1
|
Kursa O. Multidrug Resistance of Gallibacterium anatis Biovar Haemolytica Isolated from the Reproductive Tracts of Laying Hens. Pathogens 2024; 13:989. [PMID: 39599542 PMCID: PMC11597584 DOI: 10.3390/pathogens13110989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance is recognized worldwide as one of the greatest threats to human and animal health and the environment. To evaluate the resistance rate of Gallibacterium anatis biovar haemolytica, which contributes to bacteremia, oophoritis, ovarian follicle degeneration, salpingitis, decreased egg production, and increased mortality in hens, strains isolated from the reproductive tracts of layers were analyzed. The oviducts were taken from three hens from each of 10 flocks manifesting clinical signs related to laying. Twenty-two isolates of G. anatis biovar haemolytica collected from the three parts of the reproductive system were identified using MALDI-TOF and molecular methods. The biovar's resistance to 19 antimicrobial substances was assessed using the disk diffusion (n = 8) and broth microdilution (n = 11) methods. The presence of virulence (gtxA, gyrB, and flfA) and antibiotic resistance (blaROB, aphA, tetB, and tetH) genes was examined using PCR. All the isolates were resistant to four or more classes of antibiotics and were considered multidrug-resistant. All such isolates were resistant to tilmicosin, tylosin, and enrofloxacin, 88.2% were to tetracycline, and 82.4% to vancomycin. The gtxA, gyrB, tetB, and tetH genes were demonstrated. Considering the present prevalence of multidrug resistance among G. anatis biovar haemolytica isolates from laying hen reproductive tracts, surveillance in reproductive flocks is warranted.
Collapse
Affiliation(s)
- Olimpia Kursa
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
2
|
Wang H, Wu F, Han H, Zhao J, Mao L. A case of human diarrhea caused by Gallibacterium anatis: a case report. BMC Infect Dis 2024; 24:1075. [PMID: 39350058 PMCID: PMC11441234 DOI: 10.1186/s12879-024-09991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Gallibacterium anatis (G. anatis) is an opportunistic pathogen previously associated with deaths in poultry and is also a pathogen that rarely causes human diseases. G. anatis has only been reported twice as the causative agent of a human disease (both in France). Here, we report a 62-year-old male patient with hypertension and type 2 diabetes who suffered from acute watery diarrhea caused by this bacterium which was identified by MALDI-TOF MS and 16 S rRNA sequencing. Despite human diarrhea caused by G.anatis is rare, with the continuous emergence of multidrug-resistant isolates of G. anatis in recent years, this case report will inform clinicians that G. anatis especially drug-resistant G. anatis may be a possible infectious source of human diarrhea in immune-suppressed populations.
Collapse
Affiliation(s)
- Huixuan Wang
- Nantong Institute of Liver Diseases, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Jiangsu, China
| | - Fei Wu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Qinnian Road 99, Nantong City, Jiangsu, China
| | - Haixia Han
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Qinnian Road 99, Nantong City, Jiangsu, China
| | - Jianhua Zhao
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Qinnian Road 99, Nantong City, Jiangsu, China
| | - Liping Mao
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Qinnian Road 99, Nantong City, Jiangsu, China.
| |
Collapse
|
3
|
Palmieri N, Hess C, Hess M. GWAS and comparative genomics reveal candidate antibiotic resistance genes in the avian pathogen Gallibacterium anatis for six widespread antibiotics. Vet Microbiol 2024; 290:109995. [PMID: 38301451 DOI: 10.1016/j.vetmic.2024.109995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/20/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Gallibacterium anatis is a Gram-negative bacterium found in the respiratory and genital tracts of various animals, primarily poultry. Its association with septicemia and high mortality in poultry, along with the rise in multidrug-resistant strains, has amplified concerns. Recent research uncovered significant variability in antibiotic resistance profiles among G. anatis isolates from different Austrian flocks, and even between different organs within the same bird. In response, in the present study 60 of these isolates were sequenced and a combination of comparative genomics and genome-wide association study (GWAS) analysis was applied to understand the genetic variability of G. anatis across flocks and organs and to identify genes related to antibiotic resistance. The results showed that each flock harbored one or two strains of G. anatis with only a few strains shared between flocks, demonstrating a great variability among flocks. We identified genes associated with resistance to nalidixic acid, trimethoprim, cefoxitin, tetracycline, ampicillin and sulfamethoxazole. Our findings revealed that G. anatis may develop antibiotic resistance through two mechanisms: single-nucleotide mutations and the presence of specific genes that confer resistance. Unexpectedly, some tetracycline-resistant isolates lacked all known tetracycline-associated genes, suggesting the involvement of novel mechanisms of tetracycline resistance that require additional exploration. Furthermore, our functional annotation of resistance genes highlighted the citric acid cycle pathway as a potential key modulator of antibiotic resistance in G. anatis. In summary, this study describes the first application of GWAS analysis to G. anatis and provides new insights into the acquisition of multidrug resistance in this important avian pathogen.
