1
|
Lin WH, Yen CH, Yang CY, Lin CF, Chang YF, Lin CN, Chiou MT. Pathotyping and molecular serotyping of clinical isolates of Glaesserella parasuis in Taiwan. Braz J Microbiol 2025; 56:1283-1289. [PMID: 39932660 PMCID: PMC12095826 DOI: 10.1007/s42770-025-01620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/13/2025] [Indexed: 05/22/2025] Open
Abstract
Glaesserella parasuis is a bacterial pathogen that causes severe economic losses in the swine industry worldwide. In this study, 262 G. parasuis isolates from pigs with Glässer's disease obtained between 2015 and 2022 in Taiwan were serotyped, pathotyped, and analyzed for virulence genes. The most prevalent serovars were 5 (29%), 4 (27.9%), 12 (12.2%), and non-typable strains (13%). The frequency of serositis with pulmonary lesions (55%) was significantly higher than that of pulmonary lesions alone (23.3%) and serositis lesions alone (21.7%) (p < 0.001). Serovars 4, 5, 12, 13 and non-typable strains had a significantly higher prevalence in serositis with pulmonary lesions than in pulmonary lesions alone, whereas serovar 1 had higher prevalence in pulmonary lesions. The virulence gene V4, related to virulence-associated protein D, had the highest detection rate (94.8%) in pathogenic isolates, which was significantly higher than other virulence genes in serovars 4, 5, 7, 12, 13, and non-typable strains except for serovar 1. Virulence-associated protein D may be a suitable subunit vaccine antigen candidate, and more research is required to evaluate the potential for broader application. Given the limited vaccine availability restricted to serovar 5 in Taiwan, these findings provide a basis for multivalent and subunit vaccine development providing better cross-protection.
Collapse
Affiliation(s)
- Wei-Hao Lin
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan.
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1, Shuefu Road, Pingtung, 912301, Pingtung, Taiwan.
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan.
| | - Chia-Hung Yen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1, Shuefu Road, Pingtung, 912301, Pingtung, Taiwan
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Chuen-Fu Lin
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1, Shuefu Road, Pingtung, 912301, Pingtung, Taiwan
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Chao-Nan Lin
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1, Shuefu Road, Pingtung, 912301, Pingtung, Taiwan
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Ming-Tang Chiou
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1, Shuefu Road, Pingtung, 912301, Pingtung, Taiwan
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| |
Collapse
|
2
|
Xie X, Yang H, Zhao X, Teng L, Yang Y, Luo H. Potential role of key rumen microbes in regulating host health and growth performance in Hu sheep. Anim Microbiome 2025; 7:51. [PMID: 40414888 PMCID: PMC12103811 DOI: 10.1186/s42523-025-00412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/16/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Average daily gain (ADG) is an important component affecting the profitability of sheep. However, research on the relationship between rumen microbes and sheep growth phenotype is still very lacking. Therefore, in this study, 16 Hu sheep were selected from a cohort of 318 sheep assigned to the same feeding and management conditions, and divided into high growth rate (HADG, n = 8) group and low growth rate (LADG, n = 8) group according to the extreme ADG value. Then, the differences in rumen microbes, rumen fermentation and animal immune parameters were further compared between groups to explore the potential role of rumen key microbes in regulating the health and growth performance of Hu sheep hosts. RESULTS The results showed that specific pathogenic bacteria associated with ADG, including Anaerotruncus, Sediminibacterium and Glaesserella, exhibited significant correlations with interleukin-6 (IL-6) and immunoglobulin G (IgG). These interactions disrupt immune homeostasis in the host, leading to a metabolic prioritization of energy resources toward immune responses, thereby impairing growth and development. Succinivibrio_dextrinosolvens was enriched in HADG sheep and exhibited a significant positive correlation with propionate levels. This promoted propionate production in the rumen, enhancing the metabolic activity of carbohydrate, amino acid and energy metabolism, ultimately contributing to higher ADG in sheep. Importantly, random forest analysis results showed that Succinivibrio_dextrinosolvens could classify sheep into HADG and LADG with a prediction accuracy of 81.2%. Additionally, we identified 34 bacteria belonged to connectors in the HADG co-occurrence network, including Alloprevotella, Phascolarctobacterium, Anaerovibrio, Butyricicoccus, Ruminococcaceae_noname, and Roseburia, etc., which play an important role in the degradation of carbohydrates and convert them into short-chain fatty acids (SCFAs), maintaining rumen health, and modulating inflammation. CONCLUSIONS In summary, key microbes in the rumen affect the overall healthy homeostasis and rumen fermentation of the host, leading to changes in energy utilization, which in turn affects the average daily gain of Hu sheep. Succinivibrio_dextrinosolvens is a promising biomarker for selecting high growth rate sheep in the future. This study provides a new method to manipulate rumen bacteria to improve growth performance in sheep.
Collapse
Affiliation(s)
- Ximei Xie
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Huan Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xingang Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Li Teng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuze Yang
- Beijing General Station of Animal Husbandry Service, Beijing, 100101, China.
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Xu J, Jin X, Li X, Yang D. Epidemiology and pathogenicity of Haemophilus parasuis in eastern China. Front Microbiol 2025; 16:1589975. [PMID: 40443997 PMCID: PMC12120839 DOI: 10.3389/fmicb.2025.1589975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 04/09/2025] [Indexed: 06/02/2025] Open
Abstract
Haemophilus parasuis (H. parasuis), the causative agent of Glässer's disease (polyserositis), exhibits considerable serotype diversity and is globally distributed. To investigate the epidemiological characteristics of H. parasuis in China, 810 suspected infection samples, including lung tissues and pleural effusions, were systematically analyzed. These samples were collected between 2022 and 2024 from six major pig-producing provinces in China. The analysis revealed a national infection rate of 52.10% (422/810), with Jiangxi Province exhibiting the highest prevalence (71.76%). Seasonal analysis indicated significantly higher incidence rates during winter (66.29%) and spring (60.45%) compared to summer (34.81%) and autumn (46.46%). Serotyping of 56 H. parasuis isolates demonstrated that serotype 5 (42.86%) and serotype 12 (19.64%) were predominant, while 10.71% of the strains were nontypeable. Notably, Jiangxi Province displayed a single-serotype profile, whereas other provinces exhibited multiple-serotype cocirculation patterns. Virulence gene analysis revealed the universal absence of HPM-1370 and the consistent presence of vta3 across all isolates. Serotypes 4 and 8 exclusively harbored the vta gene cluster, while serotype 5 retained other target genes despite lacking HPM-1370. The HPM-1371 gene was detected only in serotypes 5 and 14. Serotypes 1, 11, 12, and 13 exhibited a combination of conserved wza-vta1-vta2 -vta3 genes, although 36.37% (4/11) of serotype 12 isolates lacked the wza gene. Serotypes 2 and 7 carried only wza and vta3 genes. Animal challenge experiments demonstrated marked differences in strain pathogenicity: the H5-1 strain induced 100% mortality with acute septicemia, widespread alveolar destruction, and fibrinous exudation; the H12-1 strain caused 50% mortality accompanied by severe pleural adhesions and hemorrhagic lesions; and the H7-1 strain resulted in 33.33% mortality with localized pulmonary damage. These findings provide essential evidence for the development of targeted prevention and control strategies against H. parasuis infection.
