1
|
De Luca C, Hess M. Vaccination strategies to protect chickens from fowl adenovirus (FAdV)-induced diseases: A comprehensive review. Vaccine 2025; 43:126496. [PMID: 39522325 DOI: 10.1016/j.vaccine.2024.126496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
In recent years, fowl adenovirus (FAdV)-induced diseases became a global problem with considerable impact on chicken health and welfare. This has prompted numerous studies to focus on experimental immunization strategies using whole virus formulations (live or killed vaccines), some of them modified as recombinantly constructed vector vaccines. In addition, FAdV capsid proteins were frequently reported as immunizing antigens (subunit vaccines), with fiber proteins being amongst the most successful candidates. To date, there is no standardized protocol to assess vaccine efficacy in experimental FAdV protection studies, with the consequence that the experimental settings present several degrees of variations even when sharing similar premises. Differences in formulation preparations, route of inoculation, antigen dose, vaccination scheme, choice of challenge strain, or type and age of the birds are capable to greatly influence the magnitude of the immune response and the consequent protective efficacy, altogether addressing remaining challenges. Beyond the antigen composition of a vaccine, the epidemiology of FAdVs with the potential of vertical transmission of virus and/or antibodies from breeders to progenies has a substantial impact on protection strategies. The goal of this review is to outline a broad overview of the findings made thus far regarding immunization strategies against diseases associated to FAdV infections, considering the literature published since the appearance of hepatitis-hydropericardium syndrome (HHS) in the late Eighties, in order to emphasize the current knowledge on FAdV vaccines and highlight fields of future research and intervention.
Collapse
Affiliation(s)
- Carlotta De Luca
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
2
|
Lin Y, Jiang W, Ma L, Zhang J, Tang Y, Kan Q, Xiong H, Wu J, Zhang J, Niu Y, Zhang W, Wang S, Wang W, Xie Q, Li T, Wan Z, Gao W, Shao H, Qin A, Ye J. Protective Efficacy of an Inactivated Recombinant Serotype 4 Fowl Adenovirus Against Duck Adenovirus 3 in Muscovy Duck. Vaccines (Basel) 2024; 12:1357. [PMID: 39772019 PMCID: PMC11680251 DOI: 10.3390/vaccines12121357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Duck adenovirus 3 (DAdV-3) is an emerging pathogen that has caused severe economic losses to the duck industry in China. Recently, the infection of ducks with serotype 4 fowl adenovirus (FAdV-4) has also been reported in China. Therefore, an efficient bivalent vaccine to control the diseases caused by DAdV-3 and FAdV-4 is extremely urgent. In our previous study, a recombinant FAdV-4 expressing Fiber-2 of DAdV-3 was generated and designated as rFAdV-4-Fiber-2/DAdV-3. METHODS Here, the recombinant virus rFAdV-4-Fiber-2/DAdV-3 was inactivated to serve as a bivalent vaccine, and its immunogenicity and protective efficacy against DAdV-3 were evaluated in Muscovy ducks. RESULTS The subcutaneous injection of rFAdV-4-Fiber-2/DAdV-3 could efficiently induce antibodies against Fiber-2 of DAdV-3 and neutralize antibodies against FAdV-4. After challenges with DAdV-3, in comparison with the non-immunized ducks, the immunized ducks did not show any bodyweight loss, gross lesions, or histopathologic change. Moreover, viral loads in livers and kidneys from immunized ducks were undetectable, whereas those in non-immunized ducks with challenge were significantly high. CONCLUSIONS All these data demonstrate that the inactivated recombinant virus rFAdV-4-Fiber-2/DAdV-3 has the potential to be an efficient vaccine candidate against both FAdV-4 and DAdV-3, although efficacy for FAdV-4 needs to be confirmed experimentally.