Collapse
Affiliation(s)
- Nicola Palmieri
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
4
|
Kursa O, Tomczyk G, Sieczkowska A, Sawicka-Durkalec A. Antibiotic resistance of Gallibacterium anatis biovar haemolytica isolates from chickens. J Vet Res 2024; 68:93-100. [PMID: 38525234 PMCID: PMC10960332 DOI: 10.2478/jvetres-2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/02/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Gallibacterium anatis is an opportunistic bacteria inducing a range of clinical signs in poultry. Gallibacterium anatis strains show multidrug resistance to antibacterial substances. The purpose of this study was to examine the susceptibility of G. anatis biovar haemolytica isolates collected from the respiratory, reproduction and gastrointestinal tracts of chickens to different antibiotics from various classes. Material and Methods Gallibacterium anatis biovar haemolytica was identified in tracheal swab and gastrointestinal and reproductive tract tissue samples from Polish layer and broiler chicken flocks. Twenty six isolates with β-haemolysis capability, each from a different flock, obtained from the respiratory (n = 8), reproductive (n = 10) and gastrointestinal (n = 8) tracts were selected and identified by matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometry after culturing. A PCR method targeting the 16S genes was used for verification of isolates. The isolates' susceptibility to 20 antimicrobials was evaluated using the disc diffusion method for 8 drugs and the dilution method for the other 12. In addition, they were tested for the presence of the GtxA, gyrB and flfA virulence genes and blaROB, aphA, tetB and tetH antibiotic resistance genes by PCR. Results The most prevalent antibiotic resistance was to tilmicosin, tylosin and quinupristin/dalfopristin (all 100%), erythromycin (96.2%), tetracycline (96.2%), linezolid (92.3%) and teicoplanin (92.3%). Universal susceptibility was to only one antibiotic, chloramphenicol. Statistically significant differences were found between the resistance of gastrointestinal tract strains and that of strains from other tracts to daptomycin, gentamicin, ciprofloxacin and colistin. The GtxA and gyrB genes were detected in 100% of isolates and flfA in 19.2%. The isolates most frequently contained tetB and less frequently tetH and aphA, and did not contain blaROB. Conclusion Most G. anatis biovar haemolytica isolates were resistant to many classes of antibiotics. Therefore, it is necessary and important to be vigilant for the occurrence of these bacteria and thorough in their diagnosis.
Collapse
Affiliation(s)
- Olimpia Kursa
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Grzegorz Tomczyk
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Agata Sieczkowska
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Anna Sawicka-Durkalec
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
5
|
Abd El-Ghany WA, Algammal AM, Hetta HF, Elbestawy AR. Gallibacterium anatis infection in poultry: a comprehensive review. Trop Anim Health Prod 2023; 55:383. [PMID: 37889324 PMCID: PMC10611880 DOI: 10.1007/s11250-023-03796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Gallibacterium anatis (G. anatis), a member of the Pasteurellaceae family, normally inhabits the upper respiratory and lower genital tracts of poultry. However, under certain circumstances of immunosuppression, co-infection (especially with Escherichia coli or Mycoplasma), or various stressors, G. anatis caused respiratory, reproductive, and systemic diseases. Infection with G. anatis has emerged in different countries worldwide. The bacterium affects mainly chickens; however, other species of domestic and wild birds may get infected. Horizontal, vertical, and venereal routes of G. anatis infection have been reported. The pathogenicity of G. anatis is principally related to the presence of some essential virulence factors such as Gallibacterium toxin A, fimbriae, haemagglutinin, outer membrane vesicles, capsule, biofilms, and protease. The clinical picture of G. anatis infection is mainly represented as tracheitis, oophoritis, salpingitis, and peritonitis, while other lesions may be noted in cases of concomitant infection. Control of such infection depends mainly on applying biosecurity measures and vaccination. The antimicrobial sensitivity test is necessary for the correct treatment of G. anatis. However, the development of multiple drug resistance is common. This review article sheds light on G. anatis regarding history, susceptibility, dissemination, virulence factors, pathogenesis, clinical picture, diagnosis, and control measures.
