1
|
Ma YH, Sheng YD, Zhang D, Liu JT, Tian Y, Li H, Li XF, Li N, Sun P, Siddiqui SA, Sun WW, Zhang L, Shan XF, Wang CF, Qian AD, Zhang DX. Acanthopanax senticosus cultures fermented by Lactobacillus rhamnosus enhanced immune response through improvement of antioxidant activity and inflammation in crucian carp (Carassius auratus). Microb Pathog 2024; 190:106614. [PMID: 38492825 DOI: 10.1016/j.micpath.2024.106614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1β, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.
Collapse
Affiliation(s)
- Yi-Han Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Di Sheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Di Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jun-Tong Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ye Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hui Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Fei Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Na Li
- Ministry of Agriculture and Rural Affairs of Mudanjiang, Mudanjiang, 157020, China
| | - Peng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | | | - Wu-Wen Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
2
|
Yuan J, Li Y, Sun S, Wu J, Zhou J, He S. Response of growth performance and cecum microbial community to cyclic heat stress in broilers. Trop Anim Health Prod 2023; 56:9. [PMID: 38085433 DOI: 10.1007/s11250-023-03849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Heat stress (HS) can affect growth performance through alterations in specific gut microbiota, which greatly threatens poultry production. How HS affects the mechanisms of microbial changes in the poultry cecum and the complex interactions between cecal microbial changes and growth performance have not yet been well evaluated. This study was conducted to examine the changes in growth performance and cecal microbiotal community in cyclic heat stress (CHS)-treated broilers. A total of 200 twenty-eight-day-old female Arbor Acres (AA) broilers were equally allotted into neutral ambient temperature group (TN group, 24 ± 1°C, 24 h/day) and CHS group (33 ± 1°C, 8 h/day) with five replicates of 10 broilers each, respectively. Growth performance, cecum microbial diversity, flora composition, and community structure were analyzed on days 35 and 42. The decreased average daily feed intake (ADFI), average daily gain (ADG), and the increased feed/gain ratio (F:G) were observed in heat-stressed broilers on days 35 and 42. The alpha and beta diversity index had no significant changes at the two experimental periods (P > 0.05). At the genus level, CHS significantly increased the relative abundance of Enterococcus at 42 days (P < 0.05). Based on the analysis of linear effect size feature selection, CHS made an enriched Reyranella and a reduced Romboutsia and Ruminiclostridium at 35 days of age (P < 0.05). CHS made an enriched Weissella and Enterococcus at 42 days of age (P < 0.05). The present study revealed that CHS reduces broiler growth performance and alters the microbial community of the cecum microbiota and the abundance of species. These findings are of critical importance to alleviate the negative effects of CHS on broiler chickens' growth performance by maintaining gut microbial balance.
Collapse
Affiliation(s)
- Junjun Yuan
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Yan Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Shiang Sun
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Jiaying Wu
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Jin Zhou
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Shaojun He
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, China.
