1
|
Roshan M, Singh I, Vats A, Behera M, Singh DP, Gautam D, Rajput S, Tarak J, Packirisamy G, De S. Antimicrobial and antibiofilm effect of cannabinoids from Cannabis sativa against methicillin-resistant Staphylococcus aureus (MRSA) causing bovine mastitis. Int Microbiol 2024; 27:1839-1852. [PMID: 38568425 DOI: 10.1007/s10123-024-00505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 12/05/2024]
Abstract
Antimicrobial resistance (AMR) poses a serious threat to human, animal, and plant health on a global scale. Search and elimination techniques should be used to effectively counter the spread of methicillin-resistant Staphylococcus aureus (MRSA) infections. With only a few novel drugs in clinical development, the quest for plant-based alternatives to prevent the spread of antibiotic resistance among bacteria has accelerated. Treatment of MRSA infections is challenging owing to rapidly emerging resistance mechanisms coupled with their protective biofilms. In the present research, we examined the antibacterial properties of ten plant-derived ethanolic leaf extracts. The most effective ethanolic leaf extract against MRSA in decreasing order of zone of inhibition, Cannabis sativa L. > Syzygium cumini > Murraya koenigii > Eucalyptus sp. > while Aloe barbadensis, Azadirachta indica, had very little impact. Mangifera indica, Curcuma longa, Tinospora cordifolia, and Carica papaya did not exhibit inhibitory effects against MRSA; hence, Cannabis was selected for further experimental study. The minimal inhibitory concentration (MIC) of Cannabis sativa L. extract was 0.25 mg ml-1 with 86% mortality. At a sub-MIC dosage of 0.125 mg ml-1, the biofilm formation was reduced by 71%. The two major cannabinoids detected were cannabidiol and delta-9-tetrahydrocannabinol (Δ9-THC), which were majorly attributed to substantial inhibitory action against MRSA. The time-kill kinetics demonstrated a bactericidal action at 4 MIC over an 8-20-h time window with a 90% reduction in growth rate. The results from SEM, and light microscopy Giemsa staining revealed a reduction in cells in the treated group with increased AKP activity, indicating bacterial cell membrane breakdown. These findings suggested cannabinoids may be a promising alternative to antibiotic therapy for bovine biofilm-associated MRSA.
Collapse
Affiliation(s)
- Mayank Roshan
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, 132001, Haryana, India
| | - Ila Singh
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, 132001, Haryana, India
| | - Ashutosh Vats
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, 132001, Haryana, India
| | - Manisha Behera
- Department of Zoology, Hindu College, University of Delhi, Delhi, 110007, India
| | - Dravin Pratap Singh
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Devika Gautam
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, 132001, Haryana, India
| | - Shiveeli Rajput
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, 132001, Haryana, India
| | - Jitesh Tarak
- Dairy Microbiology Division, ICAR-National Dairy Research Institute (NDRI), Karnal, 132001, Haryana, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Sachinandan De
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, 132001, Haryana, India.
| |
Collapse
|
2
|
Rani R, Marinho Righetto G, Schäfer AB, Wenzel M. The Diverse Activities and Mechanisms of the Acylphloroglucinol Antibiotic Rhodomyrtone: Antibacterial Activity and Beyond. Antibiotics (Basel) 2024; 13:936. [PMID: 39452203 PMCID: PMC11504083 DOI: 10.3390/antibiotics13100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: The rose myrtle Rhodomyrtus tomentosa is a medicinal plant used in traditional Asian medicine. The active compound in R. tomentosa leaf extracts is rhodomyrtone, a chiral acylphloroglucinol. Rhodomyrtone exhibits an impressive breadth of activities, including antibacterial, antiviral, antiplasmodial, immunomodulatory, and anticancer properties. Its antibacterial properties have been extensively studied. Methods: We performed a comprehensive literature review on rhodomyrtone and summarized the current knowledge about this promising acylphloroglucinol antibiotic and its diverse functions in this review. Results: Rhodomyrtone shows nano to micromolar activities against a broad range of Gram-positive pathogens, including multidrug-resistant clinical isolates, and possesses a unique mechanism of action. It increases membrane fluidity and creates hyperfluid domains that attract membrane proteins prior to forming large membrane vesicles, effectively acting as a membrane protein trap. This mechanism affects a multitude of cellular processes, including cell division and cell wall synthesis. Additionally, rhodomyrtone reduces the expression of inflammatory cytokines, such as TNF-α, IL-17A, IL1β, and IL8. Generally showing low toxicity against mammalian cells, rhodomyrtone does inhibit the proliferation of cancer cell lines, such as epidermal carcinoma cells. The primary mechanism behind this activity appears to be the downregulation of adhesion kinases and growth factors. Furthermore, rhodomyrtone has shown antioxidant activity and displays cognitive effects, such as decreasing depressive symptoms in mice. Conclusions: Rhodomyrtone shows great promise as therapeutic agent, mostly for antibacterial but also for diverse other applications. Yet, bottlenecks such as resistance development and a better understanding of mammalian cell toxictiy demand careful assessment.
