1
|
Islam MK, Wagh H, Wei H. Dynamic Gene Attention Focus (DyGAF): Enhancing Biomarker Identification Through Dual-Model Attention Networks. Bioinform Biol Insights 2025; 19:11779322251325390. [PMID: 40160891 PMCID: PMC11951896 DOI: 10.1177/11779322251325390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/18/2025] [Indexed: 04/02/2025] Open
Abstract
The DyGAF model, which stands for Dynamic Gene Attention Focus, is specifically designed and tailored to address the challenges in biomarker detection, progression reporting of pathogen infection, and disease diagnostics. The DyGAF model introduced a novel dual-model attention-based mechanism within neural networks, combined with machine learning algorithms to enhance the process of biomarker identification. The model transcended traditional diagnostic approaches by meticulously analyzing gene expression data. DyGAF not only identified but also ranked genes based on their significance, revealing a comprehensive list of the top genes essential for disease detection and prognosis. In addition, KEGG pathways, Wiki Pathways, and Gene Ontology-based analyses provided a multileveled evaluation of the genes' roles. In our analyses, we tailored COVID-19 gene expression profile from nasopharyngeal swabs that offer a more nuanced view of the intricate interplay between the host and the virus. The genes ranked by the DyGAF model were compared against those selected by differential expression analysis and random forest feature selection methods for further validation of our model. DyGAF demonstrated its prowess in identifying important biomarkers that could enrich gene ontologies and pathways crucial for elucidating the pathogenesis of COVID-19. Furthermore, DyGAF was also employed for diagnosing COVID-19 patients by classifying gene-expression profiles with an accuracy of 94.23%. Benchmarking against other conventional models revealed DyGAF's superior performance, highlighting its effectiveness in identifying and categorizing COVID-19 cases. In summary, DyGAF model represents a significant advancement in genomic research, providing a more comprehensive and precise tool for identifying key genetic markers and unraveling the complex biological insights of a disease. The DyGAF model is available as a software package at the following link: https://github.com/hiddenntreasure/DyGAF.
Collapse
Affiliation(s)
- Md Khairul Islam
- Computational Science and Engineering, Michigan Technological University, Houghton, MI, USA
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Himanshu Wagh
- College of Computing, Michigan Technological University, Houghton, MI, USA
| | - Hairong Wei
- Computational Science and Engineering, Michigan Technological University, Houghton, MI, USA
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
- College of Computing, Michigan Technological University, Houghton, MI, USA
| |
Collapse
|
2
|
Olsen Martinez A, Dietz LG, Parhizkar H, Kaya D, Northcutt D, Horve PF, Stenson J, Harry M, Mickle D, Jaaf S, Hachimi O, Kanalos C, Martinotti I, Bowles G, Fretz M, Kelly C, Radniecki TS, Van Den Wymelenberg K. Air, surface, and wastewater surveillance of SARS-CoV-2; a multimodal evaluation of COVID-19 detection in a built environment. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025:10.1038/s41370-025-00757-3. [PMID: 40025268 DOI: 10.1038/s41370-025-00757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/17/2025] [Accepted: 01/31/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Environmental surveillance of infectious organisms holds tremendous promise to reduce human-to-human transmission in indoor spaces through early detection. OBJECTIVE In this study we determined the applicability and limitations of wastewater, indoor high-touch surfaces, in-room air, and rooftop exhaust air sampling methods for detecting SARS-CoV-2 in a real world building occupied by residents recently diagnosed with COVID-19. METHODS We concurrently examined the results of three 24-hour environmental surveillance techniques, indoor surface sampling, exhaust air sampling and wastewater surveillance, to the known daily census fluctuations in a COVID-19 isolation dormitory. Additionally, we assessed the ability of aerosol samplers placed in the large volume lobby to detect SARS-CoV-2 multiple times per day. RESULTS Our research reveals an increase in the number of individuals confirmed positive with COVID-19 as well as their estimated human viral load to be associated with statistically significant increases in viral loads detected in rooftop exhaust aerosol samples (p = 0.0413), wastewater samples (p = 0.0323,), and indoor high-touch surfaces (p < 0.001)). We also report that the viral load detected in lobby aerosol samples was statistically