| |
Collapse
|
3
|
Song W, Zou Z, Chen X, Tan J, Liu L, Wei Q, Xiong P, Song Q, Chen J, Su W, Xu C. Effects of traditional Chinese herbal feed supplement on growth performance, immunity, antioxidant levels, and intestinal health in chickens: a study on Ningdu yellow chickens. Poult Sci 2023; 102:102986. [PMID: 37566964 PMCID: PMC10440571 DOI: 10.1016/j.psj.2023.102986] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Traditional Chinese herbs have been widely researched as a green, safe, and effective feed additive for poultry. The purpose of this study was to investigate the effects of traditional Chinese prescription (TCP) based on various herbs in a specific ratio on the growth performance, carcass traits, immunity, antioxidant level, and intestinal health of Ningdu yellow chickens. A total of 420 female Ningdu yellow chickens were randomly divided into 5 groups, with 6 replicates of 14 each. The chickens were fed with a basal diet supplemented with 0 (CON), 0.2, 0.4, 0.6, or 0.8% TCP from d 43 to 105. Body weight, feed intake, and serum biochemical indicators were recorded at d 70 and 105, intestinal morphology and microflora of the carcass were determined at d 105. Compared to the control group, chickens fed with TCP, particularly at the level of 0.6%, showed improved average daily gain and breast muscle percentage, as well as a lower feed-to-gain ratio with statistical significance (P < 0.05). Between 43 and 70 d of age, chickens fed with TCP exhibited higher levels of serum glutathione peroxidase activity, total antioxidant capacity, and superoxide dismutase, particularly in the group fed with the 0.6% level of TCP (P < 0.05). Between 43 and 105 d of age, feeding chickens with 0.4 and 0.6% TCP resulted in a decrease in serum IL-2 concentration, and increase in the IL-4 content (P < 0.05). Chickens fed with 0.4, 0.6, and 0.8% TCP had significantly higher jejunum villous height (P < 0.05), TCP supplementation also led to a marked increase in the relative abundance of Bacteroidota compared to the control group (P < 0.05). Collectively, the study suggests that TCP supplementation can enhance immune and antioxidant functions, improve jejunum morphology, and positively impact cecum microflora in chickens. Based on these results, a level of 0.6% TCP could be considered an optimum level as a feed supplement for Ningdu yellow chickens aged 43 to 105 d.
Collapse
Affiliation(s)
- Wenjing Song
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China
| | - Zhiheng Zou
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China
| | - Xiaolian Chen
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China
| | - Jia Tan
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China
| | - Linxiu Liu
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China
| | - Qipeng Wei
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China
| | - Pingwen Xiong
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China
| | - Qiongli Song
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China.
| | - Jiang Chen
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China
| | - Weide Su
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China
| | - Chuanhui Xu
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China
| |
Collapse
|
4
|
Yang J, Zhou S, Fu Z, Xiao B, Li M, Yu G, Ma Z, Zong H. Fermented Astragalus membranaceus could promote the liver and intestinal health of juvenile tiger grouper ( Epinephelus fuscoguttatus). Front Physiol 2023; 14:1264208. [PMID: 37781230 PMCID: PMC10534042 DOI: 10.3389/fphys.2023.1264208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
In order to understand the effects of fermented Astragalus membranaceus (FAM) on the liver and intestinal health of tiger grouper (Epinephelus fuscoguttatus), this study was conducted. This study evaluates the effects of different levels of FAM on liver and intestinal tissue structure, serum biochemical parameters, intestinal digestive enzyme, and microbiota structure of tiger grouper. Fish were fed with diets (crude protein ≥ 48.0%, crude fat ≥ 10.0%) with five levels of FAM (L1:0.25%, L2: 0.5%, L3: 1%, L4: 2% and L5: 4%) in the experimental groups and a regular diet was used as the control (L0: 0%) for 8 weeks. Compared with AM, the protein content of FAM was significantly changed by 34.70%, indicating that a large amount of bacterial protein was produced after AM fermentation, and its nutritional value was improved. FAM had significant effects on the growth performance of tiger grouper (p < 0.05). The high-density lipoprotein cholesterol (HDL-C) was highest in L4 group, being significantly different from L0 group. The area and diameter of hepatocytes were lowest in L3 and L4, and the density of hepatocyte was highest in L4 group and relatively decreased in L5 group. The mucosal height and muscular thickness were highest in L3 group. The intestinal microbiota structure of tiger grouper was changed under the intervention of FAM. The lower abundance of potential pathogenic bacteria and higher abundance of probiotics colonization in the L4 group showed that the dose of FAM had the best effect on improving the health of intestinal microbiota. This study indicates that the addition of FAM in the feed contributes to liver health, improves intestinal morphology, and regulates the intestinal microbiota of tiger grouper. The addition ratio of 1%-2% is better for intestinal and liver health, and a high addition ratio will cause liver damage. Our work will provide a reference for the addition and management of FAM in the aquaculture industry.
