1
|
Wang R, Zhang Y, Li Z, Zhen J, Li Q, Zhang Q, Yang Y, Liu X, Lu Y. Effects of Trichinella spiralis and its serine protease inhibitors on intestinal mucosal barrier function. Vet Res 2025; 56:7. [PMID: 39799330 PMCID: PMC11724468 DOI: 10.1186/s13567-024-01446-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/11/2024] [Indexed: 01/15/2025] Open
Abstract
Trichinella spiralis (T. spiralis) is a highly pathogenic zoonotic nematode that poses significant public health risks and causes substantial economic losses. Understanding its invasion mechanisms is crucial. This study explored how the serine protease inhibitors (SPIs) secreted by T. spiralis affect the host's intestinal epithelial barrier. Furthermore, the effects of T. spiralis infection on the jejunal barrier function in mice were investigated. The histopathological analysis indicated significant damage to the jejunum, which peaked at day 7 post-infection (dpi). The results of RT-qPCR and western blotting revealed marked reductions in tight junction proteins (ZO-1, occludin, claudin-3), mucins (MUC-1, MUC-2), and anti-inflammatory cytokines (TGF-β, IL-10) from 1 to 15 dpi. There was also increased expression of Toll-like receptors (TLR-1, TLR-2, TLR-4) and pro-inflammatory cytokines (TNF-α, IL-1β). Recombinant SPIs (rKaSPI, rAdSPI) were purified, co-cultured with intestinal epithelial cells (IPECs), and used in mouse models. The protein expression changes in IPECs and mice were consistent with those in T. spiralis-infected tissues. Both SPIs caused the down-regulation of ZO-1, occludin, claudin-3, MUC-1, MUC-2, TGF-β, and IL-10 while up-regulating TLR-4 and pro-inflammatory cytokines. As a result, the intestinal barrier was disrupted, and inflammation was exacerbated. Notably, rAdSPI had a more pronounced effect. In summary, T. spiralis infection caused significant jejunal damage and disrupted the intestinal barrier. T. spiralis-secreted SPIs, especially serpin-type serine protease inhibitors (AdSPI), were pivotal in facilitating invasion by compromising the host's intestinal barrier and promoting inflammation. This study provides insights into T. spiralis invasion mechanisms and the potential targets for trichinellosis prevention and control.
Collapse
Affiliation(s)
- Ruibiao Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Henan Provincial Animal Pathogens and New Veterinary Drugs, College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yuheng Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhixin Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jingbo Zhen
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qiankun Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qi Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuqi Yang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xueting Liu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yixin Lu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
2
|
Zhu Y, Li M, Li Z, Song J, Zhao W. Study on the mechanism of miRNAs on liver injury in the condition of Protoscocephalus alveolarus transhepatic portal vein infection. Immun Inflamm Dis 2024; 12:e1236. [PMID: 38652009 PMCID: PMC11037255 DOI: 10.1002/iid3.1236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 04/25/2024] Open
Abstract
OBJECTIVE To explore the role of miRNA in liver damage caused by Echinococcus multilocularis infection. METHODS Six female C57BL mice were randomly divided into two groups, the control group and the infection group. Mice in the control group were injected with 100 μL PBS through the hepatic portal vein, and mice in the infection group were infected with E. multilocularis via the hepatic portal vein to establish a mouse model of infection. Small RNA sequencing was performed for detecting the expression of miRNAs in the liver of mice infected with 2000 E. multilocularis after 3 months of infection, screen out miRNAs related to liver damage, and verify by RT-PCR. RESULTS Seventy-one differentially expressed miRNAs were found in the liver in comparison with control, and a total of 36 mouse miRNAs with |FC| >0.585 were screened out, respectively. In addition, Targetscan (V5.0) and miRanda (v3.3a) software were used to predict differential miRNAs target genes and functional enrichment of target genes. Functional annotation showed that "cytokine-cytokine interaction," "positive regulation of cytokine production," "inflammatory response," and "leukocyte activation" were enriched in the liver of E. multilocularis-infected mice. Moreover, the pathways "human cytomegalovirus infection," "cysteine and methionine metabolism," "Notch signaling pathway," and "ferroptosis" were involved in liver disease. Furthermore, four miRNAs (mmu-miR-30e-3p, mmu-miR-203-3p, mmu-miR-125b-5p, and mmu-miR-30c-2-3p) related to liver injury were screened and verified. CONCLUSION This study revealed that the expression profiling of miRNAs in the livers was changed after E. multilocularis infection, and improved our understanding of the transcriptomic landscape of hepatic echinococcosis in mice.
