1
|
Khasanshina ZR, Kornakov IA, Buslaeva EA, Drai RV. The response surface method enables efficient optimization of induction parameters for the production of bioactive peptides in fed-batch bioreactors using Escherichia coli. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01265-5. [PMID: 40281269 DOI: 10.1007/s12223-025-01265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
The production of recombinant peptides is critical in biotechnology and medicine for treating a variety of diseases. Thus, there is an urgent need for the development of quick, scalable, and cost-effective recombinant protein expression strategies. This study optimizes induction conditions for an insulin precursor, an analog GLP-1 precursor, and a peptide for COVID-19 therapy expression in E. coli using the response surface method. Factors such as pH, temperature, induction time, isopropyl-β-D-thiogalactopyranoside concentration, and optical density significantly influence peptide productivity. Experimental validation supports the effectiveness of these models in predicting peptide yields under optimal conditions. The optimal induction conditions were determined as follows: temperature at 37 °C, pH of the medium 7.0-8.0, induction at the early logarithmic phase of growth, isopropyl-β-D-thiogalactopyranoside concentration of 0.05 mM, and induction time of 6 h. After model validation, the productivity of each peptide producer exceeded 3 g/L. The optimal conditions achieved peptide titers significantly higher than those previously reported, suggesting that this technique is a versatile cultivation technology for the efficient production of different recombinant peptides. In conclusion, our research enhances the understanding of how tailored cultivation conditions can optimize recombinant peptide production efficiency.
Collapse
Affiliation(s)
- Z R Khasanshina
- Pharm-Holding (RnD GEROPHARM), St. Petersburg, P. Strelna 34-A Svyazi Street, 198515, Russia.
- ITMO University, St. Petersburg, 197101, Russia.
| | - I A Kornakov
- Pharm-Holding (RnD GEROPHARM), St. Petersburg, P. Strelna 34-A Svyazi Street, 198515, Russia
| | - E A Buslaeva
- Pharm-Holding (RnD GEROPHARM), St. Petersburg, P. Strelna 34-A Svyazi Street, 198515, Russia
| | - R V Drai
- Pharm-Holding (RnD GEROPHARM), St. Petersburg, P. Strelna 34-A Svyazi Street, 198515, Russia
| |
Collapse
|
2
|
Hadadian S, Sepahi M, Sedighi S. Optimizing proinsulin production in E. coli BL21 (DE3) using taguchi method and efficient one-step insulin purification by on-column enzymatic cleavage. Braz J Microbiol 2025; 56:39-53. [PMID: 39847212 PMCID: PMC11885722 DOI: 10.1007/s42770-025-01614-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Diabetes is a critical worldwide health problem. Numerous studies have focused on producing recombinant human insulin to address this issue. In this research, the process factors of production of recombinant His-tagged proinsulin in E. coli BL21 (DE3) strain were studied. Bacterial culture factors with significant effects on the amount of produced recombinant proinsulin were screened using a Taguchi L8 orthogonal array. Proinsulin expression was conducted under predicted optimal conditions. The folded impure His-tagged proinsulin was purified using immobilized metal ion affinity chromatography (IMAC). A novel IMAC sequence order combined with the use of non-His-tagged C-peptide cleavage enzymes followed by His- tagged enterokinase enzyme enabled simultaneous protein purification and elimination of C-peptide and His-tag in just one step. Statistical analysis revealed that the amount of produced proinsulin was significantly affected by several factors including the post-induction incubation temperature, Isopropyl ß-D-1-thiogalactopyranoside (IPTG) concentration, pre-induction incubation temperature, the glucose concentration, bacterial cell population at induction step, and the time of harvesting. The optimized model resulted in an empirical maximum proinsulin concentration of 254.5 ± 11.7 µg/ml. The high purity of the purified insulin (> 96% by SDS-PAGE) indicated that applied IMAC sequence order could be considered an efficient technique for on-column cleavage and insulin purification.