Collapse
Affiliation(s)
- Jingyu Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Xin Jin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuesong Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Dehong Yang
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| |
Collapse
|
4
|
Dai L, Wan J, Zhang R, Xie T, Jia Y, Lu Z, Zhang F, Ke W, Liu F, Lei L. Multi-epitope vaccines Xlc and Ddc against Glaesserella parasuis infection in mice. Vet Microbiol 2025; 304:110491. [PMID: 40154005 DOI: 10.1016/j.vetmic.2025.110491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Glaesserella parasuis (synonym Haemophilus parasuis) is the pathogenic agent of Glässer's disease and causes huge economic losses in the world's swine industry. Glaesserella parasuis (G. parasuis) can be divided into 15 serotypes, and the cross-protection effect of existing vaccines is not satisfactory. Therefore, the development of a vaccine to prevent multiple serotypes of G. parasuis infection is of great significance for the prevention and treatment of Glässer's disease, but still faces many difficulties. In this study, the B-cell, CTL and Th cell epitopes of CtdB, CtbC, OppA, TbpB, HxuC, D15, Omp2 and Omp5 proteins were predicted by bioinformatics method, and multi-epitope proteins Xlc and Ddc were obtained by concatenating epitopes through linkers. After immunization with Xlc and Ddc, the levels of antibodies, IL-4, and IFN-γ in mice were significantly increased. The protective rates of Xlc+Ddc immunized mice against G. parasuis serotypes 4, 5, and 10 were 62.5 %, 75 %, and 87.5 %, respectively, which were higher than those of Xlc (37.5 %, 62.5 %, and 87.5 %) and Ddc (75 %, 25 %, and 50 %). Overall, the combination of multi-epitope proteins Xlc and Ddc had good immunogenicity and strong cross-protection against G. parasuis serotypes 4, 5, and 10. These results indicated that multi-epitope proteins Xlc and Ddc can serve as candidate subunit vaccines against G. parasuis infection.
Collapse
Affiliation(s)
- Lu Dai
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Jiajia Wan
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Rui Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Tingting Xie
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Yizhen Jia
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Zhichao Lu
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Fuxian Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Wenting Ke
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Feng Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China.
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Li F, Zong X, Chen G, Zhang Y, Cao Q, Li L, Chen H, Peng Z, Tan C. Isolation, Antimicrobial Susceptibility, and Genotypes of Three Pasteurellaeae Species Prevalent on Pig Farms in China Between 2021 and 2023. Microorganisms 2025; 13:938. [PMID: 40284774 PMCID: PMC12029755 DOI: 10.3390/microorganisms13040938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Pasteurella multocida (PM), Glaesserella parasuis (GPS), and Actinobacillus pleuropneumoniae (APP) are among the species with the top five isolation rates on Chinese pig farms annually. To understand the antimicrobial susceptibility and genotypes of these three pathogens that are currently prevalent on pig farms, we investigated 151 bacterial strains (64 PM, 48 GPS, and 39 APP) isolated from 4190 samples from farms in 12 Chinese provinces between 2021 and 2023. The prevalent serotypes were PM type D (50.0%), GPS type 5/12 (47.92%), and APP type 7 (35.90%). A relatively high proportion of PM and APP were resistant to ampicillin (PM, 93.75%; APP, 71.79%), tilmicosin (PM, 64.06%; APP, 58.97%), tetracycline (PM, 43.75%; APP, 61.54%), and enrofloxacin (PM, 34.38%; APP, 10.26%). Ampicillin, tetracycline, and enrofloxacin exhibited low MIC90 values against GPS (8 µg/mL), while sulfamethoxazole-trimethoprim had a high MIC90 value (512 µg/mL). A total of 18 genes conferring resistance to various antimicrobial classes were identified, and tet(L), tet(M), tet(A), blaTEM, sul2, aph(3')-Ia, dfrA12, qnrS1, strA, sul3, and mef(B) exhibited a high frequency of identification (≥70%). The analysis of regular virulence factor genes showed that several genes, including fimB, fimA, fimD, fimF, and fepG, were found in all PM, GPS, and APP strains. However, certain genes exhibited species-specific preferences, even if they belonged to the same category.
Collapse
Affiliation(s)
- Fangxin Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (X.Z.); (G.C.); (Y.Z.); (Q.C.); (L.L.); (H.C.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xin Zong
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (X.Z.); (G.C.); (Y.Z.); (Q.C.); (L.L.); (H.C.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Guosheng Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (X.Z.); (G.C.); (Y.Z.); (Q.C.); (L.L.); (H.C.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yu Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (X.Z.); (G.C.); (Y.Z.); (Q.C.); (L.L.); (H.C.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Qi Cao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (X.Z.); (G.C.); (Y.Z.); (Q.C.); (L.L.); (H.C.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Lu Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (X.Z.); (G.C.); (Y.Z.); (Q.C.); (L.L.); (H.C.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (X.Z.); (G.C.); (Y.Z.); (Q.C.); (L.L.); (H.C.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zhong Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (X.Z.); (G.C.); (Y.Z.); (Q.C.); (L.L.); (H.C.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (X.Z.); (G.C.); (Y.Z.); (Q.C.); (L.L.); (H.C.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
6
|
Wang H, Dong C, Tian X, Pan Y, Wang L, An T, Zhu L. Development and application of a dual LAMP-LFD assay for the simultaneous detection of Streptococcus suis and Glaesserella parasuis. Front Cell Infect Microbiol 2025; 15:1575365. [PMID: 40235932 PMCID: PMC11996922 DOI: 10.3389/fcimb.2025.1575365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
Introduction Streptococcus suis (S. suis) and Glaesserella parasuis (G. parasuis) are prevalent pathogens in pig populations and are often associated with co-infections, leading to substantial economic losses in the swine industry. However, there is currently a shortage of rapid detection methods. In this study, a dual loop-mediated isothermal amplification combined with lateral flow dipstick (LAMP-LFD) assay was developed for the simultaneous and convenient detection of S. suis and G. parasuis. Methods The assay utilized primers targeting the conserved regions of the gdh gene of S. suis and the infB gene of G. parasuis. Optimal primer sets were identified, and reaction conditions, including temperature, time, and primer concentration ratios, were optimized using single-variable control method. The LAMP-LFD assay was established with biotin and digoxin or biotin and 6-FAM-labeled FIP/BIP primers, combined with LFD. Results The assay was most effective at a reaction temperature of 62°C, a primer concentration ratio of 1:4, and a reaction time of 40 minutes. The minimum detection limits were 22 and 18 copies/μL for recombinant plasmids and 19 and 20 CFU for bacterial samples of S. suis and G. parasuis, respectively. The assay showed no cross-reactivity with other pathogens and exhibited high adaptability across various thermal platforms, including PCR instruments, metal baths, and water baths. Clinical testing of 106 samples revealed positive rates of 11.32% (12/106) for S. suis, 25.47% (27/106) for G. parasuis, and 2.83% (3/106) for mixed infections. Discussion This simple, rapid, specific, and sensitive dual LAMP-LFD assay provides robust technical support for the prevention and control of swine streptococcosis and Glässer's disease.
