1
|
Cheng Q, Jiang SZ, Huang LB, Yang WR. shRNA-interfered of Nrf2 reveals a critical role for Keap1-Nrf2 signaling pathway during effects of zearalenone induced oxidative stress in IPEC-J2 cells. Anim Biosci 2025; 38:303-315. [PMID: 39210798 PMCID: PMC11725749 DOI: 10.5713/ab.24.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE This study aims to verify the protective effect of the Kelch-like ECH-associated protein1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways by studying the effect of plasmids containing Nrf2-small hairpin RNA (shRNA) interference down-regulation of Nrf2 on zearalenone (ZEA)-induced intestinal porcine epithelial cells (IPEC-J2) oxidative stress. METHODS We constructed an IPEC-J2 model that interferes with Nrf2 expression, set blank (control), negative control group (Sh-control), positive control group (Sh-Nrf2), and added 10, 20, and 40 μmol/L ZEA experimental group (Sh-Nrf2+ZEA10, Sh-Nrf2+ZEA20, and Sh-Nrf2+ZEA40). RESULTS The study results showed that, compared with the Sh-Nrf2 group, ZEA significantly increased the apoptosis rate of IPEC-J2 in a time- and dose-dependent manner. Compared with the Sh-Nrf2 group, the activities of total superoxide dismutase and glutathione peroxidase and relative expressions of Keap1 at mRNA and protein level in the Sh-Nrf2+ZEA20 and Sh-Nrf2+ZEA40 groups were significantly reduced, the malondialdehyde level, and the fluorescence intensity around and within the nucleus of reactive oxygen species and Nrf2, and the relative expressions of Nrf2, quinone oxidoreductase 1, and hemeoxygenase 1 at mRNA and protein level significantly increased. CONCLUSION These results further prove that interfering with the expression of Nrf2 in IPEC-J2 cells affected the activation of the Keap1-Nrf2 signaling pathway and reduced the ability of cells to resist ZEA-induced oxidative stress. Therefore, the Keap1-Nrf2 signaling pathway had an important protective effect in ZEA-induced intestinal oxidative stress.
Collapse
Affiliation(s)
- Qun Cheng
- Department of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao Shandong 266109,
China
| | - Shu Zhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian, Shandong 271018,
China
| | - Li Bo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian, Shandong 271018,
China
| | - Wei Ren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Sciences and Technology, Shandong Agricultural University, Taian, Shandong 271018,
China
| |
Collapse
|
2
|
Xu W, Yao J, Ouyang B, Huang Z, Zhang W, Mu W. Substrate specificity study of zearalenone lactonase by analyzing interaction networks of residues near the β6-α6 region. Int J Biol Macromol 2025; 286:138531. [PMID: 39653226 DOI: 10.1016/j.ijbiomac.2024.138531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/13/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Recently, how could microbial lactonase react to the mycotoxin zearalenone (ZEN) and its derivatives such as α-zearalenol (α-ZOL) is still unclear, resulting in limited applications. In this study, the interaction networks of residues near the β6-α6 region in lactonase from Monosporascus sp. GIB2 (ZENM) were analyzed. As a result, the residue M157 in the β6-α6 region was found significant to the specificity of ZENM, and two mutants including ZENMM157V and ZENMM157I that exhibited higher degradation activity than the wild-type (WT) against α-ZOL was achieved. The molecular dynamics simulation showed that the binding free energy of ZENMM157V and ZENMM157I was -38.68 and -40.84 Kcal/mol for α-ZOL, much lower than the wild-type enzyme (-33.03 Kcal/mol). Moreover, approximately a 54° torsion of the C6' hydroxyl group in α-ZOL was presented in mutants ZENMM157V and ZENMM157I conformation, resulting in a shorter distance between the catalytic pocket and α-ZOL.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiayi Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Binbin Ouyang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
3
|
Mohamed AAA, Soliman SS, Soliman ASH, Hanafy A, Jin Y. Endoplasmic reticulum stress is involved in mycotoxin zearalenone induced inflammatory response, proliferation, and apoptosis in goat endometrial stromal cells. Reprod Biol 2024; 24:100948. [PMID: 39232304 DOI: 10.1016/j.repbio.2024.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Zearalenone (ZEA) is an estrogen-like mycotoxin and is considered a secondary metabolite produced by Fusarium fungi, which are widely found in the surrounding environment. ZEA has been found to cause reproductive dysfunction in female and male animals, but the underlying mechanism remains unclear. Therefore, this study examined cell proliferation, cell apoptosis, autophagy protein expression, and some inflammatory cytokines such as IL-1β and IL-8 of goat endometrial stromal cells (ESCs) induced by different concentrations (0, 15, 30, 60, and 90 µM) of ZEA. The apoptosis rate was detected by flow cytometry. Western Blot and ELISA assay were used to identify the ER stress signaling pathway and some inflammatory cytokines. Our results revealed that ZEA induced cell proliferation and inhibited cell apoptosis at low and middle concentrations, while at high concentrations of ZEA, cell apoptosis was induced in ESCs. Additionally, ZEA induced the ER stress protein markers such as ATF6, IRE1α, EIF2α, and ATF4. LC3 as a marker of autophagy was up-regulated at all concentrations of ZEA. Moreover, IL-1β and IL-8 showed down-regulation at a low concentration of ZEA, but middle and high concentrations showed up-regulation. In the present study, Knockdown ERN1 can inhibit autophagy and the main markers of ER stress. These results suggest that the IRE1 pathway can reduce apoptosis protein markers, down activate IRE1, and unfolded protein response branches such as ATF6 and LC3 in ESCs. Additionally, IL-1β and IL-8 achieve up-regulation under knockdown IRE1, which can block ER stress markers.
Collapse
Affiliation(s)
- Amira Abdalla Abdelshafy Mohamed
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China; Department of Animal Production, Faculty of Environmental Agricultural Sciences, Arish University, Al-Arish, North-Sinai 45511, Egypt.
| | - Seham Samir Soliman
- Department of Animal Reproduction and Artificial Insemination, Veterinary Research Institute, National Research Centre (NRC), Dokki, Cairo 12622, Egypt
| | - Ahmed S H Soliman
- Department of Animal Production, Faculty of Agriculture, New Vally University, Al kharga city, New Vally, Egypt
| | - Ahmed Hanafy
- Department of Animal Production, Faculty of Agricultural, Suez Canal University, Ismalilia 41522, Egypt
| | - Yaping Jin
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China.
| |
Collapse
|
4
|
Xing X, Chen X, You X, Huang J, Xue D. Zearalenone degrading enzyme evolution to increase the hydrolysis efficiency under acidic conditions by the rational design. Food Chem 2024; 456:140088. [PMID: 38878543 DOI: 10.1016/j.foodchem.2024.140088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024]
Abstract
Based on rational design, zearalenone degrading enzyme was evolved to improve the hydrolysis efficiency under acidic conditions. At pH 4.2 and 37 °C, the activity of the zearalenone degrading enzyme evolved with 8 mutation sites increased from 7.69 U/mg to 38.67 U/mg. Km of the evolved zearalenone degrading enzyme decreased from 283.61 μM to 75.33 μM. The evolved zearalenone degrading enzyme was found to effectively degrade zearalenone in pig stomach chyme. Molecular docking revealed an increase in the number of hydrogen bonds and π-sigma interactions between the evolved zearalenone degrading enzyme and zearalenone. The evolved zearalenone degrading enzyme was valuable for hydrolyzing zearalenone under acidic conditions.