Collapse
Affiliation(s)
- Rupa Rani
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), 413 45 Gothenburg, Sweden
| | - Gabriela Marinho Righetto
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), 413 45 Gothenburg, Sweden
| | - Ann-Britt Schäfer
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), 413 45 Gothenburg, Sweden
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), 413 45 Gothenburg, Sweden
| |
Collapse
|
3
|
Salih E, Mgbeahuruike EE, Prévost-Monteiro S, Sipari N, Väre H, Novak B, Julkunen-Tiitto R, Fyhrqvist P. Polyphenols and Phenolic Glucosides in Antibacterial Twig Extracts of Naturally Occurring Salix myrsinifolia (Salisb.), S. phylicifolia (L.) and S. starkeana (Willd.) and the Cultivated Hybrid S. x pendulina (Wender.). Pharmaceutics 2024; 16:916. [PMID: 39065613 PMCID: PMC11280161 DOI: 10.3390/pharmaceutics16070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Salix species occurring in Finland have not been well studied for their antimicrobial potential, despite their frequent use for lung and stomach problems in traditional medicine. Thus, twig extracts of three species of Salix that are found naturally in Finland and one cultivated species were screened for their antimicrobial properties against human pathogenic bacteria. S. starkeana and S. x pendulina were screened for antibacterial effects for the first time. (2) Methods: An agar diffusion and a microplate method were used for the screenings. Time-kill effects were measured using a plate-count and a microplate method. A DPPH-method using a qualitative TLC-analysis was used to detect antioxidant compounds in antimicrobial extracts. Metabolites from a S. myrsinifolia extract showing good antibacterial effects were identified using UPLC/QTOF-MS. (3) Results: A methanol extract of S. starkeana was particularly active against B. cereus (MIC 625 µg/mL), and a methanol extract of S. myrsinifolia showed good activity against S. aureus and B. cereus (MIC 1250 µg/mL) and showed bactericidal effects during a 24 h incubation of B. cereus. Moreover, a decoction of S. myrsinifolia resulted in good growth inhibition against P. aeruginosa. Our UPLC/QTOF-MS results indicated that proanthocyanidins (PAs), and especially the dimer procyanidin B1 (m/z 577) and other procyanidin derivatives, including highly polymerized proanthocyanidins, were abundant in S. myrsinifolia methanol extracts. Procyanidin B1 and its monomer catechin, as well as taxifolin and p-hydroxycinnamic acid, all present in S. myrsinifolia twigs, effectively inhibited B. cereus (MIC 250 µg/mL). (4) Conclusions: This study indicates that Finnish Salix species contain an abundance of antibacterial condensed tannins, phenolic acids and other polyphenols that deserve further research for the antibacterial mechanisms of action.
Collapse
Affiliation(s)
- Enass Salih
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland; (E.E.M.); (P.F.)
| | - Eunice Ego Mgbeahuruike
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland; (E.E.M.); (P.F.)
| | | | - Nina Sipari
- Viikki Metabolomics Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00100 Helsinki, Finland;
| | - Henry Väre
- Botanical Museum, Finnish Museum of Natural History, University of Helsinki, 00100 Helsinki, Finland;
| | - Brigita Novak
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia;
| | - Riitta Julkunen-Tiitto
- Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, 80100 Joensuu, Finland;
| | - Pia Fyhrqvist
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland; (E.E.M.); (P.F.)