Collapse
Affiliation(s)
- Haojie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- China Institute of Veterinary Drug Control, Beijing, China
| | - Chenhui Dong
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xiaoxiao Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yao Pan
- Animal Husbandry Science Institute of Ganzi Tibetan Autonomous Prefecture, Kangding, China
| | - Longxi Wang
- China Institute of Veterinary Drug Control, Beijing, China
| | - Tonqging An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liangquan Zhu
- China Institute of Veterinary Drug Control, Beijing, China
| |
Collapse
|
7
|
González-Fernández A, Mencía-Ares O, García-Iglesias MJ, Petrocchi-Rilo M, Miguélez-Pérez R, Perelló-Jiménez A, Herencia-Lagunar E, Acebes-Fernández V, Gutiérrez-Martín CB, Martínez-Martínez S. TbpB-based oral mucosal vaccine provides heterologous protection against Glässer's disease caused by different serovars of Spanish field isolates of Glaesserella parasuis. Porcine Health Manag 2024; 10:57. [PMID: 39609907 PMCID: PMC11606180 DOI: 10.1186/s40813-024-00404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Glaesserella parasuis (G. parasuis) is the primary agent of Glässer's disease, significantly affecting nursery and early fattening piglets. Current prophylactic measures, mainly serovar-specific bacterins administered to sows, are limited by maternal immunity, which can interfere with active immunization in piglets. Subunit vaccines containing G. parasuis-specific antigenic molecules show promise but are not yet commercially available. Transferrin-binding proteins (Tbp), which enable G. parasuis to acquire iron in low-iron environments like mucosal surfaces, have been proposed as potential vaccine antigens. The mucosal administration of a TbpB-based subunit vaccine could provide a promising solution to overcome the limitations posed by maternal immunity, offering an effective approach to control the disease in weaning piglets. This study, conducted in two phases, primarily evaluates (days 0-45) the immunogenicity of a two-dose oral mucosal TbpB-based subunit vaccine (TbpBY167A) administered to colostrum-deprived piglets, and subsequently (days 45-52), its heterologous protection by challenging these piglets with four G. parasuis clinical isolates from different TbpB clusters (I, III) and serovars (SV1, SV4, SV5, SV7) recovered from Spanish pig farms. RESULTS The oral mucosal administration of the two-dose TbpB-based vaccine induced a robust humoral immune response in immunized colostrum-deprived piglets, significantly increasing IgA and IgM concentration 15 days after the second dose (p < 0.01). Upon challenge with four G. parasuis clinical isolates, the vaccine demonstrated heterologous protection, markedly improving survival rates (OR: 8.45; CI 95%: 4.97-14.36) and significantly reducing clinical signs and lesions, regardless of the TbpB cluster and serovar. The vaccine reduced G. parasuis colonization in the respiratory tract (p < 0.0001) and G. parasuis systemic target tissues, like tarsus and carpus joints, liver, and brain (p < 0.05). Immunohistochemical analysis showed a lower macrophage count in different lung locations of immunized piglets (p < 0.0001). CONCLUSIONS This study demonstrates that oral mucosal administration of the TbpBY167A subunit vaccine in piglets provides effective heterologous protection against diverse virulent European G. parasuis field isolates, significantly reducing bacterial colonization and dissemination. This vaccine offers a promising alternative to traditional bacterins, overcoming limitations due to maternal immunity, and represents a strong candidate for universal vaccination against Glässer's disease.
Collapse
Affiliation(s)
| | - Oscar Mencía-Ares
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain.
| | | | - Máximo Petrocchi-Rilo
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Rubén Miguélez-Pérez
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Zhu Y, Guan L, Zhang J, Xue Y, Zhao Z. Research progress into the principles and methods underlying capsular typing of Glaesserella parasuis. Vet Res 2024; 55:137. [PMID: 39407326 PMCID: PMC11481780 DOI: 10.1186/s13567-024-01395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/16/2024] [Indexed: 10/19/2024] Open
Abstract
Glaesserella parasuis (GPS) is an important bacterial pathogen of swine. Serotype identification has presented a bottleneck in GPS research since it was first identified as the pathogen causing Glässer's disease in pigs in 1910. This paper presents a systematic review of the history of the development and application of gel immunodiffusion (GID), indirect hemagglutination assay (IHA), and polymerase chain reaction (PCR) typing methods for GPS, and the discovery of their shared antigenic basis. It provides a systematic theoretical overview of the immunology and principles underlying the three typing methods and offers new ideas for research into the prevention and control of Glässer's disease. In 1992, GPS was first classified into serotypes 1-15 using GID based on GPS heat-stable antigens, but about 25% of the strains were found to be non-typeable, and the composition of their antigens for serotyping was unclear. In 2003, the IHA method was established based on saline-extracted antigens of GPS, whose sensitivity and typing rate were higher than for GID, although about 15% of strains were still found to be non-typeable. The results of IHA and GID typing are roughly consistent, since they share the same GPS surface polysaccharide serotyping antigens, although whether these are capsular polysaccharides, lipopolysaccharides, or other polysaccharides, remains to be determined. In 2013, the Capsular polysaccharide (CPS) synthetic gene clusters from GPS serotypes 1-15 were successfully analyzed, confirming that CPS is essential for the formation of antigens for serotyping. In 2015, primers were designed based on the specific target genes of GPS capsules to establish a PCR typing method (H-PCR) for GPS, which, however, could not identify serotypes 5 and 12. In 2017, a new PCR typing method (J-PCR) was established based on the specific target genes of GPS capsules, which could identify serotypes 5 and 12. A combination of the two PCR typing methods enables the typing of almost all GPS strains, and the consistency with GID and IHA was verified using molecular biological methods. The antigenic basis of the three typing methods was shown to involve the GPS capsule. PCR typing methods are characterized by simple operation, fast speed, and low cost, and can successfully solve many problems in GID and IHA serotyping, and so have become widely adopted.
Collapse
Affiliation(s)
- Yaxin Zhu
- Key Lab of Animal Bacterial Infectious Disease Prevention and Control Technology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Lijun Guan
- Key Lab of Animal Bacterial Infectious Disease Prevention and Control Technology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
- Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Junfeng Zhang
- Key Lab of Animal Bacterial Infectious Disease Prevention and Control Technology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yun Xue
- Key Lab of Animal Bacterial Infectious Disease Prevention and Control Technology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhanqin Zhao
- Key Lab of Animal Bacterial Infectious Disease Prevention and Control Technology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
- Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
9
|
González-Fernández A, Mencía-Ares O, García-Iglesias MJ, Petrocchi-Rilo M, Miguélez-Pérez R, Gutiérrez-Martín CB, Martínez-Martínez S. Virulence and Antimicrobial Resistance Characterization of Glaesserella parasuis Isolates Recovered from Spanish Swine Farms. Antibiotics (Basel) 2024; 13:741. [PMID: 39200041 PMCID: PMC11350796 DOI: 10.3390/antibiotics13080741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Glaesserella (Haemophilus) parasuis, the causative agent of Glässer's disease, is present in most pig farms as an early colonizer of the upper respiratory tract. It exhibits remarkable variability in virulence and antimicrobial resistance (AMR), with virulent strains capable of inducing respiratory or systemic disease. This study aimed to characterize the virulence and the AMR profiles in 65 G. parasuis isolates recovered from Spanish swine farms. Virulence was assessed using multiplex leader sequence (LS)-PCR targeting vtaA genes, with all isolates identified as clinical (presumed virulent). Pathotyping based on ten pangenome genes revealed the virulent HPS_22970 as the most frequent (83.1%). Diverse pathotype profiles were observed, with 29 unique gene combinations and two isolates carrying only potentially non-virulent pangenome genes. AMR phenotyping showed widespread resistance, with 63.3% classified as multidrug resistant, and high resistance to clindamycin (98.3%) and tylosin (93.3%). A very strong association was found between certain pathotype genes and AMR phenotypes, notably between the virulent HPS_22970 and tetracycline resistance (p < 0.001; Φ = 0.58). This study reveals the wide diversity and complexity of G. parasuis pathogenicity and AMR phenotype, emphasizing the need for the targeted characterization of clinical isolates to ensure appropriate antimicrobial treatments and the implementation of prophylactic measures against virulent strains.