Collapse
Affiliation(s)
- Jingru Yang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Shengjie Zhou
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhengyi Fu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Bo Xiao
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Minghao Li
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Gang Yu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Humin Zong
- National Marine Environmental Center, Dalian, China
| |
Collapse
|
5
|
Dong W, Fan Z, Li P, Liu J, Sun G, Peng N, Liang Y, Zhao S. Optimizing the scale-up production of fermented astragalus and its benefits to the performance and egg quality of laying hens. Front Microbiol 2023; 14:1165644. [PMID: 37180273 PMCID: PMC10169715 DOI: 10.3389/fmicb.2023.1165644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023] Open
Abstract
Astragalus is a homologous medicine and food that benefits human beings and poultry rearing. Fermented astragalus (FA) is a valuable product obtained by fermentation, but its scale-up production requires optimization and expansion of solid-state fermentation (SSF). In this study, Lactobacillus pentosus Stm was screened as the most suitable LAB strain for fermenting astragalus due to its excellent capacity. After optimization and expansion of SSF, LAB count and lactic acid content reached 206 × 108 cfu/g and 15.0%, respectively. Meanwhile, the content of bioactive compounds in FA was significantly enhanced. Feeding experiments with laying hens indicated that supplementing FA in the diet significantly improved the performance and egg quality, as evidenced by reduced feed-to-egg ratio and egg cholesterol. This was due to the promotion of intestinal health by shifting intestinal microbiota. Therefore, this is a systematical endeavor of producing scaled-up FA with promising potential as a feed additive in the poultry breeding industry.
Collapse
Affiliation(s)
- Weiwei Dong
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhanlei Fan
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Panxian Li
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Liu
- Hubei Poder Biotechnology Co., Ltd., Huangshi, China
| | - Guoping Sun
- Hubei Poder Biotechnology Co., Ltd., Huangshi, China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Chen J, Li Q, Tan C, Xie L, Yang X, Zhang Q, Deng X. Effects of enrofloxacin's exposure on the gut microbiota of Tilapia fish (Oreochromis niloticus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101077. [PMID: 37080057 DOI: 10.1016/j.cbd.2023.101077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/02/2023] [Accepted: 04/09/2023] [Indexed: 04/22/2023]
Abstract
Enrofloxacin (ENFX) has a broad-spectrum antibiotic activity, which is widely used in aquaculture. The effect of different ENFX exposure ways on the gut microbiota of tilapia is unclear. This study was conducted to investigate the effects of ENFX exposure on the gut microbiota of tilapia fish (Oreochromis niloticus). Three methods of ENFX exposure were selected: injection (IEG), oral administration (OEG) and soaking (SEG). After 48 h of exposure period, the intestine of tilapia was collected for high-throughput sequencing. PCoA analysis revealed a distinct clustering of control group, and which was located rather far away from ENFX exposure groups. The dominant phyla in the gut microbiota of tilapia fish were Proteobacteria, Actinobacteriota, Fusobacteria and Firmicutes. Compared to the control group, phylum Fusobacteriota was increased in SEG and IEG while decreased in OEG. ENFX treatment led to a decline in Corynebacterium, Clostridium sensu stricto_3 and Bacillus in treated fish compared with control fish, accompanied by an increase in Akkermansia, Ralstonia and Romboutsia. IEG had the least effect on gut microbiota of tilapia because it retained more microbes among treatment groups. Alpha- diversity decreased the most in SEG, but retained more probiotics such as Cetobacterium and Akkermansia. We assessed the effect of enrofloxacin on tilapia by changes in intestinal flora. The result indicated that either exposure method significantly reduced the diversity of tilapia gut microbiota. It may provide basic data for the scientific use of ENFX in aquaculture.