Collapse
Affiliation(s)
- Xingyue Xing
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, PR China
| | - Xiaowei Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, PR China
| | - Xihuo You
- School of Bioengineering and Health, Wuhan Textile University, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; Agrichina Huawei Biopharmaceutical (Hubei) Co., Ltd, Qichun 435300, PR China
| | - Jie Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, PR China
| | - Dongsheng Xue
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, PR China.
| |
Collapse
|
5
|
Jiang X, Tehreem S, Rahim K, Wang M, Wu P, Zhang G. Enhancing the thermal stability and activity of zearalenone lactone hydrolase to promote zearalenone degradation via semi-rational design. Enzyme Microb Technol 2024; 180:110499. [PMID: 39191068 DOI: 10.1016/j.enzmictec.2024.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
Zearalenone (ZEN) is a fungal toxin produced by Fusarium exospore, which poses a significant threat to both animal and human health due to its reproductive toxicity. Removing ZEN through ZEN lactonase is currently the most effective method reported, however, all published ZEN lactonases suffer from the poor thermal stability, losing almost all activity after 10 min of treatment at 55℃. In this study, we heterologously expressed ZHD11A from Phialophora macrospora and engineered it via semi-rational design. A mutant I160Y-G242S that can retain about 40 % residual activity at 55℃ for 10 min was obtained, which is the most heat-tolerant ZEN hydrolase reported to date. Moreover, the specific activity of the I160Y-G242S was also elevated 2-fold compared to ZHD11A from 220 U/mg to 450 U/mg, which is one of the most active ZEN lactonses reported. Dynamics analysis revealed that the decreased flexibility of the main-chain carbons contributes to increased thermal stability and the improved substrate binding affinity and catalytic turnover contribute to enhanced activity of variant I160Y-G242S. In all, the mutant I160Y-G242S is an excellent candidate for the industrial application of ZEN degradation.
Collapse
Affiliation(s)
- Xue Jiang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Sana Tehreem
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Kashif Rahim
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meixing Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
6
|
Liu X, Wang Y, Fang X, Tang Y, Wang G, Guo Y, Yuan J, Zhao L. Characteristics of a Novel Zearalenone Lactone Hydrolase ZHRnZ and Its Thermostability Modification. Int J Mol Sci 2024; 25:9665. [PMID: 39273612 PMCID: PMC11395237 DOI: 10.3390/ijms25179665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Zearalenone (ZEN) is a toxic secondary metabolite produced by the Fusarium fungi, which widely contaminates grains, food, and feed, causing health hazards for humans and animals. Therefore, it is essential to find effective ZEN detoxification methods. Enzymatic degradation of ZEN is believed to be an eco-friendly detoxification strategy, specifically thermostable ZEN degradation enzymes are needed in the food and feed industry. In this study, a novel ZEN lactone hydrolase ZHRnZ from Rosellinia necatrix was discovered using bioinformatic and molecular docking technology. The recombinant ZHRnZ showed the best activity at pH 9.0 and 45 °C with more than 90% degradation for ZEN, α-zearalenol (α-ZOL), β-zearalenol (β-ZOL) and α-zearalanol (α-ZAL) after incubation for 15 min. We obtained 10 mutants with improved thermostability by single point mutation technology. Among them, mutants E122Q and E122R showed the best performance, which retained more than 30% of their initial activity at 50 °C for 2 min, and approximately 10% of their initial activity at 60 °C for 1 min. The enzymatic kinetic study showed that the catalytic efficiency of E122R was 1.3 times higher than that of the wild-type (WT). Comprehensive consideration suggests that mutant E122R is a promising hydrolase to detoxify ZEN in food and feed.
Collapse
Affiliation(s)
- Xinlan Liu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China
- Eyasclub, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China
| | - Yanan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China
| | - Xin Fang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China
| | - Yu Tang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China
| | - Gaigai Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China
| | - Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China
- Eyasclub, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China
- Eyasclub, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China
| |
Collapse
|
7
|
Fang J, Sheng L, Ye Y, Gao S, Ji J, Zhang Y, Sun X. Biochemical Characterization and Application of Zearalenone Lactone Hydrolase Fused with a Multifunctional Short Peptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18146-18154. [PMID: 39075026 DOI: 10.1021/acs.jafc.4c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Zearalenone (ZEN) is an estrogenic mycotoxin causing reproductive toxicity in livestock. Currently, lactone hydrolases are used in the enzymatic degradation of ZEN. However, most lactone hydrolases suffer from low degradation efficiency and poor thermal stability. ZHD518, as a documented neutral enzyme for ZEN degradation, exhibits high enzymatic activity under neutral conditions. In this study, a multifunctional peptide S1v1-(AEAEAHAH)2 was fused to the N-terminus of ZHD518. Compared with the wild-type enzyme, the peptide fusion significantly enhanced protein expression by 1.28 times, enzyme activity by 9.27 times, thermal stability by 37.08 times after incubation at 45 °C for 10 min and enzyme stability during long-term storage. Moreover, ZEN concentrations in corn bran, corn germ meal, and corn gluten powder decreased from 5.29 ± 0.04, 5.31 ± 0.03, and 5.30 ± 0.01 μg/g to 0.48 ± 0.05, 0.48 ± 0.06, and 0.21 ± 0.04 μg/g, respectively, following a 60 min treatment with S1v1-GS-ZHD518, resulting in degradation rates of 90.98, 91.00, and 95.32%, respectively. In conclusion, the properties of S1v1-GS-ZHD518, such as its efficient degradability, high temperature resistance and storage resistance, offer the possibility of its application in food or feed.
Collapse
Affiliation(s)
- Jinpei Fang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Song Gao
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| |
Collapse
|
8
|
Sun Z, Fang Y, Zhu Y, Tian W, Yu J, Tang J. Biotransformation of zearalenone to non-estrogenic compounds with two novel recombinant lactonases from Gliocladium. BMC Microbiol 2024; 24:75. [PMID: 38454365 PMCID: PMC10921726 DOI: 10.1186/s12866-024-03226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The mycotoxin zearalenone (ZEA) produced by toxigenic fungi is widely present in cereals and its downstream products. The danger of ZEA linked to various human health issues has attracted increasing attention. Thus, powerful ZEA-degrading or detoxifying strategies are urgently needed. Biology-based detoxification methods are specific, efficient, and environmentally friendly and do not lead to negative effects during cereal decontamination. Among these, ZEA detoxification using degrading enzymes was documented to be a promising strategy in broad research. Here, two efficient ZEA-degrading lactonases from the genus Gliocladium, ZHDR52 and ZHDP83, were identified for the first time. This work studied the degradation capacity and properties of ZEA using purified recombinant ZHDR52 and ZHDP83. RESULTS According to the ZEA degradation study, transformed Escherichia coli BL21(DE3) PLySs cells harboring the zhdr52 or zhdp83 gene could transform 20 µg/mL ZEA within 2 h and degrade > 90% of ZEA toxic derivatives, α/β-zearalanol and α/β-zearalenol, within 6 h. Biochemical analysis demonstrated that the optimal pH was 9.0 for ZHDR52 and ZHDP83, and the optimum temperature was 45 °C. The purified recombinant ZHDR52 and ZHDP83 retained > 90% activity over a wide range of pH values and temperatures (pH 7.0-10.0 and 35-50 °C). In addition, the specific activities of purified ZHDR52 and ZHDP83 against ZEA were 196.11 and 229.64 U/mg, respectively. The results of these two novel lactonases suggested that, compared with ZHD101, these two novel lactonases transformed ZEA into different products. The slight position variations in E126 and H242 in ZDHR52/ZEA and ZHDP83/ZEA obtained via structural modelling may explain the difference in degradation products. Moreover, the MCF-7 cell proliferation assay indicated that the products of ZEA degradation using ZHDR52 and ZHDP83 did not exhibit estrogenic activity. CONCLUSIONS ZHDR52 and ZHDP83 are alkali ZEA-degrading enzymes that can efficiently and irreversibly degrade ZEA into non-estrogenic products, indicating that they are potential candidates for commercial application. This study identified two excellent lactonases for industrial ZEA detoxification.