Collapse
|
10
|
Lacouture S, Vincent AT, Gottschalk M. Distribution of Streptococcus suis, Actinobacillus pleuropneumoniae, and Glaesserella parasuis serotypes isolated from diseased pigs in Quebec between January 2020 and December 2023. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2024; 65:533-534. [PMID: 38827588 PMCID: PMC11132141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Affiliation(s)
- Sonia Lacouture
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA-FRQNT), Faculté de médecine vétérinaire, Université de Montréal, 3200, rue Sicotte, Saint-Hyacinthe (Québec) J2S 2M2 (Lacouture, Gottschalk); Département des sciences animales, Université Laval, 2325, rue de l'Université, Québec (Québec) G1V 0A6 (Vincent)
| | - Antony T Vincent
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA-FRQNT), Faculté de médecine vétérinaire, Université de Montréal, 3200, rue Sicotte, Saint-Hyacinthe (Québec) J2S 2M2 (Lacouture, Gottschalk); Département des sciences animales, Université Laval, 2325, rue de l'Université, Québec (Québec) G1V 0A6 (Vincent)
| | - Marcelo Gottschalk
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA-FRQNT), Faculté de médecine vétérinaire, Université de Montréal, 3200, rue Sicotte, Saint-Hyacinthe (Québec) J2S 2M2 (Lacouture, Gottschalk); Département des sciences animales, Université Laval, 2325, rue de l'Université, Québec (Québec) G1V 0A6 (Vincent)
| |
Collapse
|
11
|
Wu CF, Hsu CY, Chou CC, Wang CM, Huang SW, Kuo HC. Serotypes, virulence factors and multilocus sequence typing of Glaesserella parasuis from diseased pigs in Taiwan. PeerJ 2023; 11:e15823. [PMID: 37790626 PMCID: PMC10544350 DOI: 10.7717/peerj.15823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/10/2023] [Indexed: 10/05/2023] Open
Abstract
Background Glaesserella parasuis (G. parasuis) belongs to the normal microbiota of the upper respiratory tract in the swine, but virulent strains can cause systemic infections commonly known as Glässer's disease that leads to significant economic loss in the swine industry. Fifteen serotypes of G. parasuis have been classified by gel immunodiffusion test while the molecular serotyping based on variation within the capsule loci have further improved the serotype determination of unidentified field strains. Serovar has been commonly used as an indicator of virulence; however, virulence can be significantly differ in the field isolates with the same serotype. To date, investigations of G. parasuis isolated in Taiwan regarding antimicrobial resistance, serotypes, genotypes and virulence factors remain unclear. Methods A total of 276 G.parasuis field isolates were collected from 263 diseased pigs at the Animal Disease Diagnostic Center of National Chiayi University in Taiwan from January 2013 to July 2021. Putative virulence factors and serotypes of the isolates were identified by polymerase chain reaction (PCR) and antimicrobial susceptibility testing was performed by microbroth dilution assay. Additionally, the epidemiology of G. parasuis was characterized by multilocus sequence typing (MLST). Results Serotype 4 (33.3%) and 5 (21.4%) were the most prevalent, followed by nontypable isolates (15.9%), serotype 13 (9.4%), 12 (6.5%), 14 (6.2%), 7 (3.3%), 1 (1.8%), 9 (1.1%), 11 (0.7%) and 6 (0.4%). Nine out of 10 putative virulence factors showed high positive rates, including group 1 vtaA (100%), fhuA (80.4%), hhdA (98.6%), hhdB (96.0%), sclB7 (99.6%), sclB11 (94.9%), nhaC (98.2%), HAPS_0254 (85.9%), and cirA (99.3%). According to the results of antimicrobial susceptibility testing, ceftiofur and florfenicol were highly susceptible (>90%). Notably, 68.8% isolates showed multidrug resistance. MLST revealed 16 new alleles and 67 new sequence types (STs). STs of these isolated G. parasuis strains were classified into three clonal complexes and 45 singletons by Based Upon Related Sequence Types (BURST) analysis. All the G. parasuis strains in PubMLST database, including strains from the diseased pigs in the study, were defined into two main clusters by Unweighted Pair Group Method with Arithmetic Mean (UPGMA). Most isolates in this study and virulent isolates from the database were mainly located in cluster 2, while cluster 1 included a high percentage of nasal isolates from asymptomatic carriers. In conclusion, this study provides current prevalence and antimicrobial susceptibility of G. parasuis in Taiwan, which can be used in clinical diagnosis and treatment of Glässer's disease.
Collapse
Affiliation(s)
- Ching-Fen Wu
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Chia-Yu Hsu
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Chi-Chung Chou
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taichung, Taiwan
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Szu-Wei Huang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Hung-Chih Kuo
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| |
Collapse
|
12
|
Mugabi R, Silva APSP, Hu X, Gottschalk M, Aragon V, Macedo NR, Sahin O, Harms P, Main R, Tucker AW, Li G, Clavijo MJ. Molecular characterization of Glaesserella parasuis strains circulating in North American swine production systems. BMC Vet Res 2023; 19:135. [PMID: 37641044 PMCID: PMC10464461 DOI: 10.1186/s12917-023-03698-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Glaesserella parasuis is the causative agent of Glässer's disease in pigs. Serotyping is the most common method used to type G. parasuis isolates. However, the high number of non-typables (NT) and low discriminatory power make serotyping problematic. In this study, 218 field clinical isolates and 15 G. parasuis reference strains were whole-genome sequenced (WGS). Multilocus sequence types (MLST), serotypes, core-genome phylogeny, antimicrobial resistance (AMR) genes, and putative virulence gene information was extracted. RESULTS In silico WGS serotyping identified 11 of 15 serotypes. The most frequently detected serotypes were 7, 13, 4, and 2. MLST identified 72 sequence types (STs), of which 66 were novel. The most predominant ST was ST454. Core-genome phylogeny depicted 3 primary lineages (LI, LII, and LIII), with LIIIA sublineage isolates lacking all vtaA genes, based on the structure of the phylogenetic tree and the number of virulence genes. At least one group 1 vtaA virulence genes were observed in most isolates (97.2%), except for serotype 8 (ST299 and ST406), 15 (ST408 and ST552) and NT (ST448). A few group 1 vtaA genes were significantly associated with certain serotypes or STs. The putative virulence gene lsgB, was detected in 8.3% of the isolates which were predominantly of serotype 5/12. While most isolates carried the bcr, ksgA, and bacA genes, the following antimicrobial resistant genes were detected in lower frequency; blaZ (6.9%), tetM (3.7%), spc (3.7%), tetB (2.8%), bla-ROB-1 (1.8%), ermA (1.8%), strA (1.4%), qnrB (0.5%), and aph3''Ia (0.5%). CONCLUSION: This study showed the use of WGS to type G. parasuis isolates and can be considered an alternative to the more labor-intensive and traditional serotyping and standard MLST. Core-genome phylogeny provided the best strain discrimination. These findings will lead to a better understanding of the molecular epidemiology and virulence in G. parasuis that can be applied to the future development of diagnostic tools, autogenous vaccines, evaluation of antibiotic use, prevention, and disease control.