Collapse
Affiliation(s)
- Jiayu Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road No.727, Chenggong, Kunming, China
| | - Qiuyue Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road No.727, Chenggong, Kunming, China
| | - Chunyan Tan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road No.727, Chenggong, Kunming, China
| | - Liqin Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road No.727, Chenggong, Kunming, China
| | - Xuejiao Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road No.727, Chenggong, Kunming, China
| | - Qilin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road No.727, Chenggong, Kunming, China
| | - Xianyu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road No.727, Chenggong, Kunming, China.
| |
Collapse
|
7
|
Zhou X, Li S, Jiang Y, Deng J, Yang C, Kang L, Zhang H, Chen X. Use of fermented Chinese medicine residues as a feed additive and effects on growth performance, meat quality, and intestinal health of broilers. Front Vet Sci 2023; 10:1157935. [PMID: 37056232 PMCID: PMC10086232 DOI: 10.3389/fvets.2023.1157935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction The purpose of this research was to investigate how dietary supplementation with fermented herbal residues (FCMR) affected birds' development capacity, quality of meat, gut barrier, and cecum microbiota. Methods 540 cyan-shank partridge birds aged 47 days were chosen and divided into two groups of six replicates each and 45 birds for each replicate. The control group (CON) received a basal diet, while the trial group decreased a basic diet containing 5% FCMR. Results and discussion The findings revealed that the addition of FCMR decreased FCR and increased ADG in broilers (P < 0.05). Adding FCMR increased steaming loss in broiler chicken breasts (p < 0.05). Supplementation with FCMR significantly enhanced VH/CD and VH in the bird's intestine (jejunum, duodenum, and ileum) (p < 0.05). In addition, the addition of FCMR significantly down-regulated mRNA expression of INF-γ, IL-6, IL-1β, and TNF-α and up-regulated mRNA expression of ZO-1, Occludin, and Claudin (P < 0.05). Microbial 16S rDNA high-throughput sequencing study revealed that supplements with FCMR modified the cecum microbiota, and α-diversity analysis showed that supplementation with FCMR reduced the cecum bacterial abundance in broilers (P < 0.05). At the phylum level, the relative abundance of Spirochaetota increased considerably following FCMR supplementation (P < 0.05). The broiler cecum's close lot of Prevotellaceae_UCG-001 (P < 0.05), Desulfovibrio, Muribaculaceae, and Fusobacterium (p < 0.05) reduced when FCMR was supplemented. Supplementation with FCMR can promote growth capacity and maintain intestinal health in birds by enhancing gut barrier function and modulating the inflammatory response and microbial composition.
Collapse
Affiliation(s)
- Xinhong Zhou
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Shiyi Li
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Yilong Jiang
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Jicheng Deng
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Chuanpeng Yang
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Lijuan Kang
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Huaidan Zhang
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Xianxin Chen
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| |
Collapse
|
8
|
Exploring the Potential of Myrothamnus flabellifolius Welw. (Resurrection Tree) as a Phytogenic Feed Additive in Animal Nutrition. Animals (Basel) 2022; 12:ani12151973. [PMID: 35953961 PMCID: PMC9367323 DOI: 10.3390/ani12151973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The unregulated use of in-feed antibiotic growth promoters has received widespread condemnation due to an increase in cases of antibiotic-resistant microbes. This has fueled an ever-growing demand for new sources of natural and safe alternative products with minimal impacts on the environment and human health in animal production. Myrothamnus flabellifolius, as a phytogenic feed additive, fits this description, as it is a natural plant containing high amounts of secondary metabolites necessary for cell function, regulation, and protection for improved animal growth, performance, and health. With some limitations towards its use, several processing and combination strategies are available to unlock nutrients and explore its potential in animal production, as described in this review. Abstract Myrothamnus flabellifolius (Welw.) is used in African traditional medicine for the treatment of depression and mental disorder, asthma, infectious diseases, respiratory, inflammation, epilepsy, heart, wound, backaches, diabetes, kidney ailments, hypertension, hemorrhoids, gingivitis, shingles, stroke, and skins conditions. The effectiveness of M. flabellifolius is due to the presence of several secondary metabolites that have demonstrated efficacy in other cell and animal models. These metabolites are key in cell regulation and function and have potential use in animal production due to antimicrobial and antioxidant properties, for an improvement in growth performance, feed quality and palatability, gut microbial environment, function, and animal health. The purpose of this review is to provide a detailed account on the potential use of M. flabellifolius in animal nutrition. Limitations towards the use of this plant in animal nutrition, including toxicity, economic, and financial issues are discussed. Finally, novel strategies and technologies, e.g., microencapsulation, microbial fermentation, and essential oil extraction, used to unlock and improve nutrient bioaccessibility and bioavailability are clearly discussed towards the potential use of M. flabellifolius as a phytogenic additive in animal diets.