Collapse
Affiliation(s)
- Wafaa A Abd El-Ghany
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Abdelazeem M Algammal
- Bacteriology, Immunology, and Mycology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Helal F Hetta
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, El-Beheira, 22511, Egypt
| |
Collapse
|
6
|
Karwańska M, Wieliczko A, Bojesen AM, Villumsen KR, Krzyżewska-Dudek E, Woźniak-Biel A. Isolation and characterization of multidrug resistant Gallibacterium anatis biovar haemolytica strains from Polish geese and hens. Vet Res 2023; 54:67. [PMID: 37612766 PMCID: PMC10463661 DOI: 10.1186/s13567-023-01198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/05/2023] [Indexed: 08/25/2023] Open
Abstract
Gallibacterium anatis biovar haemolytica is a bacterium that is frequently associated with infections of the reproductive tract and respiratory system in poultry. To assess the current prevalence and resistance profile of these bacteria in Poland, we collected and investigated 63 strains of Gallibacterium from diseased domestic poultry flocks including geese, laying hens, breeding hens and an ornamental hen. Detailed characterization of the isolates included the analysis of phenotypic antimicrobial resistance profiles and biofilm formation ability. Furthermore, the genetic background of 40 selected isolates regarding the presence of virulence and antimicrobial resistance genes and mobile genetic elements was determined. All investigated isolates were multidrug resistant, most prominently to β-lactams, fluoroquinolones, sulfonamides and macrolides. A total of 48 different resistance profiles were detected. Of all isolates, 50.8% formed a strong biofilm, where strains isolated from geese appeared to be better at biofilm formation than strains isolated from laying and breeding hens. Single-nucleotide polymorphism genotyping revealed that G. anatis bv. haemolytica strains are restricted in host and geographical distribution, and the geese isolates showed greater phylogenetic similarity. Whole genome sequencing enabled identification of 25 different antimicrobial resistance determinants. The most common resistance genes were tetB, blaROB-1, and blaTEM-1 which may be located on mobile genetic elements. All isolates possessed the toxin gene gtxA, and the fimbrial gene flfA was identified in 95% of strains. Our results indicated that all G. anatis bv. haemolytica isolates showed multidrug resistant phenotypes. Strains isolated from geese were characterized by the highest percentage of isolates resistant to selected antimicrobials, probably reflecting host-related adaptations.