Collapse
Affiliation(s)
- Yun Lin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.J.); (L.M.); (J.Z.); (Y.T.); (Q.K.); (H.X.); (J.W.); (J.Z.); (Y.N.); (S.W.); (W.W.); (Q.X.); (T.L.); (Z.W.); (W.G.); (H.S.); (A.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Wenjie Jiang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.J.); (L.M.); (J.Z.); (Y.T.); (Q.K.); (H.X.); (J.W.); (J.Z.); (Y.N.); (S.W.); (W.W.); (Q.X.); (T.L.); (Z.W.); (W.G.); (H.S.); (A.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Lihua Ma
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.J.); (L.M.); (J.Z.); (Y.T.); (Q.K.); (H.X.); (J.W.); (J.Z.); (Y.N.); (S.W.); (W.W.); (Q.X.); (T.L.); (Z.W.); (W.G.); (H.S.); (A.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Jiayu Zhang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.J.); (L.M.); (J.Z.); (Y.T.); (Q.K.); (H.X.); (J.W.); (J.Z.); (Y.N.); (S.W.); (W.W.); (Q.X.); (T.L.); (Z.W.); (W.G.); (H.S.); (A.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Ye Tang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.J.); (L.M.); (J.Z.); (Y.T.); (Q.K.); (H.X.); (J.W.); (J.Z.); (Y.N.); (S.W.); (W.W.); (Q.X.); (T.L.); (Z.W.); (W.G.); (H.S.); (A.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Qiuqi Kan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.J.); (L.M.); (J.Z.); (Y.T.); (Q.K.); (H.X.); (J.W.); (J.Z.); (Y.N.); (S.W.); (W.W.); (Q.X.); (T.L.); (Z.W.); (W.G.); (H.S.); (A.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Haifeng Xiong
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.J.); (L.M.); (J.Z.); (Y.T.); (Q.K.); (H.X.); (J.W.); (J.Z.); (Y.N.); (S.W.); (W.W.); (Q.X.); (T.L.); (Z.W.); (W.G.); (H.S.); (A.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Jiayan Wu
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.J.); (L.M.); (J.Z.); (Y.T.); (Q.K.); (H.X.); (J.W.); (J.Z.); (Y.N.); (S.W.); (W.W.); (Q.X.); (T.L.); (Z.W.); (W.G.); (H.S.); (A.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Jun Zhang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.J.); (L.M.); (J.Z.); (Y.T.); (Q.K.); (H.X.); (J.W.); (J.Z.); (Y.N.); (S.W.); (W.W.); (Q.X.); (T.L.); (Z.W.); (W.G.); (H.S.); (A.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yiwen Niu
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.J.); (L.M.); (J.Z.); (Y.T.); (Q.K.); (H.X.); (J.W.); (J.Z.); (Y.N.); (S.W.); (W.W.); (Q.X.); (T.L.); (Z.W.); (W.G.); (H.S.); (A.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Wei Zhang
- Sinopharm Yangzhou VAC Biological Engineering Co., Ltd., Yangzhou 225127, China;
| | - Shengnan Wang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.J.); (L.M.); (J.Z.); (Y.T.); (Q.K.); (H.X.); (J.W.); (J.Z.); (Y.N.); (S.W.); (W.W.); (Q.X.); (T.L.); (Z.W.); (W.G.); (H.S.); (A.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Weikang Wang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.J.); (L.M.); (J.Z.); (Y.T.); (Q.K.); (H.X.); (J.W.); (J.Z.); (Y.N.); (S.W.); (W.W.); (Q.X.); (T.L.); (Z.W.); (W.G.); (H.S.); (A.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.J.); (L.M.); (J.Z.); (Y.T.); (Q.K.); (H.X.); (J.W.); (J.Z.); (Y.N.); (S.W.); (W.W.); (Q.X.); (T.L.); (Z.W.); (W.G.); (H.S.); (A.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.J.); (L.M.); (J.Z.); (Y.T.); (Q.K.); (H.X.); (J.W.); (J.Z.); (Y.N.); (S.W.); (W.W.); (Q.X.); (T.L.); (Z.W.); (W.G.); (H.S.); (A.