higher in samples collected during presence of occupants whose COVID-19 diagnostic tests were confirmed positive via qPCR compared to periods when the lobby was occupied by either contact-traced (suspected positive) individuals or during unoccupied periods (p = 0.0314 and <2e-16). SIGNIFICANCE We conclude that each daily (24h) surveillance method, rooftop exhaust air, indoor high-touch surfaces, and wastewater, provide useful detection signals for building owner/operator(s). Furthermore, we demonstrate that exhaust air sampling can provide spatially resolved signals based upon ventilation exhaust zones. Additionally, we find that indoor lobby air sampling can provide temporally resolved signals useful during short duration sampling periods (e.g., 2-4 hours) even with intermittent occupancy by occupants diagnosed with COVID-19. IMPACT Our research demonstrates that aerosol sampling can detect COVID-19 positive individuals in a real world lobby setting during very short occupancy periods. We demonstrate the effectiveness of rooftop exhaust aerosol, surface, and wastewater environmental surveillance in monitoring viral load in building occupants, both at the building scale and with ventilation zone-level resolution for aerosols. We provide actionable data for researchers, health officials and building managers who seek to determine which monitoring method is best for their building or study. This study is relevant in the fields of epidemiology, exposure sciences, biomonitoring, virology, public health, and healthy building design and management.
Collapse
Affiliation(s)
- Andreas Olsen Martinez
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA.
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA.
- Los Alamos National Laboratory, Los Alamos, NM, 87544, USA.
| | - Leslie G Dietz
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Hooman Parhizkar
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA
- Environmental and Occupational Health Sciences Institutes (EOHSI), Rutgers University, Piscatawy, NJ, 08854, USA
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
- School of Public Health and Imperial Valley, San Diego State University, San Diego, CA, 92182, USA
| | - Dale Northcutt
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA
| | - Patrick F Horve
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Jason Stenson
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA
| | - Michael Harry
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - David Mickle
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Shana Jaaf
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Oumaima Hachimi
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Casey Kanalos
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Isaac Martinotti
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA
| | - Garis Bowles
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Mark Fretz
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA
| | - Christine Kelly
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Tyler S Radniecki
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Kevin Van Den Wymelenberg
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
- Energy Studies in Buildings Laboratory, University of Oregon, Eugene, OR, 97403, USA
- College of Architecture, University of Nebraska, Lincoln, NE, 68588, USA
| |
Collapse
|
3
|
Zhang L, Fang Z, Li J, Huang Z, Tie X, Li H, Li J, Zhang Y, Zhang Y, Chen K. Research progress on environmental stability of SARS-CoV-2 and influenza viruses. Front Microbiol 2024; 15:1463056. [PMID: 39545235 PMCID: PMC11560908 DOI: 10.3389/fmicb.2024.1463056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
We reviewed research on SARS-CoV-2 and influenza virus detection on surfaces, their persistence under various conditions, and response to disinfectants. Viral contamination in community and healthcare settings was analyzed, emphasizing survival on surfaces influenced by temperature, pH, and material. Findings showed higher concentrations enhance survivability at room temperature, whereas stability increases at 4°C. Both viruses decline in low pH and high heat, with influenza affected by salinity. On various material surfaces, SARS-CoV-2 and influenza viruses demonstrate considerable variations in survival durations, and SARS-CoV-2 is more stable than influenza virus. On the skin, both virus types can persist for ≥2 h. Next, we delineated the virucidal efficacy of disinfectants against SARS-CoV-2 and influenza viruses. In daily life, exposure to ethanol (70%), isopropanol (70%), bleach (10%), or hydrogen peroxide (1-3%) for 15-30 min can effectively inactive various SARS-CoV-2 variants. Povidone-iodine (1 mg/mL, 1 min) or cetylpyridinium chloride (0.1 mg/mL, 2 min) may be used to inactive different SARS-CoV-2 variants in the mouth. Chlorine disinfectants (500 mg/L) or ultraviolet light (222 nm) can effectively inhibit different SARS-CoV-2 variants in public spaces. In conclusion, our study provides a scientific basis and practical guidance for reduction of viral persistence (retention of infectivity) on surfaces and environmental cleanliness.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhongbiao Fang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhiwei Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaotian Tie