Collapse
Affiliation(s)
- Shahin Hadadian
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Mina Sepahi
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Samin Sedighi
- Faculty of Material Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
3
|
Raza S, Bończak B, Atamas N, Karpińska A, Ratajczyk T, Łoś M, Hołyst R, Paczesny J. The activity of indigo carmine against bacteriophages: an edible antiphage agent. Appl Microbiol Biotechnol 2025; 109:24. [PMID: 39862274 PMCID: PMC11762416 DOI: 10.1007/s00253-025-13414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Bacteriophage infections in bacterial cultures pose a significant challenge to industrial bioprocesses, necessitating the development of innovative antiphage solutions. This study explores the antiphage potential of indigo carmine (IC), a common FDA-approved food additive. IC demonstrated selective inactivation of DNA phages (P001, T4, T1, T7, λ) with the EC50 values ranging from 0.105 to 0.006 mg/mL while showing no activity against the RNA phage MS2. Fluorescence correlation spectroscopy (FCS) revealed that IC selectively binds to dsDNA, demonstrated by a significant reduction in the diffusion coefficient, whereas no binding was observed with ssDNA or RNA. Mechanistically, IC permeates the phage capsid, leading to genome ejection and capsid deformation, as confirmed by TEM imaging. Under optimal conditions (50 °C, 220 rpm), IC achieved up to a 7-log reduction in phage titer, with kinetic theory supporting the enhanced collision frequency induced by agitation. Additionally, IC protected E. coli cultures from phage-induced lysis without affecting bacterial growth or protein production, as demonstrated by GFP expression assays. IC's effectiveness and environmental safety, combined with its FDA approval and cost-effectiveness, make it a promising antiphage agent for industrial applications. KEY POINTS: • Indigo carmine effectively inactivates a broad spectrum of bacteriophages, offering protection to bacteria in industrial cultures. • A novel application of indigo carmine as a food-grade, environmentally safe, and FDA-approved antiphage agent protecting bacterial cultures. • Antiphage activity arises from indigo carmine's interaction with DNA within the phage capsid without harming bacterial cells or compromising protein production in bacterial cultures.
Collapse
Affiliation(s)
- Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Bartłomiej Bończak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Nataliia Atamas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Taras Shevchenko National University of Kyiv, Hlushkova Avenue 4, Kiev, 03127, Ukraine
| | - Aneta Karpińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Marcin Łoś
- Department of Molecular Genetics of Bacteria, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
- Phage Consultants, Partyzantów 10/18, 80-254, Gdańsk, Poland
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
4
|
Sahoo A, Das PK, Dasu VV, Patra S. Insulin evolution: A holistic view of recombinant production advancements. Int J Biol Macromol 2024; 277:133951. [PMID: 39032893 DOI: 10.1016/j.ijbiomac.2024.133951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
The increased prevalence of diabetes and the growing popularity of non-invasive methods of recombinant human insulin uptake, such as oral insulin, have increased insulin demand, further limiting the affordability of insulin. Over 40 years have passed since the development of engineered microorganisms that replaced the animal pancreas as the primary source of insulin. To stay ahead of the need for insulin in the present and the future, a few drawbacks with the existing expression systems need to be alleviated, including the inclusion body formation, the use of toxic inducers, and high process costs. To address these bottlenecks and improve insulin production, a variety of techniques are being used in bacteria, yeasts, transgenic plants and animals, mammalian cell lines, and cell-free expression systems. Different approaches for the production of insulin, including two-chain, proinsulin or mini-proinsulin, preproinsulin coupled with fusion protein, chaperone, signal peptide, and purification tags, are explored in upstream, whereas downstream processing takes into account the recovery of intact protein in its bioactive form and purity. This article focuses on the strategies used in the upstream and downstream phases of the bioprocess to produce recombinant human insulin. This review also covers a range of analytical methods and tools employed in investigating the genuity of recombinant human insulin.