Collapse
Affiliation(s)
- Magdalena Karwańska
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| | - Alina Wieliczko
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Rømer Villumsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eva Krzyżewska-Dudek
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Anna Woźniak-Biel
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
7
|
Kursa O, Tomczyk G, Sieczkowska A, Sawicka-Durkalec A. Prevalence, Identification and Antibiotic Resistance of Gallibacterium anatis Isolates from Chickens in Poland. Pathogens 2023; 12:992. [PMID: 37623952 PMCID: PMC10458089 DOI: 10.3390/pathogens12080992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
The Gram-negative bacterium Gallibacterium anatis is part of the normal avian respiratory, intestinal and reproductive tract microflora and can be transmitted horizontally and vertically. With the coexistence of other relevant factors, G. anatis becomes an opportunistic pathogen, economically damaging to the poultry industry. This bacterium's prevalence and molecular epidemiology were investigated, and the antimicrobial treatment options for G. anatis infection in chicken flocks in Poland were assessed. Tracheal samples from 182 flocks were collected between April 2022 and March 2023. The bacterial prevalence was determined by PCR targeting the gyrB gene and 16-23S rRNA. Gallibacterium anatis was identified by matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometry (MALDI-TOF) after culturing and PCR amplification. Isolates' susceptibility to 11 antimicrobials was assessed with a disc diffusion test. Isolates were also tested for gyrB, GtxA and flfA virulence genes and blaROB, aphA, tetB and tetH antibiotic resistance genes by PCR. Forty-one flocks (22.5%) were positive through PCR. Antibiotic resistance was most frequently observed against tilmicosin, tylosin, enrofloxacin, amoxicillin, tetracycline and doxycycline. Multiple resistance to at least eight antibiotics occurred in 20% of isolates and to at least four in 100%. The occurrence of gyrB was noted in 100%, GtxA was detected in 89%, and flfA was found in 14% of positive samples. The tetB gene was present in 61.0% of positive samples, tetH was in 36.0%, aphA was in 16.7%, and blaROB was in 5.6%. Significant differences were found in G. anatis isolates related to the presence of the virulence genes GtxA and gyrB and the presence of resistance genes (p < 0.05) associated with resistance to tetracyclines, β-lactams and aminoglycosides. The continued rise in the resistance of G. anatis to a broadening range of antibiotics is a major problem for the poultry industry worldwide, as well as for public health. The findings of this study may expand the knowledge of the pathogenicity of G. anatis in poultry.
Collapse
Affiliation(s)
- Olimpia Kursa
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland; (G.T.); (A.S.); (A.S.-D.)
| | | | | | | |
Collapse
|
8
|
Rømer Villumsen K, Allahghadry T, Karwańska M, Frey J, Bojesen AM. Quinolone Resistance in Gallibacterium anatis Determined by Mutations in Quinolone Resistance-Determining Region. Antibiotics (Basel) 2023; 12:903. [PMID: 37237806 PMCID: PMC10215703 DOI: 10.3390/antibiotics12050903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Control of the important pathogen, Gallibacterium anatis, which causes salpingitis and peritonitis in poultry, relies on treatment using antimicrobial compounds. Among these, quinolones and fluoroquinolones have been used extensively, leading to a rise in the prevalence of resistant strains. The molecular mechanisms leading to quinolone resistance, however, have not previously been described for G. anatis, which is the aim of this study. The present study combines phenotypic antimicrobial resistance data with genomic sequence data from a collection of G. anatis strains isolated from avian hosts between 1979 and 2020. Minimum inhibitory concentrations were determined for nalidixic acid, as well as for enrofloxacin for each included strain. In silico analyses included genome-wide queries for genes known to convey resistance towards quinolones, identification of variable positions in the primary structure of quinolone protein targets and structural prediction models. No resistance genes known to confer resistance to quinolones were identified. Yet, a total of nine positions in the quinolone target protein subunits (GyrA, GyrB, ParC and ParE) displayed substantial variation and were further analyzed. By combining variation patterns with observed resistance patterns, positions 83 and 87 in GyrA, as well as position 88 in ParC, appeared to be linked to increased resistance towards both quinolones included. As no notable differences in tertiary structure were observed between subunits of resistant and sensitive strains, the mechanism behind the observed resistance is likely due to subtle shifts in amino acid side chain properties.