Collapse
Affiliation(s)
- Robert Mugabi
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Ana Paula S Poeta Silva
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Xiao Hu
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Marcelo Gottschalk
- Groupe de Recherche Sur Les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Montréal, Canada
| | - Virginia Aragon
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, UniversitatAutònoma de Barcelona (UAB), Campus, Bellaterra, Barcelona, Spain
- Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), IRTA, UniversitatAutònoma de Barcelona (UAB), Campus, Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Nubia R Macedo
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | | | - Rodger Main
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Maria J Clavijo
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA.
- PIC North America, Hendersonville, TN, USA.
| |
Collapse
|
13
|
Scherrer S, Schmitt S, Rademacher F, Kuhnert P, Ghielmetti G, Peterhans S, Stephan R. Development of a new multiplex quantitative PCR for the detection of Glaesserella parasuis, Mycoplasma hyorhinis, and Mycoplasma hyosynoviae. Microbiologyopen 2023; 12:e1353. [PMID: 37379423 PMCID: PMC10186005 DOI: 10.1002/mbo3.1353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/26/2023] [Accepted: 04/13/2023] [Indexed: 06/30/2023] Open
Abstract
Glaesserella parasuis, Mycoplasma hyorhinis, and Mycoplasma hyosynoviae are important porcine pathogens responsible for polyserositis, polyarthritis, meningitis, pneumonia, and septicemia causing significant economic losses in the swine industry. A new multiplex quantitative polymerase chain reaction (qPCR) was designed on one hand for the detection of G. parasuis and the virulence marker vtaA to distinguish between highly virulent and non-virulent strains. On the other hand, fluorescent probes were established for the detection and identification of both M. hyorhinis and M. hyosynoviae targeting 16S ribosomal RNA genes. The development of the qPCR was based on reference strains of 15 known serovars of G. parasuis, as well as on the type strains M. hyorhinis ATCC 17981T and M. hyosynoviae NCTC 10167T . The new qPCR was further evaluated using 21 G. parasuis, 26 M. hyorhinis, and 3 M. hyosynoviae field isolates. Moreover, a pilot study including different clinical specimens of 42 diseased pigs was performed. The specificity of the assay was 100% without cross-reactivity or detection of other bacterial swine pathogens. The sensitivity of the new qPCR was demonstrated to be between 11-180 genome equivalents (GE) of DNA for M. hyosynoviae and M. hyorhinis, and 140-1200 GE for G. parasuis and vtaA. The cut-off threshold cycle was found to be at 35. The developed sensitive and specific qPCR assay has the potential to become a useful molecular tool, which could be implemented in veterinary diagnostic laboratories for the detection and identification of G. parasuis, its virulence marker vtaA, M. hyorhinis, and M. hyosynoviae.
Collapse
Affiliation(s)
- Simone Scherrer
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Sarah Schmitt
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Fenja Rademacher
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Giovanni Ghielmetti
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Sophie Peterhans
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Roger Stephan
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
- Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
14
|
Yan P, Jia YC, Zhang XL, Zhou YY, Guo Y, Yin RL, Yuan J, Wang LX, Guo ZB, Wang JY, Wang X, Yin RH. Virulence assessment of four Glaesserella parasuis strains isolated in Liaoning province of China. Res Vet Sci 2023; 158:226-234. [PMID: 37031471 DOI: 10.1016/j.rvsc.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Glaesserella parasuis (G. parasuis) is a part of the normal upper respiratory microbiota of healthy swine. In many studies, the serovars 1, 4, 5, and 12 of G. parasuis are considered to be highly virulent and its serovars 3, 6, 7, 9, and 11 are considered to be non-virulent. Until now, researchers have found that non-virulent strains of G. parasuis cause an increasing number of diseases. However, little is known concerning why non-virulent strains cause disease with the virulence changes. In present study, four G. parasuis strains were evaluated for their cytotoxicity property, which aims to compare their virulence. The results showed that highly virulent strains XX0306 and CY1201, as well as, non-virulent strains HLD0115 and YK1603 caused a series of pathological changes, increased lactate dehydrogenase (LDH) release, and decreased cell activity. In addition, compared to the control group, both highly and non-virulent strains showed similar trends, demonstrating that the method of classifying the virulence of G. parasuis based on its serovar is worth further deliberation. Hence, we investigated the adhesion capacity and invasion rate of G. parasuis, the results indicated that XX0306 and HLD0115 had the strongest adhesion and invasion ability, which contradicts the classification of the virulence of G. parasuis based on its serovar. The apoptosis degree induced by highly virulent strains was more intensive than non-virulent strains, as measured by annexin V and propidium iodide (PI) double staining. Through testing the expression of apoptosis-related genes Bcl-2 and Bax, we found highly virulent strains induced apoptosis by inhibiting the expression of Bcl-2.
Collapse
|
15
|
Upregulation of TLR4-Dependent ATP Production Is Critical for Glaesserella parasuis LPS-Mediated Inflammation. Cells 2023; 12:cells12050751. [PMID: 36899887 PMCID: PMC10001010 DOI: 10.3390/cells12050751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Glaesserella parasuis (G. parasuis), an important pathogenic bacterium, cause Glässer's disease, and has resulted in tremendous economic losses to the global swine industry. G. parasuis infection causes typical acute systemic inflammation. However, the molecular details of how the host modulates the acute inflammatory response induced by G. parasuis are largely unknown. In this study, we found that G. parasuis LZ and LPS both enhanced the mortality of PAM cells, and at the same time, the level of ATP was enhanced. LPS treatment significantly increased the expressions of IL-1β, P2X7R, NLRP3, NF-κB, p-NF-κB, and GSDMD, leading to pyroptosis. Furthermore, these proteins' expression was enhanced following extracellular ATP further stimulation. When reduced the production of P2X7R, NF-κB-NLRP3-GSDMS inflammasome signaling pathway was inhibited, and the mortality of cells was reduced. MCC950 treatment repressed the formation of inflammasome and reduced mortality. Further exploration found that the knockdown of TLR4 significantly reduced ATP content and cell mortality, and inhibited the expression of p-NF-κB and NLRP3. These findings suggested upregulation of TLR4-dependent ATP production is critical for G. parasuis LPS-mediated inflammation, provided new insights into the molecular pathways underlying the inflammatory response induced by G. parasuis, and offered a fresh perspective on therapeutic strategies.