| |
Collapse
|
4
|
Kaseke TB, Chikwambi Z, Gomo C, Mashingaidze AB, Murungweni C. Antibacterial activity of medicinal plants on the management of mastitis in dairy cows: A systematic review. Vet Med Sci 2023; 9:2800-2819. [PMID: 37725398 PMCID: PMC10650345 DOI: 10.1002/vms3.1268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/30/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Mastitis is a disease of economic importance in dairy production systems. The common management regime for mastitis is the use of synthetic antibiotics, giving a new problem of antibiotic resistance. There is, therefore, a need to prospect for alternatives to conventional antibiotics from herbal plants. OBJECTIVES This systematic review evaluates the use of plants as alternatives for the control of mastitis in dairy cattle, focussing on the effectiveness of studied plants and plant-based products and possible implications on the use of these products in livestock health. METHODOLOGY The PRISMA model was implemented with searches done in five electronic databases: Scopus, ScienceDirect, PubMed, Ovid and Research4Life. Data were extracted from 45 studies with 112 plant species from plant species belonging to 42 different families. The specific keywords were 'mastitis', 'dairy cows' and 'medicinal plants'. RESULTS The most cited plant species included Allium sativum L., Azadirachta indica and Eucalyptus globulus Labill with the latter further exploring its components. Microbial species causing mastitis mainly were Staphylococcus aureus and Escherichia coli. The extraction methods used included maceration approach using ethanol, methanol and water as solvents for phytochemicals and chromatographic techniques for essential oils. A few studies explored the mode of action, and toxicities of the herbal extracts as well as evaluating their efficacy in clinical trials using animal models. CONCLUSION Plants with defined levels of phytochemicals were essential sources of antibacterials. Standardisation of analytical methods is required.
Collapse
Affiliation(s)
- Tinotenda Blessing Kaseke
- School of Agricultural Sciences and TechnologyDepartment of Animal Production and TechnologyChinhoyi University of TechnologyChinhoyiMashonaland WestZimbabwe
- School of Health Sciences and TechnologyDepartment of BiotechnologyChinhoyi University of TechnologyChinhoyiMashonaland WestZimbabwe
| | - Zedias Chikwambi
- School of Health Sciences and TechnologyDepartment of BiotechnologyChinhoyi University of TechnologyChinhoyiMashonaland WestZimbabwe
| | - Calvin Gomo
- School of Agricultural Sciences and TechnologyDepartment of Animal Production and TechnologyChinhoyi University of TechnologyChinhoyiMashonaland WestZimbabwe
| | - Arnold Bray Mashingaidze
- School of Agricultural Sciences and TechnologyDepartment of Crop Science and TechnologyChinhoyi University of TechnologyChinhoyiMashonaland WestZimbabwe
| | - Chrispen Murungweni
- School of Agricultural Sciences and TechnologyDepartment of Animal Production and TechnologyChinhoyi University of TechnologyChinhoyiMashonaland WestZimbabwe
| |
Collapse
|
5
|
Nakkaew A, Masjon T, Voravuthikunchai SP. Genomic and Transcriptional Profiling Analysis and Insights into Rhodomyrtone Yield in Rhodomyrtus tomentosa (Aiton) Hassk. PLANTS (BASEL, SWITZERLAND) 2023; 12:3156. [PMID: 37687402 PMCID: PMC10490526 DOI: 10.3390/plants12173156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Rhodomyrtus tomentosa is a source of a novel antibiotic, rhodomyrtone. Because of the increasing industrial demand for this compound, germplasm with a high rhodomyrtone content is the key to sustainable future cultivation. In this study, rhodomyrtone genotypes were verified using the plastid genomic region marker matK and nuclear ribosomal internal transcribed spacer ITS. These two DNA barcodes proved to be useful tools for identifying different rhodomyrtone contents via the SNP haplotypes C569T and A561G, respectively. The results were correlated with rhodomyrtone content determined via HPLC. Subsequently, R. tomentosa samples with high- and low-rhodomyrtone genotypes were collected for de novo transcriptome and gene expression analyses. A total of 83,402 unigenes were classified into 25 KOG classifications, and 74,102 annotated unigenes were obtained. Analysis of differential gene expression between samples or groups using DESeq2 revealed highly expressed levels related to rhodomyrtone content in two genotypes. semiquantitative RT-PCR further revealed that the high rhodomyrtone content in these two genotypes correlated with expression of zinc transporter protein (RtZnT). In addition, we found that expression of RtZnT resulted in increased sensitivity of R. tomentosa under ZnSO4 stress. The findings provide useful information for selection of cultivation sites to achieve high rhodomyrtone yields in R. tomentosa.