Collapse
Affiliation(s)
- Yazhou Zhu
- Department of Pathogen Biology, School of Basic MedicineNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Prevention and Control of Common Infectious DiseasesYinchuanChina
| | - Ming Li
- General Hospital of Ningxia Medical UniversityYinchuanChina
| | - Zihua Li
- Ningxia Key Laboratory of Prevention and Control of Common Infectious DiseasesYinchuanChina
- Department of Cell Biology and GeneticsNingxia Medical UniversityYinchuanChina
| | - Jiahui Song
- Ningxia Key Laboratory of Prevention and Control of Common Infectious DiseasesYinchuanChina
| | - Wei Zhao
- Department of Pathogen Biology, School of Basic MedicineNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Prevention and Control of Common Infectious DiseasesYinchuanChina
| |
Collapse
|
3
|
Tao X, Li J, He J, Jiang Y, Liu C, Cao W, Wu H. Pinellia ternata (Thunb.) Breit. Attenuates the allergic airway inflammation of cold asthma via inhibiting the activation of TLR4-medicated NF-kB and NLRP3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116720. [PMID: 37268256 DOI: 10.1016/j.jep.2023.116720] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pinellia ternata (Thunb.) Breit. (PT) has been demonstrated to be effective against the allergic airway inflammation (AAI) in clinical practices, especially in cold asthma (CA). Until now, the active ingredients, protective effect, and possible mechanism of PT against CA remain unknown. AIM OF THE STUDY The aim of this investigation was to examine the therapeutic impact and elucidate the underlying mechanism of PT on the AAI of CA. METHODS The compositions of PT water extract were determined via the UPLC-Q-TOF-MS/MS. The ovalbumin (OVA) and cold-water baths were used to induce CA in female mice. Morphological characteristic observations, expectorant effect, bronchial hyperreactivity (BHR), excessive mucus secretion, and inflammatory factors were used to uncover the treatment effect of PT water extract. In addition, the mucin 5AC (MUC5AC) mRNA and protein levels and the aquaporin 5 (AQP5) mRNA and protein levels were detected via qRT-PCR, immunohistochemistry (IHC), and western blotting. Moreover, the protein expressions associated with the TLR4, NF-κB, and NLRP3 signaling pathway were monitored by western blot analysis. RESULTS Thirty-eight compounds were identified from PT water extract. PT showed significant therapeutic effects on mice with cold asthma in terms of expectorant activity, histopathological changes, airway inflammation, mucus secretion, and hyperreactivity. PT exhibited good anti-inflammatory effects in vitro and in vivo. The expression levels of MUC5AC mRNA and protein decreased significantly, while AQP5 expression levels increased significantly in the lung tissues of mice after administration with PT as compared to mice induced by CA. Furthermore, the protein expressions of TLR4, p-iκB, p-p65, IL-1β, IL-18, NLRP3, cleaved caspase-1, and ASC were markedly reduced following PT treatment. CONCLUSIONS PT attenuated the AAI of CA by modulating Th1- and Th2-type cytokines. PT could inhibit the TLR4-medicated NF-kB signaling pathway and activate the NLRP3 inflammasome to reduce CA. This study provides an alternative therapeutic agent of the AAI of CA after administration with PT.