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Zhimin Wan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.J.); (L.M.); (J.Z.); (Y.T.); (Q.K.); (H.X.); (J.W.); (J.Z.); (Y.N.); (S.W.); (W.W.); (Q.X.); (T.L.); (Z.W.); (W.G.); (H.S.); (A.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Wei Gao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.J.); (L.M.); (J.Z.); (Y.T.); (Q.K.); (H.X.); (J.W.); (J.Z.); (Y.N.); (S.W.); (W.W.); (Q.X.); (T.L.); (Z.W.); (W.G.); (H.S.); (A.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.J.); (L.M.); (J.Z.); (Y.T.); (Q.K.); (H.X.); (J.W.); (J.Z.); (Y.N.); (S.W.); (W.W.); (Q.X.); (T.L.); (Z.W.); (W.G.); (H.S.); (A.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.J.); (L.M.); (J.Z.); (Y.T.); (Q.K.); (H.X.); (J.W.); (J.Z.); (Y.N.); (S.W.); (W.W.); (Q.X.); (T.L.); (Z.W.); (W.G.); (H.S.); (A.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.J.); (L.M.); (J.Z.); (Y.T.); (Q.K.); (H.X.); (J.W.); (J.Z.); (Y.N.); (S.W.); (W.W.); (Q.X.); (T.L.); (Z.W.); (W.G.); (H.S.); (A.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Qiao Q, Yang P, Liu J, Xu M, Li Y, Li X, Xiang M, Zhu Y, Qiu L, Han C, Bu D, Zhang B, Cong Y, Wang Z, Li Y, Wang B, Zhao J. Genome characterization of a novel fowl adenovirus serotype 8b isolate and construction of the reverse genetic system for rapid genome manipulation. Vet Microbiol 2024; 298:110262. [PMID: 39342823 DOI: 10.1016/j.vetmic.2024.110262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Inclusion body hepatitis (IBH) induced by fowl adenovirus serotype 8b (FAdV-8b) infection is an important avian infectious disease circulating around the globe, posing significant losses to the poultry industry. In this study, a FAdV-8b strain, CH/SDQD/2021, was isolated from IBH-affected chickens in Shandong province, China and the genetic properties of CH/SDQD/2021 were characterized. The full genome length of CH/SDQD/2021 is 44,000 bp, with a G+C content of 58 % and 32 open reading frames (ORF). Sequencing alignment and phylogenetic analysis indicated that the genome identity of CH/SDQD/2021 compared to 30 other FAdV-E strains retrieved from GenBank ranges from 89.72 % to 96.71 %. Animal regression test indicated that CH/SDQD/2021 infection induced IBH in one-week-old SPF chickens. Subsequently, a reverse genetic system was developed to facilitate rapid genome manipulation of FAdV-8b for gene function study and vaccine development. To explore potential foreign gene insertion sites in FAdV-8b, ORF0-1-2, ORF11 and ORF19 of CH/SDQD/2021 were substituted by the green fluorescent gene ZsGreen, respectively, and the corresponding recombinant viruses were successfully rescued. The results showed that comparing with the parental FAdV-8b, the replication efficiency of the ORF0-1-2-substituted recombinant was reduced, while the replication efficiency of the ORF11-substituted recombinant was promoted. The findings of this study enrich the epidemiological data for the prevalent FAdV strains in China. Furthermore, the establishment of the FAdV-8b reverse genetic system will provide an efficient technique platform for FAdV-8b gene function research at the whole virus level and developing related multivalent vaccine candidates.