Collapse
Affiliation(s)
- Zongping Sun
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Anhui, Fuyang, 236037, China
- The Anhui Agricultural University's Comprehensive Experimental Station in the Northwest of Anhui Province, Linquan Modern Agricultural Technology Cooperation and Extension Service Center, Anhui, Linquan, 236400, China
| | - Yuting Fang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Anhui, Fuyang, 236037, China
| | - Yaohuan Zhu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Anhui, Fuyang, 236037, China
| | - Wen Tian
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Anhui, Fuyang, 236037, China
| | - Junjie Yu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Anhui, Fuyang, 236037, China
| | - Jun Tang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Anhui, Fuyang, 236037, China.
| |
Collapse
|
9
|
Fruhauf S, Pühringer D, Thamhesl M, Fajtl P, Kunz-Vekiru E, Höbartner-Gussl A, Schatzmayr G, Adam G, Damborsky J, Djinovic-Carugo K, Prokop Z, Moll WD. Bacterial Lactonases ZenA with Noncanonical Structural Features Hydrolyze the Mycotoxin Zearalenone. ACS Catal 2024; 14:3392-3410. [PMID: 38449531 PMCID: PMC10913051 DOI: 10.1021/acscatal.4c00271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
Zearalenone (ZEN) is a mycoestrogenic polyketide produced by Fusarium graminearum and other phytopathogenic members of the genus Fusarium. Contamination of cereals with ZEN is frequent, and hydrolytic detoxification with fungal lactonases has been explored. Here, we report the isolation of a bacterial strain, Rhodococcus erythropolis PFA D8-1, with ZEN hydrolyzing activity, cloning of the gene encoding α/β hydrolase ZenA encoded on the linear megaplasmid pSFRL1, and biochemical characterization of nine homologues. Furthermore, we report site-directed mutagenesis as well as structural analysis of the dimeric ZenARe of R. erythropolis and the more thermostable, tetrameric ZenAScfl of Streptomyces coelicoflavus with and without bound ligands. The X-ray crystal structures not only revealed canonical features of α/β hydrolases with a cap domain including a Ser-His-Asp catalytic triad but also unusual features including an uncommon oxyanion hole motif and a peripheral, short antiparallel β-sheet involved in tetramer interactions. Presteady-state kinetic analyses for ZenARe and ZenAScfl identified balanced rate-limiting steps of the reaction cycle, which can change depending on temperature. Some new bacterial ZEN lactonases have lower KM and higher kcat than the known fungal ZEN lactonases and may lend themselves to enzyme technology development for the degradation of ZEN in feed or food.
Collapse
Affiliation(s)
- Sebastian Fruhauf
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| | - Dominic Pühringer
- Department
for Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna 1030, Austria
| | - Michaela Thamhesl
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| | - Patricia Fajtl
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| | - Elisavet Kunz-Vekiru
- Institute
of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology
IFA-Tulln, University of Natural Resources
and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 20, Tulln 3430, Austria
| | - Andreas Höbartner-Gussl
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| | - Gerd Schatzmayr
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| | - Gerhard Adam
- Institute
of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences
Vienna (BOKU), Konrad-Lorenz-Straße
24, Tulln 3430, Austria
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Bld. A13, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Kristina Djinovic-Carugo
- Department
for Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna 1030, Austria
- Department
of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
- European
Molecular Biology Laboratory (EMBL) Grenoble, Grenoble 38000, France
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Bld. A13, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Wulf-Dieter Moll
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| |
Collapse
|
10
|
Shi J, Mwabulili F, Xie Y, Yang Y, Sun S, Li Q, Ma W, Jia H. Characterization, Structural Analysis, and Thermal Stability Mutation of a New Zearalenone-Degrading Enzyme Mined from Bacillus subtilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3025-3035. [PMID: 38300990 DOI: 10.1021/acs.jafc.3c06767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Zearalenone (ZEN) is a widespread mycotoxin that causes serious damage to animal husbandry and poses a threat to human health. A screen of ZEN-degrading soil bacteria yielded Bacillus subtilis YT-4, which yielded 80% ZEN degradation after 6 h and 95% after 36 h. The gene sequence encoding the degradative enzyme ZENY was mined from the genome of YT-4 and expressed in yeast. ZENY is an α/β-hydrolase with an optimal enzyme activity at 37 °C and pH 8. By breaking the lactone ring of ZEN, it produces ZENY-C18H24O5 with a molecular weight of 320.16 g/mol. Sequence comparison and molecular docking analyses identified the catalytic ZENY triad 99S-245H-123E and the primary ZEN-binding mode within the hydrophobic pocket of the enzyme. To improve the thermal stability of the enzyme for industrial applications, we introduced a mutation at the N-terminus, specifically replacing the fifth residue N with V, and achieved a 25% improvement in stability at 45 °C. These findings aim to achieve ZEN biodegradation and provide insight into the structure and function of ZEN hydrolases.
Collapse
Affiliation(s)
- Jinghao Shi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Fred Mwabulili
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Shumin Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Qian Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Weibin Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Hang Jia
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
11
|
Guo C, Fan L, Yang Q, Ning M, Zhang B, Ren X. Characterization and mechanism of simultaneous degradation of aflatoxin B 1 and zearalenone by an edible fungus of Agrocybe cylindracea GC-Ac2. Front Microbiol 2024; 15:1292824. [PMID: 38414775 PMCID: PMC10897045 DOI: 10.3389/fmicb.2024.1292824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Contamination with multiple mycotoxins is a major issue for global food safety and trade. This study focused on the degradation of aflatoxin B1 (AFB1) and zearalenone (ZEN) by 8 types of edible fungi belonging to 6 species, inclulding Agaricus bisporus, Agrocybe cylindracea, Cyclocybe cylindracea, Cyclocybe aegerita, Hypsizygus marmoreus and Lentinula edodes. Among these fungi, Agrocybe cylindracea strain GC-Ac2 was shown to be the most efficient in the degradation of AFB1 and ZEN. Under optimal degradation conditions (pH 6.0 and 37.4°C for 37.9 h), the degradation rate of both AFB1 and ZEN reached over 96%. Through the analysis of functional detoxification components, it was found that the removal of AFB1 and ZEN was primarily degraded by the culture supernatant of the fungus. The culture supernatant exhibited a maximum manganese peroxidase (MnP) activity of 2.37 U/mL. Interestingly, Agrocybe cylindracea strain GC-Ac2 also showed the capability to degrade other mycotoxins in laboratory-scale mushroom substrates, including 15A-deoxynivalenol, fumonisin B1, B2, B3, T-2 toxin, ochratoxin A, and sterigmatocystin. The mechanism of degradation of these mycotoxins was speculated to be catalyzed by a complex enzyme system, which include MnP and other ligninolytic enzymes. It is worth noting that Agrocybe cylindracea can degrade multiple mycotoxins and produce MnP, which is a novel and significant discovery. These results suggest that this candidate strain and its enzyme system are expected to become valuable biomaterials for the simultaneous degradation of multiple mycotoxins.
Collapse
Affiliation(s)
- Changying Guo
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Lixia Fan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Qingqing Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Mingxiao Ning
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Bingchun Zhang
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Xianfeng Ren
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| |
Collapse
|
12
|
Murtaza B, Wang L, Li X, Nawaz MY, Saleemi MK, Khatoon A, Yongping X. Recalling the reported toxicity assessment of deoxynivalenol, mitigating strategies and its toxicity mechanisms: Comprehensive review. Chem Biol Interact 2024; 387:110799. [PMID: 37967807 DOI: 10.1016/j.cbi.2023.110799] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Mycotoxins frequently contaminate a variety of food items, posing significant concerns for both food safety and public health. The adverse consequences linked to poisoning from these substances encompass symptoms such as vomiting, loss of appetite, diarrhea, the potential for cancer development, impairments to the immune system, disruptions in neuroendocrine function, genetic damage, and, in severe cases, fatality. The deoxynivalenol (DON) raises significant concerns for both food safety and human health, particularly due to its potential harm to vital organs in the body. It is one of the most prevalent fungal contaminants found in edible items used by humans and animals globally. The presence of harmful mycotoxins, including DON, in food has caused widespread worry. Altered versions of DON have arisen as possible risks to the environment and well-being, as they exhibit a greater propensity to revert back to the original mycotoxins. This can result in the buildup of mycotoxins in both animals and humans, underscoring the pressing requirement for additional investigation into the adverse consequences of these modified mycotoxins. Furthermore, due to the lack of sufficient safety data, accurately evaluating the risk posed by modified mycotoxins remains challenging. Our review study delves into conjugated forms of DON, exploring its structure, toxicity, control strategies, and a novel animal model for assessing its toxicity. Various toxicities, such as acute, sub-acute, chronic, and cellular, are proposed as potential mechanisms contributing to the toxicity of conjugated forms of DON. Additionally, the study offers an overview of DON's toxicity mechanisms and discusses its widespread presence worldwide. A thorough exploration of the health risk evaluation associated with conjugated form of DON is also provided in this discussion.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | | | | | - Aisha Khatoon
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Xu Yongping
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China.