Collapse
Affiliation(s)
- Kasper Rømer Villumsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Copenhagen, Denmark;
| | - Toloe Allahghadry
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Copenhagen, Denmark;
| | - Magdalena Karwańska
- Department of Epizootiology with Exotic Animal and Bird Clinic, Wroclaw University of Environmental and Life Sciences, 50-366 Wrocław, Poland;
| | - Joachim Frey
- Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Copenhagen, Denmark;
| |
Collapse
|
9
|
Shabbir MZ, Kariyawasam S, Pierre TA, Dunn PA, Wallner-Pendleton EA, Lu H. Identification, 16S rRNA-based characterization, and antimicrobial profile of Gallibacterium isolates from broiler and layer chickens. J Vet Diagn Invest 2023; 35:13-21. [PMID: 36401513 PMCID: PMC9751461 DOI: 10.1177/10406387221133782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gallibacterium spp., particularly G. anatis, have received much attention as poultry pathogens in recent years. We report here the presence and antimicrobial resistance profile of 69 Gallibacterium isolates obtained from 2,204 diagnostic submissions of broiler and layer chickens in 2019-2021. Gallibacterium-positive chickens had lesions primarily in the respiratory tract, reproductive tract, and related serosal surfaces. Gallibacterium spp. were initially identified based on their typical cultural characteristics on blood agar. The isolates were confirmed by a genus-specific PCR spanning 16S-23S rRNA and MALDI-TOF mass spectrometry. Phylogenetic analysis based on 16S rRNA gene sequence revealed distinct clades. Of the 69 isolates, 68 clustered with the reference strains of G. anatis and 1 with Gallibacterium genomospecies 1 and 2. Antimicrobial susceptibility testing of 58 of the 69 isolates by a MIC method showed variable responses to antimicrobials. The isolates were all susceptible to enrofloxacin, ceftiofur, florfenicol, and gentamicin. There was a high level of susceptibility to trimethoprim-sulfamethoxazole (98.0%), streptomycin (98.0%), amoxicillin (84.0%), sulfadimethoxine (71.0%), and neomycin (71.0%). All of the isolates were resistant to tylosin. There was resistance to penicillin (98.0%), erythromycin (95.0%), clindamycin (94.0%), novobiocin (90.0%), tetracycline (88.0%), oxytetracycline (76.0%), and sulfathiazole (53.0%). A high rate of intermediate susceptibility was observed for spectinomycin (67.0%) and sulfathiazole (40.0%). Our findings indicate a potential role of G. anatis as an important poultry pathogen and cause of subsequent disease, alone or in combination with other pathogens. Continuous monitoring and an antimicrobial susceptibility assay are recommended for effective treatment and disease control.
Collapse
Affiliation(s)
- Muhammad Z. Shabbir
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, USA
| | - Subhashinie Kariyawasam
- Department of Comparative, Diagnostic and Population Medicine, University of Florida, Gainesville, FL, USA
| | - Traci A. Pierre
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, USA
| | - Patricia A. Dunn
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, USA
| | | | - Huaguang Lu
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
10
|
Bajagai YS, Petranyi F, J Yu S, Lobo E, Batacan R, Kayal A, Horyanto D, Ren X, M Whitton M, Stanley D. Phytogenic supplement containing menthol, carvacrol and carvone ameliorates gut microbiota and production performance of commercial layers. Sci Rep 2022; 12:11033. [PMID: 35773309 PMCID: PMC9246849 DOI: 10.1038/s41598-022-14925-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Consumer push towards open and free-range production systems makes biosecurity on farms challenging, leading to increased disease and animal welfare issues. Phytogenic products are increasingly becoming a viable alternative for the use of antibiotics in livestock production. Here we present a study of the effects of commercial phytogenic supplement containing menthol, carvacrol and carvone on intestinal microbiota of layer hens, microbial functional capacity, and intestinal morphology. A total of 40,000 pullets were randomly assigned to two sides of the experimental shed. Growth performance, mortality, egg production and egg quality parameters were recorded throughout the trial period (18–30 weeks of age). Microbial community was investigated using 16S amplicon sequencing and functional difference using metagenomic sequencing. Phytogen supplemented birds had lower mortality and number of dirty eggs, and their microbial communities showed reduced richness. Although phytogen showed the ability to control the range of poultry pathogens, its action was not restricted to pathogenic taxa, and it involved functional remodelling the intestinal community towards increased cofactor production, heterolactic fermentation and salvage and recycling of metabolites. The phytogen did not alter the antimicrobial resistance profile or the number of antibiotic resistance genes. The study indicates that phytogenic supplementation can mimic the action of antibiotics in altering the gut microbiota and be used as their alternative in industry-scale layer production.