Collapse
|
9
|
Gao J, Wang R, Liu J, Wang W, Chen Y, Cai W. Effects of novel microecologics combined with traditional Chinese medicine and probiotics on growth performance and health of broilers. Poult Sci 2022; 101:101412. [PMID: 34920387 PMCID: PMC8683594 DOI: 10.1016/j.psj.2021.101412] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/10/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
In this study, we prepared a kind of novel microecologics, namely Chinese medicine-probiotic compound microecological preparation (CPCMP), which is composed of 5 traditional Chinese medicine herbs (Galla Chinensis, Andrographis paniculata, Arctii Fructus, Glycyrrhizae Radix, and Schizonepeta tenuifolia) fermented by Aspergillus niger and a kind of compound probiotics (Lactobacillus plantarum A37 and L. plantarum MIII). The effects of the CPCMP in broilers on growth performance, serum parameters, immune function, and intestinal health were investigated. A total of 450 one-day-old male Arbor Acres broilers were randomly divided into 6 treatment groups with 5 replicates, 15 birds per replicate. Treatments consisted of: blank control, CPCMP, positive control, commercial CPCMP, traditional Chinese medicine, and probiotics groups, which were birds fed with basal diet supplemented with no extra additives, 0.2% CPCMP, 0.0035% chlortetracycline, 0.2% commercially available CPCMP, 0.2% fermented traditional Chinese medicines, and 0.2% compound probiotics, respectively. CPCMP obviously increased the average body weight and average daily gain (P < 0.05, compared with any other group) and decreased the feed:gain ratio of broilers (P < 0.05, compared with the blank control, commercial CPCMP, traditional Chinese medicine, or probiotics group). Moreover, it significantly increased glutathione peroxidase and secretory immunoglobulin A levels and spleen/bursa indices (P < 0.05 for all, compared with the blank control, commercial CPCMP, traditional Chinese medicine, or probiotics group). Villus heights in duodenum, jejunum, and ileum were also elevated by CPCMP treatment (P < 0.05, compared with any other group). Furthermore, CPCMP substantially increased jejunal mRNA levels of occludin and zonula occludens-1 (P < 0.05, compared with the blank control, positive control, or probiotics group) and facilitated the growth and colonization of beneficial cecal bacteria, such as Olsenella, Barnesiella, and Lactobacillus. Overall results show that the CPCMP prepared in our work contributes to improving growth performance, serum parameters, immune function, and intestinal health of broilers and exerts synergistic effects of traditional Chinese medicines and probiotics to some extent. Our findings suggest that CPCMP is a promising antibiotic substitute in the livestock and poultry industry in the future.