Collapse
|
16
|
Lee CY, Ong HX, Tan CY, Low SE, Phang LY, Lai J, Ooi PT, Fong MWC. Molecular Characterization and Phylogenetic Analysis of Outer membrane protein P2 ( OmpP2) of Glaesserella ( Haemophilus) parasuis Isolates in Central State of Peninsular Malaysia. Pathogens 2023; 12:pathogens12020308. [PMID: 36839580 PMCID: PMC9966854 DOI: 10.3390/pathogens12020308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Glaesserella (Haemophilus) parasuis, the etiological agent of Glässer's disease, is an economically significant pathogen commonly associated with serofibrinous polyserositis, arthritis, fibrinous bronchopneumonia and/or meningitis. This study is the first attempt to molecularly characterize and provide a detailed overview of the genetic variants of G. parasuis present in Malaysia, in reference to its serotype, virulence-associated trimeric autotransporters (vtaA) gene and outer membrane protein P2 (OmpP2) gene. The G. parasuis isolates (n = 11) from clinically sick field samples collected from two major pig producing states (Selangor and Perak) were selected for analysis. Upon multiplex PCR, the majority of the isolates (eight out of 11) were identified to be serotype 5 or 12, and interestingly, serotypes 3, 8 and 15 were also detected, which had never been reported in Malaysia prior to this. Generally, virulent vtaA was detected for all isolates, except for one, which displayed a nonvirulent vtaA. A phylogenetic analysis of the OmpP2 gene revealed that the majority of Malaysian isolates were clustered into genotype 1, which could be further divided into Ia and Ib, while only one isolate was clustered into genotype 2.
Collapse
Affiliation(s)
- Chee Yien Lee
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Hui Xin Ong
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Chew Yee Tan
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Suet Ee Low
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Lai Yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Jyhmirn Lai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi City 60004, Taiwan
| | - Peck Toung Ooi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
- Correspondence: (P.T.O.); (M.W.C.F.)
| | - Michelle Wai Cheng Fong
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
- Correspondence: (P.T.O.); (M.W.C.F.)
| |
Collapse
|
17
|
Wu J, Nan W, Peng G, Hu H, Xu C, Huang J, Xiao Z. Screening of linear B-cell epitopes and its proinflammatory activities of Haemophilus parasuis outer membrane protein P2. Front Cell Infect Microbiol 2023; 13:1192651. [PMID: 37207184 PMCID: PMC10189045 DOI: 10.3389/fcimb.2023.1192651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Haemophilus parasuis is a commensal organism of the upper respiratory tract of pigs, but virulent strains can cause Glässer's disease, resulting in significant economic losses to the swine industry. OmpP2 is an outer membrane protein of this organism that shows considerable heterogeneity between virulent and non-virulent strains, with classification into genotypes I and II. It also acts as a dominant antigen and is involved in the inflammatory response. In this study, 32 monoclonal antibodies (mAbs) against recombinant OmpP2 (rOmpP2) of different genotypes were tested for reactivity to a panel of OmpP2 peptides. Nine linear B cell epitopes were screened, including five common genotype epitopes (Pt1a, Pt7/Pt7a, Pt9a, Pt17, and Pt19/Pt19a) and two groups of genotype-specific epitopes (Pt5 and Pt5-II, Pt11/Pt11a, and Pt11a-II). In addition, we used positive sera from mice and pigs to screen for five linear B-cell epitopes (Pt4, Pt14, Pt15, Pt21, and Pt22). After porcine alveolar macrophages (PAMs) were stimulated with overlapping OmpP2 peptides, we found that the epitope peptides Pt1 and Pt9, and the loop peptide Pt20 which was adjacent epitopes could all significantly upregulated the mRNA expression levels of IL-1α, IL-1β, IL-6, IL-8, and TNF-α. Additionally, we identified epitope peptides Pt7, Pt11/Pt11a, Pt17, Pt19, and Pt21 and loop peptides Pt13 and Pt18 which adjacent epitopes could also upregulate the mRNA expression levels of most proinflammatory cytokines. This suggested that these peptides may be the virulence-related sites of the OmpP2 protein, with proinflammatory activity. Further study revealed differences in the mRNA expression levels of proinflammatory cytokines, including IL-1β and IL-6, between genotype-specific epitopes, which may be responsible for pathogenic differences between different genotype strains. Here, we profiled a linear B-cell epitope map of the OmpP2 protein and preliminarily analyzed the proinflammatory activities and effects of these epitopes on bacterial virulence, providing a reliable theoretical basis for establishing a method to distinguish strain pathogenicity and to screen candidate peptides for subunit vaccines.
Collapse
Affiliation(s)
- Jingbo Wu
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
| | - Wenjin Nan
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
- *Correspondence: Wenjin Nan,
| | - Guoliang Peng
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
| | - Honghui Hu
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
| | - Chongbo Xu
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
| | - Jianqiang Huang
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
| | - Zhengzhong Xiao
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
| |
Collapse
|
18
|
Silva GFR, Moreno LZ, Matajira CEC, Silva APS, Araújo KM, Gomes VTM, Barbosa MRF, Sato MIZ, Moreno AM. Serotyping and Antimicrobial Susceptibility Profiling of Glaesserella parasuis Isolated from Diseased Swine in Brazil. Pathogens 2022; 11:pathogens11121443. [PMID: 36558777 PMCID: PMC9785225 DOI: 10.3390/pathogens11121443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Glaesserella parasuis is one of the major pathogens in swine intensive production systems. To date, 15 serovars have been described, and the prevalence of these serotypes in different geographical regions has been identified by several methods. G. parasuis outbreaks could be controlled with vaccination if it were not for serovar diversity and limited cross-serovar protection; consequently, antibiotic therapy continues to be necessary for infection control. Here, we present the isolation, identification, serotyping, and antibiotic susceptibility profiling of G. parasuis from diseased swine in Brazil. A total of 105 G. parasuis strains, originating from nine different Brazilian states, were evaluated, and serotypes 4 and 5 were found to be the most prevalent (27.6% and 24.8% respectively). Aminoglycosides, florfenicol, tiamulin, and β-lactams were tested, and they presented lower resistant rates against G. parasuis strains. The highest resistance rates were observed against tylosin (97.1%), sulfadimethoxine (89.5%), danofloxacin (80%), trimethoprim/sulfamethoxazole (62.5%), enrofloxacin (54.3%), and clindamycin (50.5%). Multidrug resistance was detected in 89.5% of tested strains, and a total of sixty resistance profiles were identified. The cluster analysis of resistance patterns showed no correlation with the isolation year or G. parasuis serotype.