Collapse
Affiliation(s)
- Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Prabir Kumar Das
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Veeranki Venkata Dasu
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Sanjukta Patra
- Enzyme & Microbial Technology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| |
Collapse
|
5
|
Sahoo A, Das PK, Veeranki VD, Patra S. Production of recombinant human insulin from a promising Pseudomonas fluorescens cell factory and its kinetic modeling. Int J Biol Macromol 2024; 280:135742. [PMID: 39293616 DOI: 10.1016/j.ijbiomac.2024.135742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Insulin intake is recommended for diabetics in addition to a proper diet and lifestyle to maintain adequate blood glucose level. Currently, there is a need for an alternative expression system for insulin production as the current expression systems may not meet the growing demand due to various constraints. Here, we demonstrate the synthesis of human insulin in an unconventional expression system based on Pseudomonas fluorescens, a BSL 1 bacterium. Human insulin was produced in the form of proinsulin fused with fusion protein. Then, the proinsulin fusion protein was purified using Ni-NTA chromatography and converted into human insulin. The physicochemical parameters for producing proinsulin fusion protein are optimized. Glucose and ammonium chloride are determined to be suitable carbon and nitrogen sources, respectively. The validity of insulin and proinsulin fusion protein is assessed using western blot and quantified using ELISA techniques. Up to 145.35 mg/l of the proinsulin fusion protein is achieved at the shake flask level. Further, MALDI-TOF and RP-HPLC analysis of the purified human insulin were observed to be close to the theoretical value and insulin standard, respectively. The expression of the recombinant fusion protein was found to be 214.7 mg/l in a batch bioreactor, a ∼48% enhancement over the shake flask level. Further, kinetic modeling was performed to understand the system regarding growth, substrate utilization and product formation, and to estimate the various kinetic parameters. This study establishes the potential of the P. fluorescens expression system for producing human insulin.
Collapse
Affiliation(s)
- Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Prabir Kumar Das
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Venkata Dasu Veeranki
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Sanjukta Patra
- Enzyme & Microbial Technology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| |
Collapse
|
6
|
Raza S, Wdowiak M, Paczesny J. An Overview of Diverse Strategies To Inactivate Enterobacteriaceae-Targeting Bacteriophages. EcoSal Plus 2023; 11:eesp00192022. [PMID: 36651738 PMCID: PMC10729933 DOI: 10.1128/ecosalplus.esp-0019-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
Bacteriophages are viruses that infect bacteria and thus threaten industrial processes relying on the production executed by bacterial cells. Industries bear huge economic losses due to such recurring and resilient infections. Depending on the specificity of the process, there is a need for appropriate methods of bacteriophage inactivation, with an emphasis on being inexpensive and high efficiency. In this review, we summarize the reports on antiphagents, i.e., antibacteriophage agents on inactivation of bacteriophages. We focused on bacteriophages targeting the representatives of the Enterobacteriaceae family, as its representative, Escherichia coli, is most commonly used in the bio-industry. The review is divided into sections dealing with bacteriophage inactivation by physical factors, chemical factors, and nanotechnology-based solutions.
Collapse
Affiliation(s)
- Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Mateusz Wdowiak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Kurnia F, Novirani G, Khairunnisa F, Meidianto VF, Ismaya WT, Tjandrawinata RR. An elevated OmpA expression during the production of a recombinant protein in Escherichia coli. Braz J Microbiol 2023; 54:2755-2763. [PMID: 37880563 PMCID: PMC10689305 DOI: 10.1007/s42770-023-01152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Escherichia coli cells rapidly respond to changes in the environment. Such response must be anticipated upon development of fermentation strategy for commercial purposes. The response may signal changes in cell physiology, which is critical for the cell growth and the level of the target protein production. One of the responses is the elevated expression of membrane proteins to tightly control the trafficking of molecules into and out from the cells. Normally, the expression level of the membrane protein is basal as the fermentation is carried out in physiological conditions. Here, we reported an elevated expression of the outer membrane protein A (OmpA) during a series of fermentation conduct, starting from the shake flask, 1-L to finally 10-L fermentor. The incidence led to a lower expression of the target protein and thereby resulting in lower process efficiency. OmpA expression was concomitant to the bacterial growth and already observed in the early exponential phase. Despite the drawback, this phenomenon actually inspires the observation of OmpA expression as one of the indicators for the E. coli cells response to the fermentation conditions. This auxiliary check would prevent the higher OmpA expression that led to the low expression of the target protein.
Collapse
Affiliation(s)
- Frans Kurnia
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Industri Selatan V Blok PP-7, Jababeka 2 Industrial Estate, Cikarang, 17550, Indonesia
| | - Gestria Novirani
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Industri Selatan V Blok PP-7, Jababeka 2 Industrial Estate, Cikarang, 17550, Indonesia
| | - Fatiha Khairunnisa
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Industri Selatan V Blok PP-7, Jababeka 2 Industrial Estate, Cikarang, 17550, Indonesia
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Kampus C Mulyorejo, Surabaya, 60115, Indonesia
| | - Vincencius F Meidianto
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Industri Selatan V Blok PP-7, Jababeka 2 Industrial Estate, Cikarang, 17550, Indonesia
| | - Wangsa T Ismaya
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Industri Selatan V Blok PP-7, Jababeka 2 Industrial Estate, Cikarang, 17550, Indonesia
| | - Raymond R Tjandrawinata
- Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Industri Selatan V Blok PP-7, Jababeka 2 Industrial Estate, Cikarang, 17550, Indonesia.