| |
Collapse
|
13
|
Fang J, Sheng L, Ye Y, Ji J, Sun J, Zhang Y, Sun X. Recent advances in biosynthesis of mycotoxin-degrading enzymes and their applications in food and feed. Crit Rev Food Sci Nutr 2023; 65:1465-1481. [PMID: 38108665 DOI: 10.1080/10408398.2023.2294166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mycotoxins are secondary metabolites produced by fungi in food and feed, which can cause serious health problems. Bioenzymatic degradation is gaining increasing popularity due to its high specificity, gentle degradation conditions, and environmental friendliness. We reviewed recently reported biosynthetic mycotoxin-degrading enzymes, traditional and novel expression systems, enzyme optimization strategies, food and feed applications, safety evaluation of both degrading enzymes and degradation products, and commercialization potentials. Special emphasis is given to the novel expression systems, advanced optimization strategies, and safety considerations for industrial use. Over ten types of recombinases such as oxidoreductase and hydrolase have been studied in the enzymatic hydrolysis of mycotoxins. Besides traditional expression system of Escherichia coli and yeasts, these enzymes can also be expressed in novel systems such as Bacillus subtilis and lactic acid bacteria. To meet the requirements of industrial applications in terms of degradation efficacy and stability, genetic engineering and computational tools are used to optimize enzymatic expression. Currently, registration and technical difficulties have restricted commercial application of mycotoxin-degrading enzymes. To overcome these obstacles, systematic safety evaluation of both biosynthetic enzymes and their degradation products, in-depth understanding of degradation mechanisms and a comprehensive evaluation of their impact on food and feed quality are urgently needed.
Collapse
Affiliation(s)
- Jinpei Fang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| |
Collapse
|
14
|
Hu J, Du S, Qiu H, Wu Y, Hong Q, Wang G, Mohamed SR, Lee YW, Xu J. A Hydrolase Produced by Rhodococcus erythropolis HQ Is Responsible for the Detoxification of Zearalenone. Toxins (Basel) 2023; 15:688. [PMID: 38133192 PMCID: PMC10747462 DOI: 10.3390/toxins15120688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Zearalenone (ZEN), an estrogenic mycotoxin, is one of the prevalent contaminants found in food and feed, posing risks to human and animal health. In this study, we isolated a ZEN-degrading strain from soil and identified it as Rhodococcus erythropolis HQ. Analysis of degradation products clarified the mechanism by which R. erythropolis HQ degrades ZEN. The gene zenR responsible for degrading ZEN was identified from strain HQ, in which zenR is the key gene for R. erythropolis HQ to degrade ZEN, and its expression product is a hydrolase named ZenR. ZenR shared 58% sequence identity with the hydrolase ZenH from Aeromicrobium sp. HA, but their enzymatic properties were significantly different. ZenR exhibited maximal enzymatic activity at pH 8.0-9.0 and 55 °C, with a Michaelis constant of 21.14 μM, and its enzymatic activity is 2.8 times that of ZenH. The catalytic triad was identified as S132-D157-H307 via molecular docking and site-directed mutagenesis. Furthermore, the fermentation broth of recombinant Bacillus containing ZenR can be effectively applied to liquefied corn samples, with the residual amount of ZEN decreased to 0.21 μg/g, resulting in a remarkable ZEN removal rate of 93%. Thus, ZenR may serve as a new template for the modification of ZEN hydrolases and a new resource for the industrial application of biological detoxification. Consequently, ZenR could potentially be regarded as a novel blueprint for modifying ZEN hydrolases and as a fresh resource for the industrial implementation of biological detoxification.
Collapse
Affiliation(s)
- Junqiang Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (S.D.); (H.Q.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.W.); (Y.-W.L.)
| | - Shilong Du
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (S.D.); (H.Q.)
| | - Han Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (S.D.); (H.Q.)
| | - Yuzhuo Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (S.D.); (H.Q.)
| | - Gang Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.W.); (Y.-W.L.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Sherif Ramzy Mohamed
- Food Industries and Nutrition Research Institute, Food Toxicology and Contaminants Department, National Research Centre, Tahreer St., Dokki, Giza 12411, Egypt;
| | - Yin-Won Lee
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.W.); (Y.-W.L.)
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jianhong Xu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (S.D.); (H.Q.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.W.); (Y.-W.L.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
15
|
Ouyang B, Zhang W, Guang C, Xu W, Mu W. Identification and Modification of Enzymatic Substrate Specificity through Residue Alteration in the Cap Domain: A Thermostable Zearalenone Lactonase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18943-18952. [PMID: 37990968 DOI: 10.1021/acs.jafc.3c07228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Zearalenone (ZEN) and its derivatives are prevalent contaminants in cereal crops. This study investigated a novel thermostable ZEN lactonase (ZENM) from Monosporascus sp. GIB2. ZENM demonstrated its highest activity at 60 °C, maintaining over 90% relative activity from 50 to 60 °C. Notably, efficient hydrolysis of ZEN and its two derivatives was achieved using ZENM, with specific activities of 333 U/mg for ZEN, 316 U/mg for α-zearalenol (α-ZOL), and 300 U/mg for α-zearalanol (α-ZAL). The activity of ZENM toward α-ZOL is noteworthy as most ZEN lactonases rarely achieve such a high degradation rate of α-ZOL. Based on the sequence-structure analysis, five residues (L123, G163, E171, S199, and S202) conserved in other ZEN lactonases were substituted in ZENM. Of interest was the G163S mutant in the cap domain that displayed enhanced activity toward α-ZOL compared to the wild-type enzyme. Notably, the mutant G163S exhibited higher catalytic activity toward α-ZOL (kcat/Km 0.223 min-1 μM-1) than ZEN (kcat/Km 0.191 min-1 μM-1), preferring α-ZOL as its optimum substrate. In conclusion, a thermostable ZEN lactonase has been reported, and the alteration of residue G163 in the cap domain has been shown to modify the substrate specificity of ZEN lactonase.
Collapse
Affiliation(s)
- Binbin Ouyang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
16
|
Adegoke TV, Yang B, Tian X, Yang S, Gao Y, Ma J, Wang G, Si P, Li R, Xing F. Simultaneous degradation of aflatoxin B 1 and zearalenone by Porin and Peroxiredoxin enzymes cloned from Acinetobacter nosocomialis Y1. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132105. [PMID: 37494799 DOI: 10.1016/j.jhazmat.2023.132105] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Mycotoxin contamination can cause severe health issues for both humans and animals. This study examined the potential of enzymes derived from Acinetobacter nosocomialis Y1 to simultaneously degrade aflatoxin B1 (AFB1) and zearalenone (ZEN), which could have significant implications in reducing mycotoxin contamination. Two enzymes, Porin and Peroxiredoxin, were identified with molecular weights of 27.8 and 20.8 kDa, respectively. Porin could completely degrade 2 µg/mL of AFB1 and ZEN within 24 h at 80 °C and 60 °C, respectively. Peroxiredoxin could completely degrade 2 µg/mL of AFB1 and reduce ZEN by 91.12% within 24 h. The addition of Na+, Cu2+, and K+ ions enhanced the degradation activities of both enzymes. LC-MS/MS analysis revealed that the molar masses of the degradation products of AFB1 and ZEN were 286 g/mol and 322.06 g/mol, and the products were identified as AFD1 and α or β-ZAL, respectively. Vibrio fischeri bioluminescence assays further confirmed that the cytotoxicity of the two degradation products was significantly lower than that of AFB1 and ZEN. Based on these results, it can be inferred that the degradation product of ZEN is β-ZAL. These findings suggest that both enzymes have the potential to be utilized as detoxification enzymes in food and feed.