Collapse
Affiliation(s)
- Givago Faria Ribeiro Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Av Prof Dr Orlando Marques de Paiva, 87, São Paulo 05508-270, SP, Brazil
| | - Luisa Zanolli Moreno
- Phibro Animal Health Corporation–Av. Pres. Tancredo de Almeida Neves, 1063, São Paulo 071112-070, SP, Brazil
| | | | - Ana Paula Santos Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Av Prof Dr Orlando Marques de Paiva, 87, São Paulo 05508-270, SP, Brazil
| | - Kawany Miyazaki Araújo
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Av Prof Dr Orlando Marques de Paiva, 87, São Paulo 05508-270, SP, Brazil
| | - Vasco Túlio Moura Gomes
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Av Prof Dr Orlando Marques de Paiva, 87, São Paulo 05508-270, SP, Brazil
| | - Mikaela Renata Funada Barbosa
- Environmental Company of the State of São Paulo (CETESB), Av. Prof. Frederico Hermann Júnior 345, São Paulo 05459-900, SP, Brazil
| | - Maria Inês Zanolli Sato
- Environmental Company of the State of São Paulo (CETESB), Av. Prof. Frederico Hermann Júnior 345, São Paulo 05459-900, SP, Brazil
| | - Andrea Micke Moreno
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Av Prof Dr Orlando Marques de Paiva, 87, São Paulo 05508-270, SP, Brazil
- Correspondence:
| |
Collapse
|
19
|
Studying the Interaction of Neutrophils and Glaesserella Parasuis Indicates a Serotype Independent Benefit from Degradation of NETs. Pathogens 2022; 11:pathogens11080880. [PMID: 36015001 PMCID: PMC9415231 DOI: 10.3390/pathogens11080880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
Glaesserella (G.) parasuis is one of the most important porcine pathogens causing Glaesser’s disease. Neutrophil granulocytes are the major counteracting cell type of the innate immune system, which contribute to the host defense by phagocytosis or the formation of neutrophil extracellular traps (NETs). Recently, NET-formation has been shown to facilitate the survival of bacteria from the Pasteurellaceae family. However, the interaction of NETs and G. parasuis is unclear so far. In this study, we investigated the interplay of three G. parasuis serotypes with porcine neutrophils. The production of reactive oxygen species by neutrophils after G. parasuis infection varied slightly among the serotypes but was generally low and not significantly influenced by the serotypes. Interestingly, we detected that independent of the serotype of G. parasuis, NET formation in neutrophils was induced to a small but significant extent. This phenomenon occurred despite the ability of G. parasuis to release nucleases, which can degrade NETs. Furthermore, the growth of Glaesserella was enhanced by external DNases and degraded NETs. This indicates that Glaesserella takes up degraded NET components, supplying them with nicotinamide adenine dinucleotide (NAD), as this benefit was diminished by inhibiting the 5′-nucleotidase, which metabolizes NAD. Our results indicate a serotype-independent interaction of Glaesserella with neutrophils by inducing NET-formation and benefiting from DNA degradation.
Collapse
|
20
|
TbpBY167A-Based Vaccine Can Protect Pigs against Glässer’s Disease Triggered by Glaesserella parasuis SV7 Expressing TbpB Cluster I. Pathogens 2022; 11:pathogens11070766. [PMID: 35890011 PMCID: PMC9323293 DOI: 10.3390/pathogens11070766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Glaesserella parasuis is the etiological agent of Glässer’s disease (GD), one of the most important diseases afflicting pigs in the nursery phase. We analyzed the genetic and immunological properties of the TbpB protein naturally expressed by 27 different clinical isolates of G. parasuis that were typed as serovar 7 and isolated from pigs suffering from GD. All the strains were classified as virulent by LS-PCR. The phylogenetic analyses demonstrated high similarity within the amino acid sequence of TbpB from 24 clinical strains all belonging to cluster III of TbpB, as does the protective antigen TbpBY167A. Three G. parasuis isolates expressed cluster I TbpBs, indicating antigenic diversity within the SV7 group of G. parasuis. The antigenic analysis demonstrated the presence of common epitopes on all variants of the TbpB protein, which could be recognized by an in vitro analysis using pig IgG induced by a TbpBY167A-based vaccine. The proof of concept of the complete cross-protection between clusters I and III was performed in SPF pigs immunized with the TbpBY167A-based vaccine (cluster III) and challenged with G. parasuis SV7, strains LM 360.18 (cluster I). Additionally, pigs immunized with a whole-cell inactivated vaccine based on G. parasuis SV5 (Nagasaki strain) did not survive the challenge performed with SV7 (strain 360.18), demonstrating the absence of cross-protection between these two serovars. Based on these results, we propose that a properly formulated TbpBY167A-based vaccine may elicit a protective antibody response against all strains of G. parasuis SV7, despite TbpB antigenic diversity, and this might be extrapolated to other serovars. This result highlights the promising use of the TbpBY167A antigen in a future commercial vaccine for GD prevention.
Collapse
|
21
|
Identification of Glaesserella parasuis and Differentiation of Its 15 Serovars Using High-Resolution Melting Assays. Pathogens 2022; 11:pathogens11070752. [PMID: 35889997 PMCID: PMC9323117 DOI: 10.3390/pathogens11070752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glaesserella parasuis is the etiological agent of Glässer’s disease, which is associated with polyserositis and arthritis and has a significant impact on the economy of the pig production industry. For the optimal surveillance of this pathogen, as well as for the investigation of G. parasuis-associated diseases, it is crucial to identify G. parasuis at the serovar level. In this work, we designed and developed new high-resolution melting (HRM) approaches, namely, the species-specific GPS-HRM1 and two serovar-specific HRM assays (GPS-HRM2 and GPS-HRM3), and evaluated the sensitivity and specificity of the assays. The HRM assays demonstrated good sensitivity, with 12.5 fg–1.25 pg of input DNA for GPS-HRM1 and 125 fg–12.5 pg for GPS-HRM2 and GPS-HRM3, as well as a specificity of 100% for the identification of all recognized 15 G. parasuis serovars. Eighteen clinical isolates obtained between 2014 and 2022 in Switzerland were tested by applying the developed HRM assays, which revealed a heterogeneous distribution of serovars 2, 7, 4, 13, 1, and 14. The combination with virulence marker vtaA (virulence-associated trimeric autotransporters) allows for the prediction of potentially virulent strains. The assays are simple to execute and enable a reliable low-cost approach, thereby refining currently available diagnostic tools.
Collapse
|
22
|
Temporal Patterns of Phenotypic Antimicrobial Resistance and Coinfecting Pathogens in Glaesserella parasuis Strains Isolated from Diseased Swine in Germany from 2006 to 2021. Pathogens 2022; 11:pathogens11070721. [PMID: 35889967 PMCID: PMC9316560 DOI: 10.3390/pathogens11070721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Glaesserella parasuis (Gps) causes high economic losses in pig farms worldwide. So far no vaccine provides cross-protection for different serotypes, so antibiotic treatment is widely used to cope with this pathogen. In this study, routine diagnostic data from 2046 pigs with Gps related diseases sent for necropsy to a German laboratory in the time period 2006–2021 were analysed retrospectively. In the time period 2018–2021, the most frequent serotypes (ST) detected were ST4 (30%) and ST13 (22%). A comparison of the reference period 2006–2013 prior to obligatory routine recording of antimicrobial usage in livestock with the period 2014–2021 resulted in a statistically significant decrease of frequencies of resistant Gps isolates for ceftiofur, enrofloxacin, erythromycin, spectinomycin, tiamulin and tilmicosin. While in 2006–2013 all isolates were resistant for tetracyclin and cephalothin, frequencies of resistant isolates decreased in the second time period to 28% and 62%, respectively. Parallel to the reduction of antimicrobial usage, during recent years a reduction in resistant Gps isolates has been observed, so only a low risk of treatment failure exists. Most frequently, pigs positive for Gps were also positive for S.suis (25.4%), PRRSV-EU (25.1%) and influenza virus (23%). The viral pathogens may act as potential trigger factors.