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, South Jakarta, 12930, Indonesia.
| |
Collapse
|
8
|
Zhao N, Song Y, Xie X, Zhu Z, Duan C, Nong C, Wang H, Bao R. Synthetic biology-inspired cell engineering in diagnosis, treatment, and drug development. Signal Transduct Target Ther 2023; 8:112. [PMID: 36906608 PMCID: PMC10007681 DOI: 10.1038/s41392-023-01375-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The fast-developing synthetic biology (SB) has provided many genetic tools to reprogram and engineer cells for improved performance, novel functions, and diverse applications. Such cell engineering resources can play a critical role in the research and development of novel therapeutics. However, there are certain limitations and challenges in applying genetically engineered cells in clinical practice. This literature review updates the recent advances in biomedical applications, including diagnosis, treatment, and drug development, of SB-inspired cell engineering. It describes technologies and relevant examples in a clinical and experimental setup that may significantly impact the biomedicine field. At last, this review concludes the results with future directions to optimize the performances of synthetic gene circuits to regulate the therapeutic activities of cell-based tools in specific diseases.
Collapse
Affiliation(s)
- Ninglin Zhao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Xiangqian Xie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ziqi Zhu
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxi Duan
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Nong
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Rui Bao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Sansinenea E. Microorganisms: a problem or a solution in our current life? Future Microbiol 2022; 17:1433-1435. [DOI: 10.2217/fmb-2021-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Estibaliz Sansinenea
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, Puebla, Pue, 72590, México
| |
Collapse
|
10
|
Current advances and future prospects in production of recombinant insulin and other proteins to treat diabetes mellitus. Biotechnol Lett 2022; 44:643-669. [DOI: 10.1007/s10529-022-03247-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
|
11
|
A novel method for the chaperone aided and efficient production of human proinsulin in the prokaryotic system. J Biotechnol 2022; 346:35-46. [DOI: 10.1016/j.jbiotec.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
12
|
Walakira A, Rozman D, Režen T, Mraz M, Moškon M. Guided extraction of genome-scale metabolic models for the integration and analysis of omics data. Comput Struct Biotechnol J 2021; 19:3521-3530. [PMID: 34194675 PMCID: PMC8225705 DOI: 10.1016/j.csbj.2021.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023] Open
Abstract
Omics data can be integrated into a reference model using various model extraction methods (MEMs) to yield context-specific genome-scale metabolic models (GEMs). How to chose the appropriate MEM, thresholding rule and threshold remains a challenge. We integrated mouse transcriptomic data from a Cyp51 knockout mice diet experiment (GSE58271) using five MEMs (GIMME, iMAT, FASTCORE, INIT an tINIT) in a combination with a recently published mouse GEM iMM1865. Except for INIT and tINIT, the size of extracted models varied with the MEM used (t-test: p-value < 0.001). The Jaccard index of iMAT models ranged from 0.27 to 1.0. Out of the three factors under study in the experiment (diet, gender and genotype), gender explained most of the variability ( > 90%) in PC1 for FASTCORE. In iMAT, each of the three factors explained less than 40% of the variability within PC1, PC2 and PC3. Among all the MEMs, FASTCORE captured the most of the true variability in the data by clustering samples by gender. Our results show that for the efficient use of MEMs in the context of omics data integration and analysis, one should apply various MEMs, thresholding rules, and thresholding values to select the MEM and its configuration that best captures the true variability in the data. This selection can be guided by the methodology as proposed and used in this paper. Moreover, we describe certain approaches that can be used to analyse the results obtained with the selected MEM and to put these results in a biological context.