Collapse
Affiliation(s)
- Jin Gao
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Rui Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jingxuan Liu
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wenling Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yong Chen
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wentao Cai
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| |
Collapse
|
10
|
Zhu X, Xu M, Liu H, Yang G. In vitro fermentation profiles of different soybean oligosaccharides and their effects on skatole production and cecal microbiota of broilers. Anim Biosci 2022; 35:1195-1204. [PMID: 34991192 PMCID: PMC9262728 DOI: 10.5713/ab.21.0424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/22/2021] [Indexed: 11/27/2022] Open
Abstract
Objective The objective of this study was to investigate the in vitro fermentation profiles of different soybean oligosaccharides (SBOs) and their effects on skatole production and cecal microbiota of broilers. Methods Five SBOs with varying main component contents were fermented using an in vitro batch incubation inoculated with broiler cecal microbiota. Gas production was recorded automatically, skatole, indole and short-chain fatty acids (SCFAs) were determined using high-performance liquid chromatography, and microbial changes were analyzed using 16S DNA gene sequencing. Results The addition of SBOs increased (p<0.05) gas production, suggesting bacterial growth-stimulating activities. In addition, the concentrations of indole were significantly (p<0.05) decreased after SBO supplementation, and SBO III, with higher sucrose and stachyose contents, decreased (p<0.05) the skatole level. Our results also revealed that the fermentation of SBOs by cecal microbiota produced (p<0.05) SCFAs, which were dominated by propionic acid, butyrate acid and lactic acid compared to the control. In addition, SBO III increased (p<0.05) the abundance of Firmicutes and Subdoligranulum and decreased that of Bacteroides. Conclusion These results suggest that SBOs with higher sucrose and stachyose contents are promising prebiotics in modulating gut microbiota and reducing odor emission in broilers.
Collapse
Affiliation(s)
- Xin Zhu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Miao Xu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Haiying Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Guiqin Yang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
11
|
Sugiharto S, Widiastuti E, Robby Pratama A, Wahyuni HI, Yudiarti T, Agus Sartono T. Hematological and Intestinal Responses of Broilers to Dietary Supplementations of Lactic Fermented Turmeric, Black Pepper or a Mixture of Both. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2021. [DOI: 10.11118/actaun.2021.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Fermented traditional Chinese medicine alters the intestinal microbiota composition of broiler chickens. Res Vet Sci 2020; 135:8-14. [PMID: 33412475 DOI: 10.1016/j.rvsc.2020.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/07/2020] [Accepted: 12/27/2020] [Indexed: 11/20/2022]
Abstract
For a long time, phytogenic resources have been widely used as substitutes for antibiotics in livestock production. However, few studies have examined the relationship between the intestinal microbiota and fermented herbal medicines. Here, 252 Arbor Acres broiler plus broiler chickens were randomly assigned to a control group, which was fed a basal diet; an unfermented healthy chicken powder group (JJS) fed a basal diet containing 20 g/kg JJS; or one of 5 fermented JJS groups, which were fed a basal diet containing 20 g/kg JJS, fermented with by 5 different bacterial strains for 42 days. The growth performances of the different groups were measured and the changes in the intestinal microbiota were analyzed. The body weight gain in the Bacillus subtilis group (Bs) was the highest among the 6 groups, while the feed conversion ratio (FCR) was best with Z. rouxii fermentation. The result indicated that products of JJS fermentation products of JJS by B. subtilis and Z. rouxii had important effects on chicken growth performance. The foregut and hindgut microbial communities of Bs, Zr, the control group and the JJS group, were collected for 16S rDNA sequencing. The results showed that JJS and its fermentation products mainly acted on the foregut and had little effect on the hindgut, and Z. rouxii fermentation products can increased the diversity in the foregut microbial community. In addition, the relative abundance of Bifidobacterium in the foregut of the Z. rouxii group was significantly increased, which may be an important factor in promoting growth.