Collapse
|
23
|
Blasi B, Sipos W, Knecht C, Dürlinger S, Ma L, Cissé OH, Nedorost N, Matt J, Weissenböck H, Weissenbacher-Lang C. Pneumocystis spp. in Pigs: A Longitudinal Quantitative Study and Co-Infection Assessment in Austrian Farms. J Fungi (Basel) 2021; 8:jof8010043. [PMID: 35049984 PMCID: PMC8779942 DOI: 10.3390/jof8010043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
While Pneumocystis has been recognized as both a ubiquitous commensal fungus in immunocompetent mammalian hosts and a major opportunistic pathogen in humans responsible for severe pneumonias in immunocompromised patients, in pigs its epidemiology and association with pulmonary diseases have been rarely reported. Nevertheless, the fungus can be quite abundant in porcine populations with up to 51% of prevalence reported so far. The current study was undertaken to longitudinally quantify Pneumocystis carinii f. sp. suis and other pulmonary pathogens in a cohort of 50 pigs from five Austrian farms (i.e., 10 pigs per farm) with a history of respiratory disease at five time points between the first week and the fourth month of life. The fungus was present as early as the suckling period (16% and 26% of the animals in the first and the third week, respectively), yet not in a high amount. Over time, both the organism load (highest 4.4 × 105 copies/mL) and prevalence (up to 88% of positive animals in the third month) increased in each farm. The relative prevalence of various coinfection patterns was significantly different over time. The current study unravelled a complex co-infection history involving Pneumocystis and other pulmonary pathogens in pigs, suggesting a relevant role of the fungus in the respiratory disease scenario of this host.
Collapse
Affiliation(s)
- Barbara Blasi
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (B.B.); (N.N.); (J.M.); (H.W.)
| | - Wolfgang Sipos
- Department for Farm Animals and Veterinary Public Health, Clinic for Swine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (W.S.); (C.K.); (S.D.)
| | - Christian Knecht
- Department for Farm Animals and Veterinary Public Health, Clinic for Swine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (W.S.); (C.K.); (S.D.)
| | - Sophie Dürlinger
- Department for Farm Animals and Veterinary Public Health, Clinic for Swine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (W.S.); (C.K.); (S.D.)
| | - Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA; (L.M.); (O.H.C.)
| | - Ousmane H. Cissé
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA; (L.M.); (O.H.C.)
| | - Nora Nedorost
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (B.B.); (N.N.); (J.M.); (H.W.)
| | - Julia Matt
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (B.B.); (N.N.); (J.M.); (H.W.)
| | - Herbert Weissenböck
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (B.B.); (N.N.); (J.M.); (H.W.)
| | - Christiane Weissenbacher-Lang
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (B.B.); (N.N.); (J.M.); (H.W.)
- Correspondence: ; Tel.: +43-(1)-25077-2413
| |
Collapse
|
24
|
Macedo N, Gottschalk M, Strutzberg-Minder K, Van CN, Zhang L, Zou G, Zhou R, Marostica T, Clavijo MJ, Tucker A, Aragon V. Molecular characterization of Glaesserella parasuis strains isolated from North America, Europe and Asia by serotyping PCR and LS-PCR. Vet Res 2021; 52:68. [PMID: 33980312 PMCID: PMC8117636 DOI: 10.1186/s13567-021-00935-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
Glaesserella parasuis strains were characterized by serotyping PCR, vtaA virulence marker Leader Sequence (LS)-PCR, clinical significance, and geographic region. Overall, the serovars 4, 5/12, 7, 1, and 13 were the most commonly detected. Serovars of greatest clinical relevance were systemic isolates that had a higher probability of being serovar 5/12, 13, or 7. In comparison, pulmonary isolates had a higher likelihood of being serovars 2, 4, 7, or 14. Serovars 5/12 and 13 have previously been considered disease-associated, but this study agrees with other recent studies showing that serovar 7 is indeed associated with systemic G. parasuis disease. Serovar 4 strains illustrated how isolates can have varying degrees of virulence and be obtained from pulmonary, systemic, or nasal sites. Serovars 8, 9, 15, and 10 were predominantly obtained from nasal samples, which indicates a limited clinical significance of these serovars. Additionally, most internal G. parasuis isolates were classified as virulent by LS-PCR and were disease-associated isolates, including serovars 1, 2, 4, 5/12, 7, 13, and 14. Isolates from the nasal cavity, including serovars 6, 9, 10, 11, and 15, were classified as non-virulent by LS-PCR. In conclusion, the distribution of G. parasuis serovars remains constant, with few serovars representing most of the strains isolated from affected pigs. Moreover, it was confirmed that the LS-PCR can be used for G. parasuis virulence prediction of field strains worldwide.
Collapse
Affiliation(s)
- Nubia Macedo
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA, USA.
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, University of Montreal, Montreal, Canada
| | | | - Chao Nguyen Van
- Faculty of Animal Science and Veterinary Medicine, University of Agricultural and Forestry, Hue University, Hue, 53000, Vietnam.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, 430070, China
| | - Lijun Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, 430070, China
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, 430070, China
| | - Thaire Marostica
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA, USA.,Department of Veterinary Clinic and Surgery, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | - Maria Jose Clavijo
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA, USA.,PIC North America, Hendersonville, TN, USA
| | - Alexander Tucker
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| |
Collapse
|
25
|
Development of a Luminex microbead-based serotyping assay for Glaesserella parasuis. J Microbiol Methods 2021; 182:106159. [PMID: 33548394 DOI: 10.1016/j.mimet.2021.106159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 11/21/2022]
Abstract
Glaesserella parasuis consists of 15 serovars with some of them highly virulent and some of them avirulent. As killed vaccines do not provide crossprotection across serovars, serotyping is of importance. Serotyping, previously done by gel diffusion, is now done by multiplex PCR followed by electrophoresis. Accurately differentiating 15 serovars by electrophoresis is problematic. To overcome this problem, a Luminex microbead-based multiplex assay was used to differentiate the serovars. The assay consisted of a multiplex PCR assay followed by hybridisation to microbeads which were then analysed on a Luminex machine. The newly developed assay was compared to the multiplex serotyping PCR and the gel diffusion/indirect haemagglutination assay (GD/IHA). The microbead-based assay worked very well for the 15 reference strains but when used on the 74 Australian field strains displayed some problems. The main problems were with the eight out of nine serovar 4 field isolates and the five serovar 7 and three serovar 14 field isolates. While the microbead-based assay could differentiate between the serovar 5 and 12 reference strains, which the serovar multiplex PCR could not, all four field isolates identified by GD/IHA as serovar 12 were identified as serovar 5 by the microbead-based assay. Serovar 4 has been noted to have a high diversity especially among strains from different countries. Our work clearly shows that the diversity of strains at both the national and the international level has to be taken into account when developing diagnostic assays.
Collapse
|