1
|
Feng Z, Fu Y, Yang S, Zhao H, Lin M, Liu C, Huang W, He X, Chen Y, Chen J, Shen Y, Li Z, Chen Q. Siglec-15 is a putative receptor for porcine epidemic diarrhea virus infection. Cell Mol Life Sci 2025; 82:136. [PMID: 40172660 PMCID: PMC11965083 DOI: 10.1007/s00018-025-05672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) has caused significant losses in the pork industry, but the mechanism of PEDV infection is still unclear. On the basis of our RNA-Seq data and due to the potential role of sialic acid as a coreceptor, we investigated the function of sialic acid-binding Ig-like lectin 15 (Siglec-15) to determine its role as a receptor in PEDV infection. We found that Siglec-15 enhances PEDV infection by promoting viral adsorption to host cells. Coimmunoprecipitation and immunofluorescence assays revealed that Siglec-15 binds to the S1 subunit and M protein of PEDV. PEDV infectivity was significantly reduced in Siglec-15 knockout mice. In addition, we developed a monoclonal antibody targeting Siglec-15 that can effectively inhibit PEDV infection both in vitro and in vivo. Overall, our study suggests that Siglec-15 may be a receptor for PEDV infection, which is important for related mechanistic studies and reveals a novel target for anti-PEDV therapeutic development.
Collapse
Affiliation(s)
- Zhihua Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, Fujian, 350117, China
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
| | - Yajuan Fu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
| | - Sheng Yang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
| | - Heng Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
| | - Minhua Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
| | - Chuancheng Liu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
| | - Weili Huang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
| | - Xinyan He
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
| | - Yao Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, Fujian, 350117, China
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Yangkun Shen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China.
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China.
| | - Zhaolong Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, 350013, China.
| | - Qi Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, Fujian, 350117, China.
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350117, China.
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China.
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China.
| |
Collapse
|
2
|
Zheng X, Zhu D, Xiang Q, Guo D, Kuang Q, Zeng Y, Xu D. Ginsenoside Rb1 inhibits porcine epidemic diarrhea virus replication through suppressing S1 protein mediated the MAPK/ERK pathway and reducing apoptosis. Int J Biol Macromol 2025; 304:140937. [PMID: 39947549 DOI: 10.1016/j.ijbiomac.2025.140937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 02/16/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes vomiting, dehydration, and diarrhea in piglets, seriously threatening their survival and development and causing huge economic losses to the global pig industry. Current PEDV control relies on vaccines, however, the high mutation rate of PEDV limits vaccine effectiveness, highlighting the need for new antiviral drugs. This study investigated the pharmacological effects of ginsenoside Rb1 (GRb1) on PEDV using network pharmacology, as well as GO and KEGG analyses, to predict its role in modulating the MAPK/ERK pathway. GRb1 downregulated the MAPK/ERK pathway activated by PEDV infection and reduced levels of the apoptotic protein cleaved-caspase-3, thus inhibiting PEDV-induced apoptosis and demonstrating antiviral properties. Further screening showed that the PEDV S1 protein promotes AP-1 nuclear entry and upregulates the MAPK/ERK pathway to induce apoptosis, a process reversed by GRb1. Further in vivo studies revealed that GRb1 treatment significantly reduced viral load in piglet intestinal tissues and anal swabs. GRb1 also alleviated clinical symptoms and intestinal damage in infected piglets, improving their survival rate while also downregulating the levels of inflammatory factors (IL-1β, IL-6, IL-8, and TNF-α). This study is the first to demonstrate that GRb1 effectively inhibits PEDV, uncovering its potential mechanism of action and providing a promising new approach for antiviral treatment in veterinary medicine.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Dihua Zhu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qinxin Xiang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Dengju Guo
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qiyuan Kuang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuting Zeng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Dan Xu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Lai PM, Gong X, Chan KM. Roles of Histone H2B, H3 and H4 Variants in Cancer Development and Prognosis. Int J Mol Sci 2024; 25:9699. [PMID: 39273649 PMCID: PMC11395991 DOI: 10.3390/ijms25179699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Histone variants are the paralogs of core histones (H2A, H2B, H3 and H4). They are stably expressed throughout the cell cycle in a replication-independent fashion and are capable of replacing canonical counterparts under different fundamental biological processes. Variants have been shown to take part in multiple processes, including DNA damage repair, transcriptional regulation and X chromosome inactivation, with some of them even specializing in lineage-specific roles like spermatogenesis. Several reports have recently identified some unprecedented variants from different histone families and exploited their prognostic value in distinct types of cancer. Among the four classes of canonical histones, the H2A family has the greatest number of variants known to date, followed by H2B, H3 and H4. In our prior review, we focused on summarizing all 19 mammalian histone H2A variants. Here in this review, we aim to complete the full summary of the roles of mammalian histone variants from the remaining histone H2B, H3, and H4 families, along with an overview of their roles in cancer biology and their prognostic value in a clinical context.