Collapse
Affiliation(s)
- Yadav S Bajagai
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Friedrich Petranyi
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Sung J Yu
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Edina Lobo
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Romeo Batacan
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Advait Kayal
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Darwin Horyanto
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Xipeng Ren
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Maria M Whitton
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia.
| |
Collapse
|
11
|
Chen L, Yang M, Zhu W, Su Y, Li D, Wang T. Multi-Omics Analysis After Vaginal Administration of Bacteroides fragilis in Chickens. Front Microbiol 2022; 13:846011. [PMID: 35250960 PMCID: PMC8888936 DOI: 10.3389/fmicb.2022.846011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 12/03/2022] Open
Abstract
The reproductive tract of chickens is an important organ for egg formation. The vagina is in close contact with the external environment, which may lead to the invasion of a variety of pathogenic bacteria, affect the internal and external quality of eggs, and even increase mortality and cause economic loss. In recent years, probiotics as a substitute for antibiotics have brought economic benefits in livestock and poultry production. In the present study, we investigated the effects of vaginal administration of Bacteroides fragilis on the cloacal microbiota, vaginal transcriptome and metabolomics of chickens and evaluated the beneficial potential of B. fragilis. The results showed that B. fragilis treatment could affect the microbial composition of the cloaca. Transcriptome analysis found that the immune-related genes CCN3, HAS2, and RICTOR were upregulated, that the inflammatory genes EDNRB, TOX, and NKX2-3 were downregulated, and that DEGs were also enriched in the regulation of the inflammatory response, cellular metabolism, and synaptic response pathways. In addition, the differential metabolites were mainly related to steroid hormone biosynthesis, unsaturated fatty acid biosynthesis, and arachidonic acid metabolism, and we identified associations between specific differential metabolites and genes. Overall, this study provides a theoretical basis for the application of B. fragilis as a potential probiotic in livestock and poultry production.
Collapse
Affiliation(s)
- Lu Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Maosen Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yuan Su
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
12
|
Zamojska D, Nowak A, Nowak I, Macierzyńska-Piotrowska E. Probiotics and Postbiotics as Substitutes of Antibiotics in Farm Animals: A Review. Animals (Basel) 2021; 11:ani11123431. [PMID: 34944208 PMCID: PMC8697875 DOI: 10.3390/ani11123431] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Breeders are searching for methods to protect farming animals against diseases caused by pathogenic bacteria. The easiest way to fight bacteria is to use antibiotics. Unfortunately, their abuse results in the presence of bacteria resistant to the most commonly used antibiotics in the environment. The restrictions on the use of antibiotics have forced the search for natural and safe ways to protect animals. It has been shown that the use of probiotics based on lactic acid bacteria may have a positive effect on the growth and use of feed by broilers, on the stabilization of the intestinal microbiota of chickens and pigs, and in the prevention of mastitis in dairy cows. The use of probiotics (live, nonpathogenic microorganisms) and postbiotics (inanimate bacteria, cell components or post-fermentation by-products) reduces the occurrence of pathogens in large-scale farms. Abstract Since 2006, the use of growth-promoting antibiotics has been banned throughout the European Union. To meet the expectations of livestock farmers, various studies have been carried out with the use of lactic acid bacteria. Scientists are trying to obtain the antimicrobial effect against the most common pathogens in large-scale farms. Supplementing the diet of broilers with probiotics (live, nonpathogenic microorganisms) stabilized the intestinal microbiota, which improved the results of body weight gain (BWG) and feed intake (FI). The positive effect of probiotics based on lactic acid bacteria has been shown to prevent the occurrence of diarrhea during piglet weaning. The antagonistic activity of postbiotics (inanimate bacteria, cell components, or post-fermentation by-products) from post-culture media after lactobacilli cultures has been proven on Staphylococcus aureus—the pathogen most often responsible for causing mastitis among dairy cows. The article aims to present the latest research examining the antagonistic effect of lactic acid bacteria on the most common pathogens in broilers, piglets, pigs, and cow farms.
Collapse
Affiliation(s)
- Daria Zamojska
- Polwet-Centrowet Sp. z o.o., M. Konopnickiej 21, 98-100 Lask, Poland;
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (D.Z.); (A.N.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (D.Z.); (A.N.)
| | - Ireneusz Nowak
- Faculty of Law and Administration, University of Lodz, Kopcinskiego 8/12, 90-232 Lodz, Poland;
| | | |
Collapse
|