Collapse
Affiliation(s)
- Tosin Victor Adegoke
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bolei Yang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyu Tian
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuo Yang
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuan Gao
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junning Ma
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gang Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Peidong Si
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Runyan Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fuguo Xing
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
17
|
Gari J, Abdella R. Degradation of zearalenone by microorganisms and enzymes. PeerJ 2023; 11:e15808. [PMID: 37601268 PMCID: PMC10434127 DOI: 10.7717/peerj.15808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Mycotoxins are toxic metabolites produced by fungi that may cause serious health problems in humans and animals. Zearalenone is a secondary metabolite produced by fungi of the genus Fusarium, widely exists in animal feed and human food. One concern with the use of microbial strains and their enzyme derivatives for zearalenone degradation is the potential variability in the effectiveness of the degradation process. The efficiency of degradation may depend on various factors such as the type and concentration of zearalenone, the properties of the microbial strains and enzymes, and the environmental conditions. Therefore, it is important to carefully evaluate the efficacy of these methods under different conditions and ensure their reproducibility. Another important consideration is the safety and potential side effects of using microbial strains and enzymes for zearalenone degradation. It is necessary to evaluate the potential risks associated with the use of genetically modified microorganisms or recombinant enzymes, including their potential impact on the environment and non-target organisms. Additionally, it is important to ensure that the degradation products are indeed harmless and do not pose any health risks to humans or animals. Furthermore, while the use of microbial strains and enzymes may offer an environmentally friendly and cost-effective solution for zearalenone degradation, it is important to explore other methods such as physical or chemical treatments as well. These methods may offer complementary approaches for zearalenone detoxification, and their combination with microbial or enzyme-based methods may improve overall efficacy. Overall, the research on the biodegradation of zearalenone using microorganisms and enzyme derivatives is promising, but there are important considerations that need to be addressed to ensure the safety and effectiveness of these methods. Development of recombinant enzymes improves enzymatic detoxification of zearalenone to a non-toxic product without damaging the nutritional content. This review summarizes biodegradation of zearalenone using microorganisms and enzyme derivatives to nontoxic products. Further research is needed to fully evaluate the potential of these methods for mitigating the impact of mycotoxins in food and feed.
Collapse
Affiliation(s)
- Jiregna Gari
- Department of Veterinary Laboratory Technology, Ambo University, Ambo, Oromia, Ethiopia
| | - Rahma Abdella
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
18
|
Qiu Y, Xu H, Ji Q, Xu R, Zhu M, Dang Y, Shi X, Zhang L, Xia Y. Mutation, food-grade expression, and characterization of a lactonase for zearalenone degradation. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12638-6. [PMID: 37401996 DOI: 10.1007/s00253-023-12638-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
Zearalenone (ZEN) is a mycotoxin that causes serious threats to human health. People are exposed to ZEN contamination externally and internally through many ways, while environmental-friendly strategies for efficient elimination of ZEN are urgently needed worldwide. Previous studies revealed that the lactonase Zhd101 from Clonostachys rosea can hydrolyze ZEN to low toxicity compounds. In this work, the enzyme Zhd101 was conducted with combinational mutations to enhance its application properties. The optimal mutant (V153H-V158F), named Zhd101.1, was selected and introduced into the food-grade recombinant yeast strain Kluyveromyces lactis GG799(pKLAC1-Zhd101.1), followed by induced expression and secretion into the supernatant. The enzymatic properties of this mutant were extensively examined, revealing a 1.1-fold increase in specific activity, as well as improved thermostability and pH stability, compared to the wild-type enzyme. The ZEN degradation tests and the reaction parameters optimization were carried out in both solutions and the ZEN-contaminated corns, using the fermentation supernatants of the food-grade yeast strain. Results showed that the degradation rates for ZEN by fermentation supernatants reached 96.9% under optimal reaction conditions and 74.6% in corn samples, respectively. These new results are a useful reference to zearalenone biodegradation technologies and indicated that the mutant enzyme Zhd101.1 has potential to be used in food and feed industries. KEY POINTS: • Mutated lactonase showed 1.1-fold activity, better pH stability than the wild type. • The strain K. lactis GG799(pKLAC1-Zhd101.1) and the mutant Zhd101.1 are food-grade. • ZEN degradation rates by supernatants reached 96.9% in solution and 74.6% in corns.
Collapse
Affiliation(s)
- Yangyu Qiu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Huidong Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qinyi Ji
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Rongrong Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Shandong Freda Bioeng Co., Ltd., Jinan, 250101, China
| | - Mulan Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Xizhi Shi
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Lili Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
19
|
Shi Y, Ouyang B, Zhang Y, Zhang W, Xu W, Mu W. Recent developments of mycotoxin-degrading enzymes: identification, preparation and application. Crit Rev Food Sci Nutr 2023; 64:10089-10104. [PMID: 37293851 DOI: 10.1080/10408398.2023.2220402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mycotoxins are secondary metabolites produced by fungi during their growth. They not only seriously affect the yield of food crops but also pose a threat to human and animal health. Physical and chemical methods have been widely used to reduce the production and accumulation of mycotoxins in the field or after harvest, but these methods have difficulty in completely removing mycotoxins while keeping the nutrients at the same time. Biodegradation methods using isolated enzymes have shown superiority and potential for modest reaction conditions, high degradation efficiency and degradation products with low toxicity. Therefore, the occurrence, chemical structures, and toxicology of six prevalent mycotoxins (deoxynivalenol, zearalenone, aflatoxin, patulin, fumonisin, and ochratoxin) were described in this manuscript. The identification and application of mycotoxin-degrading enzymes were thoroughly reviewed. It is believed that in the near future, mycotoxin-degrading enzymes are expected to be commercially developed and used in the feed and food industries.
Collapse
Affiliation(s)
- Yan Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Binbin Ouyang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yulei Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
20
|
Statsyuk NV, Popletaeva SB, Shcherbakova LA. Post-Harvest Prevention of Fusariotoxin Contamination of Agricultural Products by Irreversible Microbial Biotransformation: Current Status and Prospects. BIOTECH 2023; 12:32. [PMID: 37218749 PMCID: PMC10204369 DOI: 10.3390/biotech12020032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Biological degradation of mycotoxins is a promising environmentally-friendly alternative to chemical and physical detoxification methods. To date, a lot of microorganisms able to degrade them have been described; however, the number of studies determining degradation mechanisms and irreversibility of transformation, identifying resulting metabolites, and evaluating in vivo efficiency and safety of such biodegradation is significantly lower. At the same time, these data are crucial for the evaluation of the potential of the practical application of such microorganisms as mycotoxin-decontaminating agents or sources of mycotoxin-degrading enzymes. To date, there are no published reviews, which would be focused only on mycotoxin-degrading microorganisms with the proved irreversible transformation of these compounds into less toxic compounds. In this review, the existing information about microorganisms able to efficiently transform the three most common fusariotoxins (zearalenone, deoxinyvalenol, and fumonisin B1) is presented with allowance for the data on the corresponding irreversible transformation pathways, produced metabolites, and/or toxicity reduction. The recent data on the enzymes responsible for the irreversible transformation of these fusariotoxins are also presented, and the promising future trends in the studies in this area are discussed.
Collapse
Affiliation(s)
- Natalia V. Statsyuk
- All-Russian Research Institute of Phytopathology, 143050 Bolshie Vyazemy, Russia (L.A.S.)
| | | | | |
Collapse
|
21
|
Hu J, Wang G, Hou M, Du S, Han J, Yu Y, Gao H, He D, Shi J, Lee YW, Mohamed SR, Dawood DH, Hong Q, Liu X, Xu J. New Hydrolase from Aeromicrobium sp. HA for the Biodegradation of Zearalenone: Identification, Mechanism, and Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2411-2420. [PMID: 36701132 DOI: 10.1021/acs.jafc.2c06410] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Zearalenone (ZEN) is an estrogenic mycotoxin most frequently found in cereals that can cause reproductive disorders in livestock and pose a severe threat to animal husbandry. In this study, we isolated a ZEN-degrading Aeromicrobium strain from soil and found that ZenH, a hydrolase, is responsible for the hydrolysis of ZEN through comparative proteomics and biochemical studies. ZenH exhibited the highest similarity with lactone hydrolase ZHD607 from Phialophora americana at 21.52%. ZenH displayed maximal enzymatic activity at pH 7.0 and 55 °C with a Michaelis constant of 12.64 μM. The catalytic triad of ZenH was identified as S117-D142-H292 by molecular docking and site-directed mutagenesis. ZenH catalyzed the hydrolysis of ZEN to a novel metabolite, (S,E)-4-hydroxy-2-(10-hydroxy-6-oxoundec-1-en-1-yl)-7-oxabicyclo[4.2.0]octa-1,3,5-trien-8-one, which exhibited significantly lower estrogenic toxicity than ZEN. This study illustrates a novel ZEN-degrading enzyme and reveals a new degradation product. Furthermore, the enzyme showed good potential for detoxifying ZEN during food processing.