Collapse
Affiliation(s)
- Qilong Qiao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Panpan Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Junjie Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Minghe Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yan Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xingyu Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Mengjia Xiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yutao Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Luyao Qiu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Chenghao Han
- National Animal Health Products for Engineering Technology Research Center, Qingdao 266111, China.
| | - Dexin Bu
- National Animal Health Products for Engineering Technology Research Center, Qingdao 266111, China.
| | - Boshun Zhang
- National Animal Health Products for Engineering Technology Research Center, Qingdao 266111, China.
| | - Yanfang Cong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; National Animal Health Products for Engineering Technology Research Center, Qingdao 266111, China.
| | - Zeng Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Baiyu Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Jun Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Pouladi I, Najafi H, Jaydari A. Research Note: Overview of fowl adenovirus serotype 4: structure, pathogenicity, and progress in vaccine development. Poult Sci 2024; 103:103479. [PMID: 38367468 PMCID: PMC10879776 DOI: 10.1016/j.psj.2024.103479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 02/19/2024] Open
Abstract
Fowl adenovirus serotype 4 (FAdV) is highly pathogenic and lethal to chickens, especially broilers, which has emerged as one of the most important economic losses for the poultry industry in the past few years. Although inactivated vaccines have been widely used to control FAdV diseases, with the passage of time and the advancement of technology, live attenuated vaccines and subunit vaccines have also been developed, which are more attractive and effective vaccine candidates. This is an overview of avian adenoviruses, especially FAdV, which is related to the structure, pathogenicity of adenoviruses in birds, development and strategies used to make and use vaccines using different methods. As well as during this study it was determined that various vaccines against the new FAdV-4 genotype have been developed and many advances have been made in control disease However, many studies conducted in this field need extensive investigation.
Collapse
Affiliation(s)
- Iman Pouladi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hamideh Najafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amin Jaydari
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| |
Collapse
|
5
|
Lu Y, Yuan Y, Jiang H, Xu Z, Guo Y, Cao X, Li T, Wan Z, Shao H, Qin A, Xie Q, Ye J. Efficient cross-protection against serotype 4/8a fowl adenoviruses (FAdVs): recombinant FAdV-4 with FAdV-8a Fiber. Microbiol Spectr 2023; 11:e0246223. [PMID: 37966208 PMCID: PMC10714736 DOI: 10.1128/spectrum.02462-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/08/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Epidemiological data reveal that FAdV-4 and FAdV-8a are the dominant serotypes of FAdVs in the poultry industry in China. Although three commercial inactivated vaccines against FAdV-4 have been licensed in China, the bivalent vaccine against both FAdV-4 and FAdV-8a is not available. Here, we used CRISPR-Cas9 and Cre-LoxP system to generate a recombinant virus FAdV4-F/8a-rF2 expressing the Fiber of FAdV-8a. Notably, FAdV4-F/8a-rF2 was highly attenuated and could provide efficient protection against both FAdV-4 and FAdV-8a in the chicken infection model, highlighting the applaudable application of FAdV4-F/8a-rF2 as a novel live-attenuated bivalent vaccine against the diseases caused by the infection of FAdV-4 and FAdV-8a.
Collapse
Affiliation(s)
- Yixuan Lu
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yaqin Yuan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Huiru Jiang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhenqi Xu
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yiwen Guo
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xudong Cao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhimin Wan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
6
|
Guo Y, Xu Z, Chao Y, Cao X, Jiang H, Li H, Li T, Wan Z, Shao H, Qin A, Xie Q, Ye J. An efficient double-fluorescence approach for generating fiber-2-edited recombinant serotype 4 fowl adenovirus expressing foreign gene. Front Microbiol 2023; 14:1160031. [PMID: 37065110 PMCID: PMC10102364 DOI: 10.3389/fmicb.2023.1160031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Recently, the infection of serotype 4 fowl adenovirus (FAdV-4) in chicken flocks has become endemic in China, which greatly threatens the sustainable development of poultry industry. The development of recombinant FAdV-4 expressing foreign genes is an efficient strategy for controlling both FAdV-4 and other important poultry pathogens. Previous reverse genetic technique for generating the recombinant fowl adenovirus is generally inefficient. In this study, a recombinant FAdV-4 expressing enhanced green fluorescence protein (EGFP), FA4-EGFP, was used as a template virus and directly edited fiber-2 gene to develop an efficient double-fluorescence approach to generate recombinant FAdV-4 through CRISPR/Cas9 and Cre-Loxp system. Moreover, using this strategy, a recombinant virus FAdV4-HA(H9) stably expressing the HA gene of H9N2 influenza virus was generated. Chicken infection study revealed that the recombinant virus FAdV4-HA(H9) was attenuated, and could induce haemagglutination inhibition (HI) titer against H9N2 influenza virus at early time points and inhibit the viral replication in oropharynx. All these demonstrate that the novel strategy for constructing recombinant FAdV-4 expressing foreign genes developed here paves the way for rapidly developing attenuated FAdV-4-based recombinant vaccines for fighting the diseases caused by both FAdV-4 and other pathogens.