Collapse
|
13
|
Shi HT, Wang BY, Bian CZ, Han YQ, Qiao HX. Fermented Astragalus in diet improved laying performance, egg quality, antioxidant and immunological status and intestinal microbiota in laying hens. AMB Express 2020; 10:159. [PMID: 32869156 PMCID: PMC7459048 DOI: 10.1186/s13568-020-01092-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/17/2020] [Indexed: 12/05/2022] Open
Abstract
In the era of increased antibiotic resistance and ever-stricter control on antibiotic use, it is urgent to develop green, safe, and non-residue alternatives to antibiotics applied to the poultry industry. To this end, we supplied the potential Lactobacillus plantarum (L. plantarum) fermented Astragalus in the diet of laying hens, with a final addition of 3‰. Its effects have been assessed on laying performance, egg quality, antioxidant and immunological status, and intestinal microbiota, and are compared to the control group, to the Astragalus group containing 3‰ unfermented Astragalus, and to the L. plantarum group containing 2% L. plantarum [5 × 108 colony-forming unit (CFU) per milliliter (mL)]. During the second half of the experimental period (15 to 28 days), the egg production rate was considerably higher in the fermented Astragalus group than that in the other groups, with the fermented Astragalus group having the lowest feed conversion ratio. No significant difference (P > 0.05) was noted among treatments on egg quality. Fermented Astragalus-treated hens exhibited significantly increased catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) in serum, and reduced malondialdehyde (MDA) in serum. Furthermore, fermented Astragalus supplementation resulted in a significant increase in ileal microbiota abundance relative to control. In conclusion, feeding laying hens with L. plantarum fermented Astragalus has beneficial effects on production, antioxidant potential, immunity, and ileal microbiota. L. plantarum fermented Astragalus is expected to be a novel feed additive used in poultry production.
Collapse
|
14
|
Sugiharto S, Widiastuti E, Isroli I, Wahyuni HI, Yudiarti T. Effect of a Fermented Mixture of Papaya Leaf and Seed Meal on Production Traits and Intestinal Ecology of the Indonesian Indigenous Crossbred Chickens. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2020. [DOI: 10.11118/actaun202068040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Zhu X, Liu J, Liu H, Yang G. Soybean oligosaccharide, stachyose, and raffinose in broilers diets: effects on odor compound concentration and microbiota in cecal digesta. Poult Sci 2020; 99:3532-3539. [PMID: 32616249 PMCID: PMC7597845 DOI: 10.1016/j.psj.2020.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/17/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022] Open
Abstract
Soybean oligosaccharides have been previously shown to be associated with the production of major odor-causing compounds in broilers, although little is known about the role of stachyose and raffinose, which are key components of soybean oligosaccharide, in broiler cecal microbiota and odor compound production. To this end, soybean oligosaccharide, stachyose, and raffinose were added to the birds' diets to investigate their effects on odor compound production and the microbial community characteristics of the cecum in broilers. A total of 300 one-day-old Arbor Acre broilers with similar initial live weight were randomly allocated into 5 dietary groups with 6 replicates of 10 birds. The diets included soybean meal (positive control), soybean meal-free (negative control), 0.6% soybean oligosaccharide, 0.6% stachyose, or 0.6% raffinose. After a 49-D feeding period, both ceca were aseptically removed postmortem, and the contents were collected and analyzed for skatole, indole, volatile fatty acids, and lactic acid by using high performance liquid chromatography. Bacterial communities were detected by using a high-throughput sequencing platform based on IlluminaMiSeq 2500. Levels of skatole and indole tended to be lower in the dietary supplementation of oligosaccharides. The lowest levels of skatole and indole were observed in the stachyose group (P < 0.05), while the highest levels were found in the negative control group (P < 0.05). Concentrations of acetic acid and propionic acid in the stachyose group were increased (P < 0.05) while those of butyric acid and lactic acid were decreased (P < 0.05) compared with the soybean oligosaccharide and raffinose groups. Firmicutes and Bacteroidetes were prevalent in all groups, the proportion of Bacteroidetes was slightly decreased in the stachyose group, and Verrucomicrobia was abundant in the raffinose group (P > 0.05). Bacterial genera Alistipes and Parabacteroides were comparably abundant in the stachyose group, while Bacteroides, Lactobacillus, and Akkermansia were more abundant in the negative control, stachyose, and raffinose groups, respectively. Collectively, these findings demonstrated that dietary oligosaccharide supplementation significantly reduced odor compound production by modulating the cecal microbial community. Compared with soybean oligosaccharide and raffinose, the addition of stachyose into diets may help improve gut fermentation and minimize odor compound generation in broilers.