Collapse
Affiliation(s)
| | | | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China; (P.M.L.); (X.G.)
| |
Collapse
|
4
|
Zou H, Niu Z, Tang Z, Cheng P, Yin Y, Luo G, Huang S. The Mechanism of Action of the Active Ingredients of Coptidis rhizoma against Porcine Epidemic Diarrhea Was Investigated Using Network Pharmacology and Molecular Docking Technology. Viruses 2024; 16:1229. [PMID: 39205203 PMCID: PMC11360715 DOI: 10.3390/v16081229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The objective of this study was to elucidate the mechanism of action of the active components of Coptidis rhizoma against porcine epidemic diarrhea and to provide a theoretical foundation for further development of novel anti-PED therapeutic agents based on Coptidis rhizoma. The potential targets of Coptidis rhizoma against PEDV were identified through a comprehensive literature review and analysis using the TCMSP pharmacological database, SwissDrugDesign database, GeneCards database, and UniProt database. Subsequently, the STRING database and Cytoscape 3.7.1 software were employed to construct a protein-protein interaction (PPI) network and screen key targets. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted on the identified targets. Molecular docking studies were performed using AutoDock 1.5.7 software to analyze the binding energy and modes of interaction between the active components of Coptidis rhizoma and the target proteins. The PyMOL 2.5.0a0 software was employed to visualize the docking results. Through comprehensive analysis, 74 specific targets of active components of Coptidis rhizoma against PEDV were identified. The core gene targets were screened, and an interaction network diagram was subsequently generated. Ultimately, 14 core targets were identified, with STAT3, ESR1, CASP3, and SRC exhibiting the most significant interactions. GO enrichment analysis revealed a total of 215 molecular items, including 48 biological function items, 139 biological process items, and 28 cellular component items. KEGG enrichment analysis identified 140 signaling pathways. Molecular docking analysis demonstrated that epiberberine and palmatine exhibited high binding affinity with STAT3 protein, worenine showed high binding affinity with ESR1 protein, obacunone exhibited high binding affinity with CASP3 protein, and epiberberine, obacunone, berberine, and berberruine exhibited high binding affinity with SRC protein. A network pharmacology and molecular docking technology approach was employed to screen six important active components of Coptidis rhizoma and four important potential targets against PEDV infection. The findings indicated that the active components of Coptidis rhizoma could serve as promising pharmaceutical agents for the prevention and control of PEDV, with significant potential for clinical application.
Collapse
Affiliation(s)
- Hong Zou
- College of Animal Science & Technology, Chongqing Three Gouges Vocational College, Chongqing 404100, China; (H.Z.); (Y.Y.)
| | - Zheng Niu
- College of Veterinary Medicine, Northwest A & F University, Xianyang 712000, China;
| | - Zhangchen Tang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 402460, China;
| | - Peng Cheng
- Wanzhou Center for Animal Husbandry Industry Development of Chongqing, Chongqing 404100, China;
| | - Yanling Yin
- College of Animal Science & Technology, Chongqing Three Gouges Vocational College, Chongqing 404100, China; (H.Z.); (Y.Y.)
| | - Gan Luo
- Wanzhou Center for Animal Husbandry Industry Development of Chongqing, Chongqing 404100, China;
| | - Shilei Huang
- College of Animal Science & Technology, Chongqing Three Gouges Vocational College, Chongqing 404100, China; (H.Z.); (Y.Y.)