Collapse
Affiliation(s)
- Alisa Nakkaew
- Center for Genomic and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
- Division of Biological Science, Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Thipphanet Masjon
- Center for Genomic and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
- Division of Biological Science, Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| |
Collapse
|
6
|
Morales-Ubaldo AL, Rivero-Perez N, Valladares-Carranza B, Velázquez-Ordoñez V, Delgadillo-Ruiz L, Zaragoza-Bastida A. Bovine mastitis, a worldwide impact disease: Prevalence, antimicrobial resistance, and viable alternative approaches. Vet Anim Sci 2023; 21:100306. [PMID: 37547227 PMCID: PMC10400929 DOI: 10.1016/j.vas.2023.100306] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
Bovine mastitis is globally considered one of the most important diseases within dairy herds, mainly due to the associated economic losses. The most prevalent etiology are bacteria, classified into contagious and environmental, with Staphylococcus aureus, Streptococcus agalactiae, Streptococcus uberis, Escherichia coli and Klebsiella pneumoniae being the most common pathogens associated with mastitis cases. To date these pathogens are resistant to the most common active ingredients used for mastitis treatment. According to recent studies resistance to new antimicrobials has increased, which is why developing of alternative treatments is imperative. Therefore the present review aims to summarize the reports about bovine mastitis along 10 years, emphasizing bacterial etiology, its epidemiology, and the current situation of antimicrobial resistance, as well as the development of alternative treatments for this pathology. Analyzed data showed that the prevalence of major pathogens associated with bovine mastitis varied according to geographical region. Moreover, these pathogens are classified as multidrug-resistant, since the effectiveness of antimicrobials on them has decreased. To date, several studies have focused on the research of alternative treatments, among them vegetal extracts, essential oils, or peptides. Some other works have reported the application of nanotechnology and polymers against bacteria associated with bovine mastitis. Results demonstrated that these alternatives may be effective on bacteria associated with bovine mastitis.
Collapse
Affiliation(s)
- Ana Lizet Morales-Ubaldo
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Rancho Universitario Av. Universidad km 1, Universidad Autónoma del Estado de Hidalgo, EX-Hda de Aquetzalpa, Tulancingo, C.P 43660, Hidalgo, Mexico
| | - Nallely Rivero-Perez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Rancho Universitario Av. Universidad km 1, Universidad Autónoma del Estado de Hidalgo, EX-Hda de Aquetzalpa, Tulancingo, C.P 43660, Hidalgo, Mexico
| | - Benjamín Valladares-Carranza
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, C.P. 50200 Toluca, Estado de México, Mexico
| | - Valente Velázquez-Ordoñez
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, C.P. 50200 Toluca, Estado de México, Mexico
| | - Lucía Delgadillo-Ruiz
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, CP. 98068, Zacatecas, Zacatecas, Mexico
| | - Adrian Zaragoza-Bastida
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Rancho Universitario Av. Universidad km 1, Universidad Autónoma del Estado de Hidalgo, EX-Hda de Aquetzalpa, Tulancingo, C.P 43660, Hidalgo, Mexico
| |
Collapse
|
7
|
Li H, Sun P. Insight of Melatonin: The Potential of Melatonin to Treat Bacteria-Induced Mastitis. Antioxidants (Basel) 2022; 11:antiox11061107. [PMID: 35740004 PMCID: PMC9219804 DOI: 10.3390/antiox11061107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Bovine mastitis is a common inflammatory disease, mainly induced by bacterial pathogens, such as Staphylococcus aureus, Escherichia coli, and Streptococcus agalactiae. Mastitis has negative effects on the production and quality of milk, resulting in huge economic losses. Melatonin, which is synthesized and secreted by the pineal gland and other organs, is ubiquitous throughout nature and has different effects on different tissues. Melatonin is crucial in modulating oxidative stress, immune responses, and cell autophagy and apoptosis, via receptor-mediated or receptor-independent signaling pathways. The potent antioxidative and anti-inflammatory activities of melatonin and its metabolites suggest that melatonin can be used to treat various infections. This article reviews the potential for melatonin to alleviate bovine mastitis through its pleiotropic effect on reducing oxidative stress, inhibiting pro-inflammatory cytokines, and regulating the activation of NF-κB, STATs, and their cascade reactions. Therefore, it is promising that melatonin supplementation may be an alternative to antibiotics for the treatment of bovine mastitis.