Collapse
Affiliation(s)
- Xin Zhu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jizhe Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Haiying Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Guiqin Yang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
16
|
Zeng H, Xi Y, Li Y, Wang Z, Zhang L, Han Z. Analysis of Astragalus Polysaccharide Intervention in Heat-Stressed Dairy Cows' Serum Metabolomics. Animals (Basel) 2020; 10:ani10040574. [PMID: 32235382 PMCID: PMC7222412 DOI: 10.3390/ani10040574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
This experiment was conducted to investigate the effects of astragalus polysaccharides (APS) on serum metabolism of dairy cows under heat stress. Thirty healthy Holstein dairy cows were randomly divided into three groups (10 cows in each group). In the experimental group, 30 mL/d (Treatment I) and 50 mL/d (Treatment II) of APS injection were injected into the neck muscle respectively. Each stage was injected with APS for 4 days (8:00 a.m. every day) and stopped for 3 days. Serum hormone and antioxidant indexes of dairy cows were investigated. Through repeated measurement analysis of variance, the results have shown that cortisol (COR) (F = 6.982, p = 0.026), triiodothyronine (T3) (F = 10.005, p = 0.012) and thyroxine (T4) (F = 22.530, p = 0.002) at different time points were significantly different. COR showed a downward trend, T3 and T4 showed an upward trend. At each time point, different concentrations of APS have significant effects on COR (F = 30.298, p = 0.000 < 0.05), T3 (F = 18.122, p = 0.001), and T4 (F = 44.067, p = 0.000 < 0.05). However, there were no significant differences in serum insulin (INS), glucagon (GC) and heat shock protein 70 (HSP70) between different time points (p > 0.05) and at each time point (p > 0.05). Additionally, the results have also shown that there were also no significant differences in serum Superoxide dismutase (SOD), malondialdehyde (MDA) and lactate dehydrogenase (LDH) between different time points (p > 0.05) and at each time point (p > 0.05). However, the injection of APS had a significant impact on glutathione peroxidase (GSH-Px) (F = 9.421, p = 0.014) at different times, and showed a trend of rising first and then falling. At each time point, APS of different concentrations had no significant effect on GSH-Px (p > 0.05). Furthermore, we used gas chromatography-mass spectrometry (GC-MS) non-targeted metabolomics to determine the potential markers of APS for heat-stressed dairy cows. Twenty metabolites were identified as potential biomarkers for the diagnosis of APS in heat-stressed dairy cows. These substances are involved in protein digestion and absorption, glutathione metabolism, prolactin signaling pathway, aminoacyl-tRNA biosynthesis, pentose and glucuronate interconversions, and so on. Our findings suggest that APS have an effect on the serum hormones of heat-stressed dairy cows, and regulate the metabolism of heat-stressed dairy cows through glucose metabolism and amino acid metabolism pathways.
Collapse
Affiliation(s)
- Hanfang Zeng
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
| | - Yumeng Xi
- Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Yeqing Li
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
| | - Zedong Wang
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
| | - Lin Zhang
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
| | - Zhaoyu Han
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
- Correspondence: ; Tel.: +13851685522; Fax: +02584395314
| |
Collapse
|
17
|
An X, Bao Q, Di S, Zhao Y, Zhao S, Zhang H, Lian F, Tong X. The interaction between the gut Microbiota and herbal medicines. Biomed Pharmacother 2019; 118:109252. [DOI: 10.1016/j.biopha.2019.109252] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
|