Collapse
Affiliation(s)
- Junqiang Hu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
- College of Life Science, Nanjing Agriculture University, Nanjing210095, People's Republic of China
| | - Gang Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang212013, Jiangsu, People's Republic of China
| | - Mingxuan Hou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
| | - Shilong Du
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
| | - Jun Han
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
| | - Yangguang Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang212013, Jiangsu, People's Republic of China
| | - Hongxia Gao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang212013, Jiangsu, People's Republic of China
| | - Dan He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
| | - Yin-Won Lee
- School of Agricultural Biotechnology, Seoul National University, Seoul08826, Republic of Korea
| | - Sherif Ramzy Mohamed
- Food Industries and Nutrition Research Institute, Food Toxicology and Contaminants Department, National Research Centre, Tahreer St., Dokki, Giza12411, Egypt
| | - Dawood H Dawood
- Department of Agriculture Chemistry, Faculty of Agriculture, Mansoura University, Mansoura35516, Egypt
| | - Qing Hong
- College of Life Science, Nanjing Agriculture University, Nanjing210095, People's Republic of China
| | - Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang212013, Jiangsu, People's Republic of China
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
- College of Life Science, Nanjing Agriculture University, Nanjing210095, People's Republic of China
| |
Collapse
|
22
|
Adegoke TV, Yang B, Xing F, Tian X, Wang G, Tai B, Si P, Hussain S, Jahan I. Microbial Enzymes Involved in the Biotransformation of Major Mycotoxins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:35-51. [PMID: 36573671 DOI: 10.1021/acs.jafc.2c06195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mycotoxins, the most researched biological toxins, can contaminate food and feed, resulting in severe health implications for humans and animals. Physical, chemical, and biological techniques are used to mitigate mycotoxin contamination. The biotransformation method using whole microbial cells or isolated enzymes is the best choice to mitigate mycotoxins. Using specific enzymes may avoid the disadvantages of utilizing a full microbe, such as accidental harm to the product's organoleptic characteristics and hazardous safety features. Moreover, the degradation rates of the isolated enzymes are higher than those of the whole-cell reactions, and they are substrate-specific. Their specificity is comprehensive and is shown at the positional and/or chiral center in many circumstances. Currently, only a few enzymes of microbial origin are commercially available. Therefore, there is a need to identify more novel enzymes of microbial origin that can mitigate mycotoxins. In this review, we conducted an in-depth summary of the microbial enzymes involved in the biotransformation of mycotoxins.
Collapse
Affiliation(s)
- Tosin Victor Adegoke
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bolei Yang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fuguo Xing
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyu Tian
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gang Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bowen Tai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Peidong Si
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sarfaraz Hussain
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Israt Jahan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
23
|
Enzymatic Degradation of Zearalenone in the Gastrointestinal Tract of Pigs, Chickens, and Rainbow Trout. Toxins (Basel) 2023; 15:toxins15010048. [PMID: 36668868 PMCID: PMC9865282 DOI: 10.3390/toxins15010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The estrogenic mycotoxin zearalenone (ZEN) is a common contaminant of animal feed. Effective strategies for the inactivation of ZEN in feed are required. The ZEN-degrading enzyme zearalenone hydrolase ZenA (EC 3.1.1.-, commercial name ZENzyme®, BIOMIN Holding GmbH, Getzersdorf, Austria) converts ZEN to hydrolyzed ZEN (HZEN), thereby enabling a strong reduction in estrogenicity. In this study, we investigated the efficacy of ZenA added to feed to degrade ZEN in the gastrointestinal tract of three monogastric animal species, i.e., pigs, chickens, and rainbow trout. For each species, groups of animals received (i) feed contaminated with ZEN (chickens: 400 µg/kg, pigs: 200 µg/kg, rainbow trout: 2000 µg/kg), (ii) feed contaminated with ZEN and supplemented with ZenA, or (iii) uncontaminated feed. To investigate the fate of dietary ZEN in the gastrointestinal tract in the presence and absence of ZenA, concentrations of ZEN and ZEN metabolites were analyzed in digesta of chickens and rainbow trout and in feces of pigs. Upon ZenA administration, concentrations of ZEN were significantly decreased and concentrations of the degradation product HZEN were significantly increased in digesta/feces of each investigated animal species, indicating degradation of ZEN by ZenA in the gastrointestinal tract. Moreover, upon addition of ZenA to the diet, the concentration of the highly estrogenic ZEN metabolite α-ZEL was significantly reduced in feces of pigs. In conclusion, ZenA was effective in degrading ZEN to HZEN in the gastrointestinal tract of chickens, pigs, and rainbow trout, and counteracted formation of α-ZEL in pigs. Therefore, ZenA could find application as a ZEN-degrading feed additive for these animal species.
Collapse
|
24
|
Zhao C, Xie P, Jin J, Jin Q, Wang X. Kinetics, Thermodynamics and Mechanism of Enzymatic Degradation of Zearalenone in Degummed Corn Oil. Toxins (Basel) 2022; 15:19. [PMID: 36668839 PMCID: PMC9867155 DOI: 10.3390/toxins15010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
The kinetics and thermodynamics of the enzymatic degradation of zearalenone (ZEN) in degummed corn oil were investigated by analyzing the impacts of temperature, pH, ZEN hydrolase dosage and ZEN concentration on the initial reaction rate. The kinetic study found that the maximum reaction rate was 0.97 μmol × kg−1 min−1, the Michaelis constant (Km) was 11,476 μmol × kg−1 and the Michaelis equation was V = 0.97[S]/(11,476 + [S]). The thermodynamic study showed that the activation energy (Ea) was 70.37 kJ·mol−1, the activation enthalpy change of the reaction (ΔH) > 0, the free energy of activation (ΔG) > 0 and the activation entropy change (ΔS) < 0, indicating the reaction could not be spontaneous. The reaction mechanism of ZEN was studied by a hybrid quadrupole orbitrap mass spectrometer. It was found that ZEN first generated the intermediate G/L/D/W-ZEN+H2O, followed by generating the intermediate W-ZEN-H2O under the action of a degrading enzyme. Then, the lactone bond was opened to produce C18H24O6, and finally the decarboxylation product C17H24O4 formed automatically.
Collapse
Affiliation(s)
| | | | | | - Qingzhe Jin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | |
Collapse
|
25
|
Ji J, Yu J, Ye Y, Sheng L, Fang J, Yang Y, Sun X. Biodegradation methods and product analysis of zearalenone and its future development trend: A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
26
|
Fang Y, Zhang Z, Xu W, Zhang W, Guang C, Mu W. Zearalenone lactonase: characteristics, modification, and application. Appl Microbiol Biotechnol 2022; 106:6877-6886. [PMID: 36173450 DOI: 10.1007/s00253-022-12205-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
Abstract
Zearalenone (ZEN) and its derivatives are one of the most contaminated fungal toxins worldwide, posing a severe threat to food security and human life. Traditional physical and chemical detoxifying methods are unsatisfactory due to incomplete detoxification, nutrient loss, and secondary pollutants. In recent years, bioremediation for eliminating fungal toxins has been gradually investigated. ZEN lactone hydrolase (lactonase) has been widely studied because of its high activity, mild conditions, and non-toxic product property. This review comprehensively represents the gene mining, characterization, molecular modification, and application of microbial-derived ZEN lactonases. It is aimed to elucidate the advantages and challenges of ZEN lactonases in industrial application, which also provides perspectives on obtaining innovative and promising biocatalysts for ZEN degradation. KEY POINTS: • A timely and concise review related to enzymatic elimination towards ZEN is shown. • The catalytic conditions and mechanism of ZEN lactonase is presented. • The modification and application of ZEN lactonase are exhibited also.