Collapse
Affiliation(s)
- Xingbao Tao
- College of Pharmacy, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China; Post-Doctoral Research Center, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Juan Li
- Rehabilitation Center, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Jun He
- College of Traditional Chinese Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Yunbin Jiang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Chunshan Liu
- Rehabilitation Center, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Weiguo Cao
- College of Pharmacy, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China.
| | - Hao Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
4
|
Qin T, Liu M, Lv Y, Zheng A, Wang L, Wu Y, Kasianenko O, Wei X, Teng Z, Xia X, Hu J. Comprehensive Analysis of lncRNA and mRNA Expression Profile of Macrophage RAW264.7 Stimulated by Antimicrobial Peptide BSN-37. Protein Pept Lett 2023; 30:783-793. [PMID: 37587823 DOI: 10.2174/0929866530666230816110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND BSN-37, a novel antimicrobial peptide (AMP) containing 37 amino acid residues isolated from the bovine spleen, has not only antibacterial activity but also immunomodulatory activity. Recent evidence shows that long non-coding RNAs (lncRNAs) play an important role in regulating the activation and function of immune cells. The purpose of this experiment was to investigate the lncRNA and mRNA expression profile of mouse macrophages RAW264.7 stimulated by bovine antimicrobial peptide BSN-37. METHODS The whole gene expression microarray was used to detect the differentially expressed lncRNA and mRNA between antimicrobial peptide BSN-37 activated RAW264.7 cells and normal RAW264.7 cells. KEGG pathway analysis and GO function annotation analysis of differentially expressed lncRNAs and mRNA were carried out. Eight kinds of lncRNAs and nine kinds of mRNA with large differences were selected for qRT-PCR verification, respectively. RESULTS In the current study, we found that 1294 lncRNAs and 260 mRNAs were differentially expressed between antibacterial peptide BSN-37 treatment and control groups. Among them, Bcl2l12, Rab44, C1s, Cd101 and other genes were associated with immune responses and were all significantly up-regulated. Mest and Prkcz are related to cell growth, and other genes are related to glucose metabolism and lipid metabolism. In addition, some immune-related terms were also found in the GO and KEGG analyses. At the same time, real-time quantitative PCR was used to verify selected lncRNA and mRNA with differential expression. The results of qRT-PCR verification were consistent with the sequencing results, indicating that our data were reliable. CONCLUSION This study provides the lncRNA and mRNA expression profiles of RAW264.7 macrophages stimulated by antimicrobial peptide BSN-37 and helps to provide a reference value for subsequent studies on lncRNA regulation of antimicrobial peptide BSN-37 immune function.
Collapse
Affiliation(s)
- Ting Qin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Mingcheng Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Yanhe Lv
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Airong Zheng
- Forage and Feed Station of Henan Province, Zhengzhou, China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yundi Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Oksana Kasianenko
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhanwei Teng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
5
|
Gao J, Zou Y, Wu XJ, Xu Y, Zhu XQ, Zheng WB. Differential miRNA expression profiles in the bone marrow of Beagle dogs at different stages of Toxocara canis infection. BMC Genomics 2022; 23:847. [PMID: 36544082 PMCID: PMC9773451 DOI: 10.1186/s12864-022-09081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Toxocara canis is distributed worldwide, posing a serious threat to both human and dog health; however, the pathogenesis of T. canis infection in dogs remains unclear. In this study, the changes in microRNA (miRNA) expression profiles in the bone marrow of Beagle dogs were investigated by RNA-seq and bioinformatics analysis. RESULTS Thirty-nine differentially expressed (DE) miRNAs (DEmiRNAs) were identified in this study. Among these, four DEmiRNAs were identified at 24 h post-infection (hpi) and all were up-regulated; eight DEmiRNAs were identified with two up-regulated miRNAs and six down-regulated miRNAs at 96 hpi; 27 DEmiRNAs were identified with 13 up-regulated miRNAs and 14 down-regulated miRNAs at 36 days post-infection (dpi). Among these DEmiRNAs, cfa-miR-193b participates in the immune response by regulating the target gene cd22 at 24 hpi. The novel_328 could participate in the inflammatory and immune responses through regulating the target genes tgfb1 and tespa1, enhancing the immune response of the host and inhibiting the infection of T. canis at 96 hpi. In addition, cfa-miR-331 and novel_129 were associated with immune response and self-protection mechanisms at 36 dpi. 20 pathways were significantly enriched by KEGG pathway analysis, most of which were related to inflammatory response, immune response and cell differentiation, such as Cell adhesion molecules (CAMs), ECM-receptor interaction and Focal adhesion. CONCLUSIONS These findings suggested that miRNAs of Beagle dog bone marrow play important roles in the pathogenesis of T. canis infection in dogs and provided useful resources to better understand the interaction between T. canis and the hosts.