Collapse
|
8
|
Silva V, Mesquita R, Machado T, Teixeira F, Santos M, Coelho M, Peixoto R, Costa M. Interference of natural extract from Jatobá (Hymenaea martiana Hayne) with the physico-chemical characteristics and yield of goat milk and cheese. ARQ BRAS MED VET ZOO 2022. [DOI: 10.1590/1678-4162-12282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Several studies have assessed the therapeutic potential of natural products against mastitis, but only a few have evaluated the impacts of this alternative therapy on the main properties of milk and dairy products. In this study, we observed how the treatment of mastitis with ethanolic extract of Jatobá (Hymenaea martiana Hayne) influenced the physicochemical and sensory characteristics of coalho cheese. An ointment containing the ethanolic extract was prepared for intramammary use in six dairy goats. The experiment was conducted in three experimental moments. Milking was performed, manually, and both milk and cheese were subjected to physicochemical and sensory tests. No difference was observed (p>0.05) in the physicochemical aspects of milk between the studied groups. The solids-non-fat showed a statistical difference between experimental moments M1 and M2. The protein means varied from 3.33 to 3.62, and there was a statistical difference between the two moments, while the lactose means varied from 4.79 to 5.38%. The physicochemical aspects of cheese remained similar with both treatments. Except for appearance, the sensory characteristics showed no statistical difference. In conclusion, the use of Jatobá extract ointment did not influence the physicochemical and sensory characteristics of goat milk or cheese.
Collapse
Affiliation(s)
- V.O. Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Sertão Pernambucano, Brasil
| | - R.V.S.C. Mesquita
- Instituto Federal de Educação, Ciência e Tecnologia do Sertão Pernambucano, Brasil
| | - T.O.X. Machado
- Instituto Federal de Educação, Ciência e Tecnologia do Sertão Pernambucano, Brasil
| | - F.A. Teixeira
- Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, Brazil
| | - M.C.R. Santos
- Agência Estadual de Defesa Agropecuária do Maranhão, Brasil
| | - M.I.S. Coelho
- Instituto Federal de Educação, Ciência e Tecnologia do Sertão Pernambucano, Brasil
| | - R.M. Peixoto
- Instituto Federal de Educação, Ciência e Tecnologia do Sertão Pernambucano, Brasil
| | - M.M. Costa
- Universidade Federal do Vale do São Francisco, Brazil
| |
Collapse
|
9
|
Evaluation and identification of antioxidative components of Radix Rhodomyrti by DPPH–UPLC–PDA coupled with UPLC–QTOF-MS/MS. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Wang H, Chen C, Chen X, Zhang J, Liu Y, Li X. PK/PD Modeling to Assess Rifaximin Clinical Dosage in a Mouse Model of Staphylococcus aureus-Induced Mastitis. Front Vet Sci 2021; 8:651369. [PMID: 34195244 PMCID: PMC8236590 DOI: 10.3389/fvets.2021.651369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a common pathogen that causes mastitis, an infection of the milk-secreting tissue of the udder, in dairy cows, and presents a huge economic problem for the dairy industry worldwide. Thus, control and treatment of mastitis in dairy cows is vital in order to reduce the costs associated with the disease. The main purpose of the current work was to examine the current dosage of rifaximin for the treatment mastitis in cows caused by S. aureus using pharmacokinetic/pharmacodynamic integration in a mouse mastitis model. The mouse mastitis model was established via injection of S. aureus Newbould 305 (400 CFU/gland) into the mouse mammary gland. A single dose of 50, 100, 200, or 400 μg/gland, administered via intramammary infusion, was used to study the pharmacokinetics of rifaximin. The pharmacokinetic parameters were analyzed by non-compartment and non-linear mixed-effect models using Phoenix software (version 8.1; Pharsight, USA). In vivo pharmacodynamics was used to examine 18 therapeutic regimens covering various doses ranging from 25 to 800 μg/gland and three dosing intervals of 8, 12, and 24 h per 24 h experiment cycle. The antibacterial effect of rifaximin was elevated with higher concentrations of rifaximin or shorter intervals of administration. The percentage of time that drug concentrations exceeded the MIC during a dose interval (%T > MIC) was generally 100% for rifaximin and was not better than AUC24/MIC in the sigmoid Emax model of inhibitory effect. The optimal antibacterial effect was 2log10CFU/gland when the magnitude of AUC24/MIC reached 14,281.63 h. A total of 14,281.63 h of AUC24/MIC was defined as a target value in the Monte Carlo simulation. The clinically recommended dosage regimen of 100 mg/gland every 8 h in 1 day achieved an 82.97% cure rate for the treatment of bovine mastitis caused by Staphylococcus aureus infection.