| |
Collapse
|
5
|
Yu R, Dong S, Chen B, Si F, Li C. Developing Next-Generation Live Attenuated Vaccines for Porcine Epidemic Diarrhea Using Reverse Genetic Techniques. Vaccines (Basel) 2024; 12:557. [PMID: 38793808 PMCID: PMC11125984 DOI: 10.3390/vaccines12050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the etiology of porcine epidemic diarrhea (PED), a highly contagious digestive disease in pigs and especially in neonatal piglets, in which a mortality rate of up to 100% will be induced. Immunizing pregnant sows remains the most promising and effective strategy for protecting their neonatal offspring from PEDV. Although half a century has passed since its first report in Europe and several prophylactic vaccines (inactivated or live attenuated) have been developed, PED still poses a significant economic concern to the swine industry worldwide. Hence, there is an urgent need for novel vaccines in clinical practice, especially live attenuated vaccines (LAVs) that can induce a strong protective lactogenic immune response in pregnant sows. Reverse genetic techniques provide a robust tool for virological research from the function of viral proteins to the generation of rationally designed vaccines. In this review, after systematically summarizing the research progress on virulence-related viral proteins, we reviewed reverse genetics techniques for PEDV and their application in the development of PED LAVs. Then, we probed into the potential methods for generating safe, effective, and genetically stable PED LAV candidates, aiming to provide new ideas for the rational design of PED LAVs.
Collapse
Affiliation(s)
| | | | | | - Fusheng Si
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China; (R.Y.); (S.D.); (B.C.)
| | - Chunhua Li
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China; (R.Y.); (S.D.); (B.C.)
| |
Collapse
|
6
|
Keramidas P, Pitou M, Papachristou E, Choli-Papadopoulou T. Insights into the Activation of Unfolded Protein Response Mechanism during Coronavirus Infection. Curr Issues Mol Biol 2024; 46:4286-4308. [PMID: 38785529 PMCID: PMC11120126 DOI: 10.3390/cimb46050261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Coronaviruses represent a significant class of viruses that affect both animals and humans. Their replication cycle is strongly associated with the endoplasmic reticulum (ER), which, upon virus invasion, triggers ER stress responses. The activation of the unfolded protein response (UPR) within infected cells is performed from three transmembrane receptors, IRE1, PERK, and ATF6, and results in a reduction in protein production, a boost in the ER's ability to fold proteins properly, and the initiation of ER-associated degradation (ERAD) to remove misfolded or unfolded proteins. However, in cases of prolonged and severe ER stress, the UPR can also instigate apoptotic cell death and inflammation. Herein, we discuss the ER-triggered host responses after coronavirus infection, as well as the pharmaceutical targeting of the UPR as a potential antiviral strategy.
Collapse
Affiliation(s)
| | | | | | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.K.); (M.P.); (E.P.)
| |
Collapse
|
7
|
Shi X, Zhang Q, Yang N, Wang Q, Zhang Y, Xu X. PEDV inhibits HNRNPA3 expression by miR-218-5p to enhance cellular lipid accumulation and promote viral replication. mBio 2024; 15:e0319723. [PMID: 38259103 PMCID: PMC10865979 DOI: 10.1128/mbio.03197-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) requires complete dependence on the metabolic system of the host cell to complete its life cycle. There is a strong link between efficient viral replication and cellular lipid synthesis. However, the mechanism by which PEDV interacts with host cells to hijack cellular lipid metabolism to promote its replication remains unclear. In this study, PEDV infection significantly enhanced the expression of lipid synthesis-related genes and increased cellular lipid accumulation. Furthermore, using liquid chromatography-tandem mass spectrometry, we identified heterogeneous nuclear ribonucleoprotein A3 (HNRNPA3) as the interacting molecule of PEDV NSP9. We demonstrated that the expression of HNRNPA3 was downregulated by PEDV-induced miR-218-5p through targeting its 3' untranslated region. Interestingly, knocking down HNRNPA3 facilitated the PEDV replication by promoting cellular lipid synthesis. We next found that the knockdown of HNRNPA3 potentiated the transcriptional activity of sterol regulatory element-binding transcription factor 1 (SREBF1) through zinc finger protein 135 (ZNF135) as well as PI3K/AKT and JNK signaling pathways. In summary, we propose a model in which PEDV downregulates HNRNPA3 expression to promote the expression and activation of SREBF1 and increase cellular lipid accumulation, providing a novel mechanism by which PEDV interacts with the host to utilize cellular lipid metabolism to promote its replication.IMPORTANCEAs the major components and structural basis of the viral replication complexes of positive-stranded RNA viruses, lipids play an essential role in viral replication. However, how PEDV manipulates host cell lipid metabolism to promote viral replication by interacting with cell proteins remains poorly understood. Here, we found that SREBF1 promotes cellular lipid synthesis, which is essential for PEDV replication. Moreover, HNRNPA3 negatively regulates SREBF1 activation and specifically reduces lipid accumulation, ultimately inhibiting PEDV dsRNA synthesis. Our study provides new insight into the mechanisms by which PEDV hijacks cell lipid metabolism to benefit viral replication, which can offer a potential target for therapeutics against PEDV infection.