Collapse
Affiliation(s)
- Jin Gao
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province China
| | - Yang Zou
- grid.454892.60000 0001 0018 8988State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu Province China
| | - Xiao-Jing Wu
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province China
| | - Yue Xu
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province China
| | - Xing-Quan Zhu
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province China ,grid.410696.c0000 0004 1761 2898Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan Province China
| | - Wen-Bin Zheng
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province China
| |
Collapse
|
6
|
Zhou Z, Mo L, Li D, Zeng W, Wu H, Wu Z, Huang J. Comparative transcriptomics analyses of chemosensory genes of antenna in male red swamp crayfish Procambarus clarkii. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.976448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The red swamp crayfish, Procambarus clarkii, is a globally invasive species and has caused huge damage to aquaculture, biodiversity, and ecology worldwide. Antenna-expressed receptors are important for P. clarkii to detect chemosensory cues for mate attraction. In this study, we tested the behavior of male P. clarkii to the conditioned water from female P. clarkii during the mating and non-mating periods, and performed RNA sequencing to investigate the chemosensory-related genes of the antenna of male P. clarkii. The results of the behavioral assay have shown that for the female-conditioned water, male P. clarkii within the mating period can be significantly attracted, but not during the non-mating period. This suggested that the expressions of chemosensory-related genes in the antenna of male P. clarkii may change significantly with mating seasonal variation. Antenna transcriptomes found that a total of 59,218 unigenes with an average length of 1,056.41 bp, and 4,889 differentially expressed unigenes (DEGs), among which 2,128 were upregulated, while 2,761 were downregulated were obtained. A total of 12 upregulated and nine downregulated DEGs were associated with chemical reception, including four ionotropic receptors (IRs) or ionotropic glutamate receptors (iGluRs), eight G-protein-coupled receptors (GPCRs), five transient receptor potential channels (TRP channels), one sodium–calcium exchanger, one isomerase, and two uncharacterized proteins (chemosensory proteins-like, CSPs). CSPs were preliminarily classified as pheromone receptors in the antenna of male P. clarkii. Furthermore, the calcium transduction-related pathways may play an important role in the sex pheromone reception of the male P. clarkii’s antenna. The results of quantitative real-time reverse transcriptase PCR (RT-qPCR) showed that the trends of expression of eight selected unigenes were consistent with RNA-Seq results. Our results provide more comprehensive data for chemical communication mechanisms after P. clarkii enter the mating period and eventually would develop better control strategies in further.
Collapse
|
7
|
Zarlenga D, Thompson P, Pozio E. Trichinella species and genotypes. Res Vet Sci 2020; 133:289-296. [PMID: 33199264 DOI: 10.1016/j.rvsc.2020.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Trichinella spiralis has historically been deemed "the pig parasite" owing to its initial classification within a monospecific genus. However, in recent years, the genus has expanded to include 10 distinct species and at least 3 different genotypes whose taxonomic status remains unstipulated. In contrast to T. spiralis, however, most of these sylvatic species and genotypes do not infect pigs well. Inasmuch as morphological characters cannot be used to define species within this genus, earlier classifications were based upon host and geographical ranges, biological characters, and the presence or absence of a collagen capsule that surrounds the muscle stage larvae. Later, isoenzymes, DNA gel fragmentation patterns and DNA probes were used to help in identification and classification. Today, amidst the "-omics" revolution, new molecular and biochemical-based methodologies have improved detection, differentiation and characterization at all levels including worm populations. These efforts have discernably expanded immunological, epidemiological, and genetic studies resulting in better hypotheses on the evolution of the genus, and on global events, transmission cycles, host associations, and biogeographical histories that contributed to its cosmopolitan distribution. Reviews of this sort are best begun with a background on the genus; however, efforts will divert to the most recent knowledge available on the taxonomy, phylogeny, epidemiology and biochemistry that define this genus in the 21st century.
Collapse
Affiliation(s)
- Dante Zarlenga
- Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA.
| | - Peter Thompson
- Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | - Edoardo Pozio
- Department of Infectious Diseases, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|