liver fluke Fasciola gigantica affects livestock and humans in many Asian countries, large parts of Africa, and parts of Europe. Despite the public health and economic impacts of F. gigantica, understanding of F. gigantica biology and how the complex lifecycle of this liver fluke is transcriptionally regulated remain unknown. Here, we tested the hypothesis that the regulatory small non-coding RNAs (sncRNAs), microRNAs (miRNAs) and tRNA-derived fragments (tRFs) play roles in the adaptation of F. gigantica to its intermediate and definitive hosts. We sequenced sncRNAs of eight lifecycle stages of F. gigantica. In total, 56 miRNAs from 33 conserved families and four Fasciola-specific miRNAs were identified. Expression analysis of miRNAs suggested clear stage-related patterns. By leveraging the existing transcriptomic data, we predicted a miRNA-based regulation of metabolism, transport, growth and developmental processes. Also, by comparing miRNA complement of F. gigantica with that of Fasciola hepatica, we detected a high level of conservation and identified differences in some miRNAs, which can be used to distinguish the two species. Moreover, we found that tRFs at each lifecycle stage were predominantly derived by tRNA-Lys and tRNA-Gly at 5' half sites, but relatively high expression was related to the buffalo-infecting stages. Taken together, we provided a comprehensive overview of the dynamic transcriptional changes of small RNAs that occur during the developmental stages of F. gigantica. This global analysis of F. gigantica lifecycle stages revealed new roles of miRNAs and tRFs in parasite development and will facilitate future research into understanding of fasciolosis pathobiology.
Collapse
|