Collapse
Affiliation(s)
- Honglei Wang
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chen Chen
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojie Chen
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingju Zhang
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiming Liu
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiubo Li
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Neculai-Valeanu AS, Ariton AM, Mădescu BM, Rîmbu CM, Creangă Ş. Nanomaterials and Essential Oils as Candidates for Developing Novel Treatment Options for Bovine Mastitis. Animals (Basel) 2021; 11:1625. [PMID: 34072849 PMCID: PMC8229472 DOI: 10.3390/ani11061625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Nanomaterials have been used for diagnosis and therapy in the human medical field, while their application in veterinary medicine and animal production is still relatively new. Nanotechnology, however, is a rapidly growing field, offering the possibility of manufacturing new materials at the nanoscale level, with the formidable potential to revolutionize the agri-food sector by offering novel treatment options for prevalent and expensive illnesses such as bovine mastitis. Since current treatments are becoming progressively more ineffective in resistant bacteria, the development of innovative products based on both nanotechnology and phytotherapy may directly address a major global problem, antimicrobial resistance, while providing a sustainable animal health solution that supports the production of safe and high-quality food products. This review summarizes the challenges encountered presently in the treatment of bovine mastitis, emphasizing the possibility of using new-generation nanomaterials (e.g., biological synthesized nanoparticles and graphene) and essential oils, as candidates for developing novel treatment options for bovine mastitis.
Collapse
Affiliation(s)
- Andra Sabina Neculai-Valeanu
- Research and Development Station for Cattle Breeding Dancu, Sos. Iasi-Ungheni no. 9, 707252 Dancu, Romania; (A.M.A.); (B.M.M.)
| | - Adina Mirela Ariton
- Research and Development Station for Cattle Breeding Dancu, Sos. Iasi-Ungheni no. 9, 707252 Dancu, Romania; (A.M.A.); (B.M.M.)
- Department of Fundamental Sciences in Animal Husbandry, Faculty of Food and Animal Sciences, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| | - Bianca Maria Mădescu
- Research and Development Station for Cattle Breeding Dancu, Sos. Iasi-Ungheni no. 9, 707252 Dancu, Romania; (A.M.A.); (B.M.M.)
- Department of Fundamental Sciences in Animal Husbandry, Faculty of Food and Animal Sciences, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| | - Cristina Mihaela Rîmbu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| | - Şteofil Creangă
- Department of Fundamental Sciences in Animal Husbandry, Faculty of Food and Animal Sciences, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| |
Collapse
|
12
|
Pedersen RR, Krömker V, Bjarnsholt T, Dahl-Pedersen K, Buhl R, Jørgensen E. Biofilm Research in Bovine Mastitis. Front Vet Sci 2021; 8:656810. [PMID: 34026893 PMCID: PMC8138050 DOI: 10.3389/fvets.2021.656810] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
Bovine mastitis is one of the most important diseases in the dairy industry and has detrimental impact on the economy and welfare of the animals. Further, treatment failure results in increased antibiotic use in the dairy industry, as some of these mastitis cases for unknown reasons are not resolved despite standard antibiotic treatment. Chronic biofilm infections are notoriously known to be difficult to eradicate with antibiotics and biofilm formation could be a possible explanation for mastitis cases that are not resolved by standard treatment. This paper reviews the current literature on biofilm in bovine mastitis research to evaluate the status and methods used in the literature. Focus of the current research has been on isolates from milk samples and investigation of their biofilm forming properties in vitro. However, in vitro observations of biofilm formation are not easily comparable with the in vivo situation inside the udder. Only two papers investigate the location and distribution of bacterial biofilms inside udders of dairy cows with mastitis. Based on the current knowledge, the role of biofilm in bovine mastitis is still unclear and more in vivo investigations are needed to uncover the actual role of biofilm formation in the pathogenesis of bovine mastitis.