Collapse
Affiliation(s)
- Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Naling Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Quanqiong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Xia T, Xu S, Li X, Ruan W. Avian coronavirus infectious bronchitis virus Beaudette strain NSP9 interacts with STAT1 and inhibits its phosphorylation to facilitate viral replication. Virology 2024; 590:109944. [PMID: 38141500 DOI: 10.1016/j.virol.2023.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/25/2023]
Abstract
Avian coronavirus, known as infectious bronchitis virus (IBV), is the causative agent of infectious bronchitis (IB). Viral nonstructural proteins play important roles in viral replication and immune modulation. IBV NSP9 is a component of the RNA replication complex for viral replication. In this study, we uncovered a function of NSP9 in immune regulation. First, the host proteins that interacted with NSP9 were screened. The immune-related protein signal transducer and activator of transcription 1 (STAT1) was identified and the interaction between NSP9 and STAT1 was further confirmed. Furthermore, IBV replication was inhibited in STAT1-overexpressing cells but inversely affected in STAT1 knock-down cells. Importantly, NSP9 inhibited STAT1 phosphorylation. Finally, the expression of JAK/STAT pathway downstream genes IRF7 and ISG20 was significantly decreased in NSP9-overexpressing cells. These results showed the important role of IBV NSP9 in immunosuppression.
Collapse
Affiliation(s)
- Ting Xia
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Shengkui Xu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Xueyan Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Wenke Ruan
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
9
|
Li X, Wu Y, Yan Z, Li G, Luo J, Huang S, Guo X. A Comprehensive View on the Protein Functions of Porcine Epidemic Diarrhea Virus. Genes (Basel) 2024; 15:165. [PMID: 38397155 PMCID: PMC10887554 DOI: 10.3390/genes15020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Porcine epidemic diarrhea (PED) virus (PEDV) is one of the main pathogens causing diarrhea in piglets and fattening pigs. The clinical signs of PED are vomiting, acute diarrhea, dehydration, and mortality resulting in significant economic losses and becoming a major challenge in the pig industry. PEDV possesses various crucial structural and functional proteins, which play important roles in viral structure, infection, replication, assembly, and release, as well as in escaping host innate immunity. Over the past few years, there has been progress in the study of PEDV pathogenesis, revealing the crucial role of the interaction between PEDV viral proteins and host cytokines in PEDV infection. At present, the main control measure against PEDV is vaccine immunization of sows, but the protective effect for emerging virus strains is still insufficient, and there is no ideal safe and efficient vaccine. Although scientists have persistently delved their research into the intricate structure and functionalities of the PEDV genome and viral proteins for years, the pathogenic mechanism of PEDV remains incompletely elucidated. Here, we focus on reviewing the research progress of PEDV structural and nonstructural proteins to facilitate the understanding of biological processes such as PEDV infection and pathogenesis.
Collapse
Affiliation(s)
- Xin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Yiwan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Zhibin Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Gen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| |
Collapse
|