Collapse
Affiliation(s)
- Yiwen Guo
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhenqi Xu
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yifei Chao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xudong Cao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Huiru Jiang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Han Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhimin Wan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
- *Correspondence: Quan Xie,
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
- Jianqiang Ye,
| |
Collapse
|
7
|
Song C, Zhao S, Song M, Qiao Q, Yang P, Wang B, Cong Y, Wang Y, Liu H, Wang Z, Wang X, Zhao J. An Inactivated Novel Trivalent Vaccine Provides Complete Protection against FAdV-4 Causing Hepatitis-Hydropericardium Syndrome and FAdV-8b/-11 Causing Inclusion Body Hepatitis. Transbound Emerg Dis 2023; 2023:5122382. [PMID: 40303753 PMCID: PMC12017159 DOI: 10.1155/2023/5122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 05/02/2025]
Abstract
Outbreaks of hepatitis-hydropericardium syndrome (HHS) caused by fowl adenovirus serotype 4 (FAdV-4) and inclusion body hepatitis (IBH) related to FAdV-8b and FAdV-11 have been increased in chickens in China since 2015. Clinical concurrent infections of FAdV-4, FAdV-8b, and FAdV-11 are quite common, yet there are no commercially available trivalent vaccines against infection by these three serotypes. In our previous study, a bivalent vaccine based on a recombinant FAdV-4, of which fiber-1 was replaced with the fiber of FAdV-8b, has been developed. In this study, a novel recombinant rFAdV-4-fiber/8b + 11 was constructed by inserting FAdV-11 fiber gene into the 1966-bp deletion region of rFAdV-4-fiber/8b genome. The in vitro replication ability of the rFAdV-4-fiber/8b + 11 was similar to the parental FAdV-4. One dose immunization with the inactivated rFAdV-4-fiber/8b + 11 vaccine generated robust immune responses against FAdV-4, FAdV-8b, and FAdV-11, and provided efficient clinical protection against FAdV-4, FAdV-8b, and FAdV-11 challenge. This study provides a novel strategy for developing potential trivalent vaccines for the prevention and control of HHS and IBH.
Collapse
Affiliation(s)
- Congcong Song
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Shiyi Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Mingzhen Song
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Qilong Qiao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Panpan Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Baiyu Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanfang Cong
- National Animal Health Products for Engineering Technology Research Center, Qingdao 266111, China
| | - Yanling Wang
- National Animal Health Products for Engineering Technology Research Center, Qingdao 266111, China
| | - Hongying Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zeng Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinwei Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Jun Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
8
|
Tufail S, Shah MA, Asif TA, Ullah R, Shehzad A, Ismat F, Shah MS, Habib M, Calisto BM, Mirza O, Iqbal M, Rahman M. Highly soluble and stable ‘insertion domain’ of the capsid penton base protein provides complete protection against infections caused by fowl adenoviruses. Microb Pathog 2022; 173:105835. [DOI: 10.1016/j.micpath.2022.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|