Collapse
Affiliation(s)
- Regitze Renee Pedersen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Volker Krömker
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kirstin Dahl-Pedersen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elin Jørgensen
- Department Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Chassagne F, Samarakoon T, Porras G, Lyles JT, Dettweiler M, Marquez L, Salam AM, Shabih S, Farrokhi DR, Quave CL. A Systematic Review of Plants With Antibacterial Activities: A Taxonomic and Phylogenetic Perspective. Front Pharmacol 2021; 11:586548. [PMID: 33488385 PMCID: PMC7821031 DOI: 10.3389/fphar.2020.586548] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Antimicrobial resistance represents a serious threat to human health across the globe. The cost of bringing a new antibiotic from discovery to market is high and return on investment is low. Furthermore, the development of new antibiotics has slowed dramatically since the 1950s' golden age of discovery. Plants produce a variety of bioactive secondary metabolites that could be used to fuel the future discovery pipeline. While many studies have focused on specific aspects of plants and plant natural products with antibacterial properties, a comprehensive review of the antibacterial potential of plants has never before been attempted. Objectives: This systematic review aims to evaluate reports on plants with significant antibacterial activities. Methods: Following the PRISMA model, we searched three electronic databases: Web of Science, PubMed and SciFinder by using specific keywords: "plant," "antibacterial," "inhibitory concentration." Results: We identified a total of 6,083 articles published between 1946 and 2019 and then reviewed 66% of these (4,024) focusing on articles published between 2012 and 2019. A rigorous selection process was implemented using clear inclusion and exclusion criteria, yielding data on 958 plant species derived from 483 scientific articles. Antibacterial activity is found in 51 of 79 vascular plant orders throughout the phylogenetic tree. Most are reported within eudicots, with the bulk of species being asterids. Antibacterial activity is not prominent in monocotyledons. Phylogenetic distribution strongly supports the concept of chemical evolution across plant clades, especially in more derived eudicot families. The Lamiaceae, Fabaceae and Asteraceae were the most represented plant families, while Cinnamomum verum, Rosmarinus vulgaris and Thymus vulgaris were the most studied species. South Africa was the most represented site of plant collection. Crude extraction in methanol was the most represented type of extraction and leaves were the main plant tissue investigated. Finally, Staphylococcus aureus was the most targeted pathogenic bacteria in these studies. We closely examine 70 prominent medicinal plant species from the 15 families most studied in the literature. Conclusion: This review depicts the current state of knowledge regarding antibacterials from plants and provides powerful recommendations for future research directions.
Collapse
Affiliation(s)
- François Chassagne
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | | | - Gina Porras
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | - Micah Dettweiler
- Department of Dermatology, Emory University, Atlanta, GA, United States
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | | | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
- Emory University Herbarium, Emory University, Atlanta, GA, United States
- Department of Dermatology, Emory University, Atlanta, GA, United States
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, Atlanta, GA, United States
| |
Collapse
|
14
|
Carratalá JV, Brouillette E, Serna N, Sánchez-Chardi A, Sánchez JM, Villaverde A, Arís A, Garcia-Fruitós E, Ferrer-Miralles N, Malouin F. In Vivo Bactericidal Efficacy of GWH1 Antimicrobial Peptide Displayed on Protein Nanoparticles, a Potential Alternative to Antibiotics. Pharmaceutics 2020; 12:pharmaceutics12121217. [PMID: 33348529 PMCID: PMC7766456 DOI: 10.3390/pharmaceutics12121217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Oligomerization of antimicrobial peptides into nanosized supramolecular complexes produced in biological systems (inclusion bodies and self-assembling nanoparticles) seems an appealing alternative to conventional antibiotics. In this work, the antimicrobial peptide, GWH1, was N-terminally fused to two different scaffold proteins, namely, GFP and IFN-γ for its bacterial production in the form of such recombinant protein complexes. Protein self-assembling as regular soluble protein nanoparticles was achieved in the case of GWH1-GFP, while oligomerization into bacterial inclusion bodies was reached in both constructions. Among all these types of therapeutic proteins, protein nanoparticles of GWH1-GFP showed the highest bactericidal effect in an in vitro assay against Escherichia coli, whereas non-oligomerized GWH1-GFP and GWH1-IFN-γ only displayed a moderate bactericidal activity. These results indicate that the biological activity of GWH1 is specifically enhanced in the form of regular multi-display configurations. Those in vitro observations were fully validated against a bacterial infection using a mouse mastitis model, in which the GWH1-GFP soluble nanoparticles were able to effectively reduce bacterial loads.