Collapse
Affiliation(s)
- Yuanyuan Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhenxia Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
27
|
Isolation and Mechanistic Characterization of a Novel Zearalenone-Degrading Enzyme. Foods 2022; 11:foods11182908. [PMID: 36141036 PMCID: PMC9498698 DOI: 10.3390/foods11182908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Zearalenone (ZEN) and its derivatives pose a serious threat to global food quality and animal health. The use of enzymes to degrade mycotoxins has become a popular method to counter this threat. In this study, Aspergillus niger ZEN-S-FS10 extracellular enzyme solution with ZEN-degrading effect was separated and purified to prepare the biological enzyme, FSZ, that can degrade ZEN. The degradation rate of FSZ to ZEN was 75−80% (pH = 7.0, 28 °C). FSZ can function in a temperature range of 28−38 °C and pH range of 2.0−7.0 and can also degrade ZEN derivatives (α-ZAL, β-ZOL, and ZAN). According to the enzyme kinetics fitting, ZEN has a high degradation rate. FSZ can degrade ZEN in real samples of corn flour. FSZ can be obtained stably and repeatedly from the original strain. One ZEN degradation product was isolated: FSZ−P(C18H26O4), with a relative molecular weight of 306.18 g/mol. Amino-acid-sequencing analysis revealed that FSZ is a novel enzyme (homology < 10%). According to the results of molecular docking, ZEN and ZAN can utilize their end-terminal carbonyl groups to bind FSZ residues PHE307, THR55, and GLU129 for a high-degradation rate. However, α-ZAL and β-ZOL instead contain hydroxyl groups that would prevent binding to GLU129; thus, the degradation rate is low for these derivatives.
Collapse
|
28
|
Fang Y, Huang Z, Xu W, Wang C, Sun Y, Zhang W, Guang C, Mu W. Efficient elimination of zearalenone at high processing temperatures by a robust mutant of Gliocladium roseum zearalenone lactonase. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Murtaza B, Li X, Dong L, Javed MT, Xu L, Saleemi MK, Li G, Jin B, Cui H, Ali A, Wang L, Xu Y. Microbial and enzymatic battle with food contaminant zearalenone (ZEN). Appl Microbiol Biotechnol 2022; 106:4353-4365. [PMID: 35705747 DOI: 10.1007/s00253-022-12009-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Zearalenone (ZEN) contamination of various foods and feeds is an important global problem. In some animals and humans, ZEN causes significant health issues in addition to massive economic losses, annually. Therefore, removal or degradation of the ZEN in foods and feeds is required to be done. The conventional physical and chemical methods have some serious issues including poor efficiency, decrease in nutritional value, palatability of feed, and use of costly equipment. Research examined microbes from diverse media for their ability to degrade zearalenone and other toxins, and the findings of several investigations revealed that enzymes produced from microbes play a significant role in the degradation of mycotoxins. In established bacterial hosts, genetically engineered technique was used to enhance heterologously produced degrading enzymes. Then, the bio-degradation of ZEN by the use of micro-organisms or their enzymes is much more advantageous and is close to nature and ecofriendly. Furthermore, an effort is made to put forward the work done by different scientists on the biodegradation of ZEN by the use of fungi, yeast, bacteria, and/or their enzymes to degrade the ZEN to non-toxic products. KEY POINTS: •Evolved microbial strains degraded ZEA more quickly •Different degrading properties were studied.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China.,Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | - Liming Dong
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | | | - Le Xu
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | | | - Gen Li
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Bowen Jin
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Huijing Cui
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Ashiq Ali
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China.,Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China. .,Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China.
| |
Collapse
|
30
|
Nahle S, El Khoury A, Savvaidis I, Chokr A, Louka N, Atoui A. Detoxification approaches of mycotoxins: by microorganisms, biofilms and enzymes. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2022. [DOI: 10.1186/s40550-022-00089-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AbstractMycotoxins are generally found in food, feed, dairy products, and beverages, subsequently presenting serious human and animal health problems. Not surprisingly, mycotoxin contamination has been a worldwide concern for many research studies. In this regard, many biological, chemical, and physical approaches were investigated to reduce and/or remove contamination from food and feed products. Biological detoxification processes seem to be the most promising approaches for mycotoxins removal from food. The current review details the newest progress in biological detoxification (adsorption and metabolization) through microorganisms, their biofilms, and enzymatic degradation, finally describing the detoxification mechanism of many mycotoxins by some microorganisms. This review also reports the possible usage of microorganisms as mycotoxins’ binders in various food commodities, which may help produce mycotoxins-free food and feed.
Collapse
|
31
|
Gao H, Lu D, Xing M, Xu Q, Xue F. Excavation, expression, and functional analysis of a novel zearalenone-degrading enzyme. Folia Microbiol (Praha) 2022; 67:633-640. [DOI: 10.1007/s12223-022-00967-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/18/2022] [Indexed: 01/07/2023]
|
32
|
Shinella oryzae sp. nov., a novel zearalenone-resistant bacterium isolated from rice paddy soil. Antonie van Leeuwenhoek 2022; 115:573-587. [DOI: 10.1007/s10482-022-01724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/27/2022] [Indexed: 10/18/2022]
|
33
|
Wang Y, Chen Y, Jiang L, Huang H. Improvement of the enzymatic detoxification activity towards mycotoxins through structure-based engineering. Biotechnol Adv 2022; 56:107927. [PMID: 35182727 DOI: 10.1016/j.biotechadv.2022.107927] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
Mycotoxin contamination of food and feed is posing a serious threat to the global food safety and public health. Biological detoxification mediated by enzymes has emerged as a promising approach, as they can specifically degrade mycotoxins into non-toxic ones. However, the low degradation efficiency and stability limit their further application. To optimize the enzymes for mycotoxin removal, modification strategies that combine computational design with their structural data have been developed. Accordingly, this review will comprehensively summarize the recent trends in structure-based engineering to improve the enzyme catalytic efficiency, selectivity and stability in mycotoxins detoxification, which also provides perspectives in obtaining innovative and effective biocatalysts for mycotoxins degradation.
Collapse
Affiliation(s)
- Yanxia Wang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yao Chen
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ling Jiang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; College of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
34
|
Cloning and Characterization of Three Novel Enzymes Responsible for the Detoxification of Zearalenone. Toxins (Basel) 2022; 14:toxins14020082. [PMID: 35202110 PMCID: PMC8879097 DOI: 10.3390/toxins14020082] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022] Open
Abstract
Zearalenone is a common mycotoxin contaminant in cereals that causes severe economic losses and serious risks to health of human and animals. Many strategies have been devised to degrade ZEN and keep food safe. The hydrolase ZHD101 from Clonostachys rosea, which catalyzes the hydrolytic degradation of ZEN, has been studied widely. In the current research, three new enzymes that have the capacity to detoxify ZEN were identified, namely CLA, EXO, and TRI, showing 61%, 63%, and 97% amino acids identities with ZHD101, respectively. Three coding genes was expressed as heterologous in Escherichia coli BL21. Through biochemical analysis, the purified recombinant CLA, EXO, TRI, and ZHD101 exhibited high activities of degrading ZEN with the specific activity of 114.8 U/mg, 459.0 U/mg, 239.8 U/mg, and 242.8 U/mg. The optimal temperatures of CLA, EXO, TRI, and ZHD101 were 40 °C, 40 °C, 40 °C, and 45 °C, and their optimum pH were 7.0, 9.0, 9.5, and 9.0, respectively. Our study demonstrated that the novel enzymes CLA, EXO, and TRI possessed high ability to degrade ZEN from the model solutions and could be the promising candidates for ZEN detoxification in practical application.