Collapse
Affiliation(s)
- Andrew Walakira
- Centre for Functional Genomics and Bio-Chips, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Mraz
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Moškon
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
13
|
Seetaraman Amritha TM, Mahajan S, Subramaniam K, Chandramohan Y, Dhanasekaran A. Cloning, expression and purification of recombinant dermatopontin in Escherichia coli. PLoS One 2020; 15:e0242798. [PMID: 33253286 PMCID: PMC7703894 DOI: 10.1371/journal.pone.0242798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/09/2020] [Indexed: 12/03/2022] Open
Abstract
Dermatopontin (DPT) is an extracellular matrix (ECM) protein with diversified pharmaceutical applications. It plays important role in cell adhesion/migration, angiogenesis and ECM maintenance. The recombinant production of this protein will enable further exploration of its multifaceted functions. In this study, DPT protein has been expressed in Escherichia coli (E.coli) aiming at cost effective recombinant production. The E.coli GJ1158 expression system was transformed with constructed recombinant vector (pRSETA-DPT) and protein was expressed as inclusion bodies on induction with NaCl. The inclusion bodies were solubilised in urea and renaturation of protein was done by on-column refolding procedure in Nickel activated Sepharose column. The refolded Histidine-tagged DPT protein was purified and eluted from column using imidazole and its purity was confirmed by analytical techniques. The biological activity of the protein was confirmed by collagen fibril assay, wound healing assay and Chorioallantoic Membrane (CAM) angiogenesis assay on comparison with standard DPT. The purified DPT was found to enhance the collagen fibrillogenesis process and improved the migration of human endothelial cells. About 73% enhanced wound closure was observed in purified DPT treated endothelial cells as compared to control. The purified DPT also could induce neovascularisation in the CAM model. At this stage, scaling up the production process for DPT with appropriate purity and reproducibility will have a promising commercial edge.
Collapse
Affiliation(s)
| | - Shubham Mahajan
- SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Kumar Subramaniam
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | | | | |
Collapse
|
14
|
Govender K, Naicker T, Baijnath S, Chuturgoon AA, Abdul NS, Docrat T, Kruger HG, Govender T. Sub/supercritical fluid chromatography employing water-rich modifier enables the purification of biosynthesized human insulin. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1155:122126. [DOI: 10.1016/j.jchromb.2020.122126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
|
15
|
Kuhn T, Koch M, Fuhrmann G. Probiomimetics-Novel Lactobacillus-Mimicking Microparticles Show Anti-Inflammatory and Barrier-Protecting Effects in Gastrointestinal Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003158. [PMID: 32885611 DOI: 10.1002/smll.202003158] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/14/2020] [Indexed: 06/11/2023]
Abstract
There is a lack of efficient therapies to treat increasingly prevalent autoimmune diseases, such as inflammatory bowel disease and celiac disease. Membrane vesicles (MVs) isolated from probiotic bacteria have shown tremendous potential for treating intestinal inflammatory diseases. However, possible dilution effects and rapid elimination in the gastrointestinal tract may impair their application. A cell-free and anti-inflammatory therapeutic system-probiomimetics-based on MVs of probiotic bacteria (Lactobacillus casei and Lactobacillus plantarum) coupled to the surface of microparticles is developed. The MVs are isolated and characterized for size and protein content. MV morphology is determined using cryoelectron microscopy and is reported for the first time in this study. MVs are nontoxic against macrophage-like dTHP-1 and enterocyte-like Caco-2 cell lines. Subsequently, the MVs are coupled onto the surface of microparticles according to facile aldehyde-group functionalization to obtain probiomimetics. A significant reduction in proinflammatory TNF-α level (by 86%) is observed with probiomimetics but not with native MVs. Moreover, it is demonstrated that probiomimetics have the ability to ameliorate inflammation-induced loss of intestinal barrier function, indicating their potential for further development into an anti-inflammatory formulation. These engineered simple probiomimetics that elicit striking anti-inflammatory effects are a key step toward therapeutic MV translation.
Collapse
Affiliation(s)
- Thomas Kuhn
- Helmholtz Institute for Pharmaceutical Research Saarland, Department of Pharmacy, Saarland University, Campus E8 1, Saarbrücken, 66123, Germany
| | - Marcus Koch
- INM - Leibniz-Institut für Neue Materialien, Campus D2 2, Saarbrücken, D-66123, Germany
| | - Gregor Fuhrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Department of Pharmacy, Saarland University, Campus E8 1, Saarbrücken, 66123, Germany
| |
Collapse
|