Collapse
Affiliation(s)
- Jose V. Carratalá
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Eric Brouillette
- Centre d’Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de Biologie, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Mastitis Network and Regroupement de Recherche Pour un Lait de Qualité Optimale (Op+Lait), Université de Montréal, 2900 Edouard Montpetit Blvd, Montréal, QC H3T 1J4, Canada
| | - Naroa Serna
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Alejandro Sánchez-Chardi
- Microscopy Service, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain;
- Departament of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain
| | - Julieta M. Sánchez
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Anna Arís
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain; (A.A.); (E.G.-F.)
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain; (A.A.); (E.G.-F.)
| | - Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Correspondence: (N.F.-M.); (F.M.)
| | - François Malouin
- Centre d’Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de Biologie, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Mastitis Network and Regroupement de Recherche Pour un Lait de Qualité Optimale (Op+Lait), Université de Montréal, 2900 Edouard Montpetit Blvd, Montréal, QC H3T 1J4, Canada
- Correspondence: (N.F.-M.); (F.M.)
| |
Collapse
|
15
|
Rhodomyrtus tomentosa Leaf Extract and Rhodomyrtone Combat Streptococcus pneumoniae Biofilm and Inhibit Invasiveness to Human Lung Epithelial and Enhance Pneumococcal Phagocytosis by Macrophage. Curr Microbiol 2020; 77:3546-3554. [PMID: 32812080 DOI: 10.1007/s00284-020-02164-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022]
Abstract
Rhodomyrtus tomentosa leaf has been traditionally used to treat many infections. This plant species has been documented to possess a wide spectrum of pharmacological effects. This study aimed to determine the effects of Rhodomyrtus tomentosa leaf extract and its potent purified compound, rhodomyrtone, on Streptococcus pneumoniae virulence factors including biofilms, capsule formation, and invasiveness which play important roles in infections. Ethanol leaf extract and rhodomyrtone demonstrated excellent antibacterial activity against S. pneumoniae with minimal inhibitory concentration (MIC) ranging from 16-32 µg/ml and 0.125-1 µg/ml, respectively. The ability of the extract and rhodomyrtone to prevent biofilm formation and eradicate mature biofilms was assessed. The extract and rhodomyrtone at 1/8 × MIC significantly inhibited biofilm formation in all clinical isolates (P < 0.05). The viability of 8-day biofilm-grown cells significantly decreased following the treatment with the extract and rhodomyrtone at 16 × MIC. 40-90% reduction in the bacterial adhesion and invasion to A549 human alveolar epithelial cells was observed after challenging with the extract and rhodomyrtone, compared with the control within 60 min. Increase in 90-99% phagocytosis of the bacterial cells by RAW264.7 macrophage cell line was detected following the treatment with the extract and rhodomyrtone at 1/2 × MIC, compared with the control. The results suggested potential medicinal benefits of the extract and rhodomyrtone for the treatment of pneumococcal infections.
Collapse
|
16
|
Zaatout N, Ayachi A, Kecha M. Staphylococcus aureus persistence properties associated with bovine mastitis and alternative therapeutic modalities. J Appl Microbiol 2020; 129:1102-1119. [PMID: 32416020 DOI: 10.1111/jam.14706] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/15/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is an important agent of contagious bovine intramammary infections in dairy cattle. Its ability to persist inside the udder is based on the presence of important mechanisms such as its ability to form biofilms, polysaccharide capsules small colony variants, and their ability to invade professional and nonprofessional cells, which will protect S. aureus from the innate and adaptive immune response of the cow, and from antibiotics that are no longer considered to be sufficient against S. aureus bovine mastitis. In this review, we present the recent research outlining S. aureus persistence properties inside the mammary gland, including its regulation mechanisms, and we highlight alternative therapeutic strategies that were tested against S. aureus isolated from bovine mastitis such as the use of probiotic bacteria, bacteriocins and bacteriophages. Overall, the persistence of S. aureus inside the mammary gland remains a pressing veterinary problem. A thorough understanding of staphylococcal persistence mechanisms will elucidate novel ways that can help in the identification of novel treatments.
Collapse
Affiliation(s)
- N Zaatout
- Laboratory of Applied Microbiology, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, Algeria
| | - A Ayachi
- Institute of Veterinary and Agricultural Sciences, University of Batna, Batna, Algeria
| | - M Kecha
- Laboratory of Applied Microbiology, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, Algeria
| |
Collapse
|