Collapse
|
35
|
Liu L, Xie M, Wei D. Biological Detoxification of Mycotoxins: Current Status and Future Advances. Int J Mol Sci 2022; 23:ijms23031064. [PMID: 35162993 PMCID: PMC8835436 DOI: 10.3390/ijms23031064] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Mycotoxins are highly toxic metabolites produced by fungi that pose a huge threat to human and animal health. Contamination of food and feed with mycotoxins is a worldwide issue, which leads to huge financial losses, annually. Decades of research have developed various approaches to degrade mycotoxins, among which the biological methods have been proved to have great potential and advantages. This review provides an overview on the important advances in the biological removal of mycotoxins over the last decade. Here, we provided further insight into the chemical structures and the toxicity of the main mycotoxins. The innovative strategies including mycotoxin degradation by novel probiotics are summarized in an in-depth discussion on potentialities and limitations. We prospected the promising future for the development of multifunctional approaches using recombinant enzymes and microbial consortia for the simultaneous removal of multiple mycotoxins.
Collapse
Affiliation(s)
- Lu Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| | - Mei Xie
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China;
| | - Dong Wei
- Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
- Correspondence: ; Tel.: +86-20-8711-3849
| |
Collapse
|
36
|
Recent advances in detoxification strategies for zearalenone contamination in food and feed. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Yu X, Tu T, Luo H, Huang H, Su X, Wang Y, Wang Y, Zhang J, Bai Y, Yao B. Biochemical Characterization and Mutational Analysis of a Lactone Hydrolase from Phialophora americana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2570-2577. [PMID: 31760747 DOI: 10.1021/acs.jafc.9b05853] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mycotoxin zearalenone (ZEN) is a secondary metabolite produced mainly by Fusarium species. ZEN poses health hazards both for humans and animals, as a major contaminant in the food and feed industries. Currently, there is no effective technique for degrading ZEN during industrial processes. In this study, we isolated and biochemically characterized a novel lactone hydrolase, ZHD607, isolated from Phialophora americana, cloned, and exogenously expressed in Pichia pastoris. ZHD607 was characterized as a mesophilic lactone hydrolase having a neutral pH and showing optimal activity at 35 °C and pH 8.0. Two mutants, ZHDM1 and I160Y, generated from ZHD607 based on structure and sequence alignment analyses, exhibited 2.9- and 3.4-fold higher activity towards ZEN than did ZHD607. Molecular dynamics simulation revealed diverse mechanisms driving this improved catalytic activity. These findings enrich our knowledge about ZHD enzyme family and represent an important step toward industrialization of ZEN-detoxifying lactone hydrolases.
Collapse
Affiliation(s)
- Xinrui Yu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Yaru Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Jie Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| |
Collapse
|
38
|
Zearalenone Removal from Corn Oil by an Enzymatic Strategy. Toxins (Basel) 2020; 12:toxins12020117. [PMID: 32069863 PMCID: PMC7076758 DOI: 10.3390/toxins12020117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 02/01/2023] Open
Abstract
The estrogen-like mycotoxin zearalenone (ZEN) is one of the most widely distributed contaminants especially in maize and its commodities, such as corn oil. ZEN degrading enzymes possess the potential for counteracting the negative effect of ZEN and its associated high safety risk in corn oil. Herein, we targeted enhancing the secretion of ZEN degrading enzyme by Pichia pastoris through constructing an expression plasmid containing three optimized expression cassettes of zlhy-6 codon and signal peptides. Further, we explored various parameters of enzymatic detoxification in neutralized oil and analyzed tocopherols and sterols losses in the corn oil. In addition, the distribution of degraded products was demonstrated as well by Agilent 6510 Quadrupole Time-of-Flight mass spectrometry. P. pastoris GSZ with the glucoamylase signal was observed with the highest ZLHY-6 secretion yield of 0.39 mg/mL. During the refining of corn oil, ZEN in the crude oil was reduced from 1257.3 to 13 µg/kg (3.69% residual) after neutralization and enzymatic detoxification. Compared with the neutralized oil, no significant difference in the total tocopherols and sterols contents was detected after enzymatic detoxification. Finally, the degraded products were found to be entirely eliminated by washing. This study presents an enzymatic strategy for efficient and safe ZEN removal with relatively low nutrient loss, which provides an important basis for further application of enzymatic ZEN elimination in the industrial process of corn oil production.
Collapse
|
39
|
Zhang Z, Xu W, Wu H, Zhang W, Mu W. Identification of a Potent Enzyme for the Detoxification of Zearalenone. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:376-383. [PMID: 31816236 DOI: 10.1021/acs.jafc.9b06223] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The occurrence of mycotoxin zearalenone (ZEN) and its derivatives has been a severe global threat to food and animals. In addition to the chemical and physical degradation methods, a powerful biocatalyst is urgently required for the detoxification of ZEN. Here, an efficient ZEN-degrading lactonase from Gliocladium roseum, named ZENG, was identified for the first time. The recombinant ZENG exhibited the highest activity at pH 7.0 and 38 °C. In addition, the recombinant enzyme showed a high degrading performance toward ZEN and its toxic derivatives α-zearalenol (α-ZOL) and α-zearalanol (α-ZAL), with the specific activities as 315, 187, and 117 units/mg, respectively. To meet the industrial demands, attempts were also made to enhance the thermostability of ZENG using a structure-based modification. Three double-site mutants, including H134L/S136L, H134F/S136F, and H134I/S134I, in the position between the cap and core catalytic domain of ZENG were designed. Finally, the thermostability of both H134L/S136L and H134F/S136F displayed a significant improvement compared to the wild-type enzyme.
Collapse
|
40
|
Lyagin I, Efremenko E. Enzymes for Detoxification of Various Mycotoxins: Origins and Mechanisms of Catalytic Action. Molecules 2019; 24:E2362. [PMID: 31247992 PMCID: PMC6651818 DOI: 10.3390/molecules24132362] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 11/16/2022] Open
Abstract
Mycotoxins are highly dangerous natural compounds produced by various fungi. Enzymatic transformation seems to be the most promising method for detoxification of mycotoxins. This review summarizes current information on enzymes of different classes to convert various mycotoxins. An in-depth analysis of 11 key enzyme mechanisms towards dozens of major mycotoxins was realized. Additionally, molecular docking of mycotoxins to enzymes' active centers was carried out to clarify some of these catalytic mechanisms. Analyzing protein homologues from various organisms (plants, animals, fungi, and bacteria), the prevalence and availability of natural sources of active biocatalysts with a high practical potential is discussed. The importance of multifunctional enzyme combinations for detoxification of mycotoxins is posed.
Collapse
Affiliation(s)
- Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, RAS, Moscow 119334, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
- Emanuel Institute of Biochemical Physics, RAS, Moscow 119334, Russia.
| |
Collapse
|
41
|
Ma T, Duan H, Zhang W, Shao Y, Hao L, Chen X, Leng Y, Huang X, Xiong Y. An amphiphilic-ligand-modified gold nanoflower probe for enhancing the stability of lateral flow immunoassays in dried distillers grains. RSC Adv 2019; 9:36670-36679. [PMID: 35539045 PMCID: PMC9075177 DOI: 10.1039/c9ra06690j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/28/2019] [Indexed: 01/21/2023] Open
Abstract
An amphiphilic ligand-capped gold nanoflower (AuNF) was proposed as a novel lateral flow immunoassay (LFA) reporter for zearalenone (ZEN) detection in distillers dried grains solubles (DDGS).
Collapse
Affiliation(s)
- Tongtong Ma
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- Jiangxi-OAI Joint Research Institute
| | - Hong Duan
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- Jiangxi-OAI Joint Research Institute
| | - Wenjing Zhang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- Jiangxi-OAI Joint Research Institute
| | - Yanna Shao
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- Jiangxi-OAI Joint Research Institute
| | - Liangwen Hao
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- Jiangxi-OAI Joint Research Institute
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- Jiangxi-OAI Joint Research Institute
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- School of Food Science and Technology
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- School of Food Science and Technology
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- Jiangxi-OAI Joint Research Institute
| |
Collapse
|