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jianhua Li
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yanjun Zhang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yuanyuan Zhang
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
4
|
Zarei Mahmoudabadi T, Pasdar P, Eslami H. Exposure risks to SARS-CoV-2 (COVID-19) in wastewater treatment plants: a review. SUSTAINABLE WATER RESOURCES MANAGEMENT 2024; 10:85. [DOI: 10.1007/s40899-024-01065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/01/2024] [Indexed: 01/03/2025]
|
5
|
Fang R, Yang X, Guo Y, Peng B, Dong R, Li S, Xu S. SARS-CoV-2 infection in animals: Patterns, transmission routes, and drivers. ECO-ENVIRONMENT & HEALTH 2024; 3:45-54. [PMID: 38169914 PMCID: PMC10758742 DOI: 10.1016/j.eehl.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 01/05/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is more widespread in animals than previously thought, and it may be able to infect a wider range of domestic and wild species. To effectively control the spread of the virus and protect animal health, it is crucial to understand the cross-species transmission mechanisms and risk factors of SARS-CoV-2. This article collects published literature on SARS-CoV-2 in animals and examines the distribution, transmission routes, biophysical, and anthropogenic drivers of infected animals. The reported cases of infection in animals are mainly concentrated in South America, North America, and Europe, and species affected include lions, white-tailed deer, pangolins, minks, and cats. Biophysical factors influencing infection of animals with SARS-CoV-2 include environmental determinants, high-risk landscapes, air quality, and susceptibility of different animal species, while anthropogenic factors comprise human behavior, intensive livestock farming, animal markets, and land management. Due to current research gaps and surveillance capacity shortcomings, future mitigation strategies need to be designed from a One Health perspective, with research focused on key regions with significant data gaps in Asia and Africa to understand the drivers, pathways, and spatiotemporal dynamics of interspecies transmission.
Collapse
Affiliation(s)
- Ruying Fang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiyang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bingjie Peng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruixuan Dong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sen Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shunqing Xu
- School of Life Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Zloto O, Paiusco V, Murta F. How to assess blepharoptosis via telemedicine: method and its reliability. Int Ophthalmol 2024; 44:106. [PMID: 38386214 DOI: 10.1007/s10792-024-02926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/17/2023] [Indexed: 02/23/2024]
Abstract
PURPOSE To report the method to assess belpahroptosis and its reliability of adult ptosis using video consultation. METHODS This is a retrospective, comparative, case series. The surgical waiting list for ptosis surgery between 8/2020 and 1/2021 was checked and only cases listed for surgery via video consultation assessment, without any previous face-to-face consultation, were included. The following data were collected for patients who underwent video consultation before surgery: Demographic data, level of experience of clinician, levator function, Cogan's twitch sign, fatigability test, eye motility, presence of lagophthalmos, clinical history to rule out Myasthenia Gravis, other myopathies or Horner syndrome, whether the surgery was performed or canceled, reason for cancellation, date of surgery, type of procedure and surgeon experience. RESULTS A total of 176 patients underwent ptosis surgery. From those, 45 patients (25.6%) had only video assessment prior to surgery, 36 patients (80%) eventually underwent ptosis surgery. Surgery was canceled in 20% of the cases: in 2 cases (4.44%) due to misdiagnosis of ptosis during video consultation, confirmed on the day of surgery during pre-surgical face-to-face assessment; the other 7 cases (15.55%) belpharoptosis was confirmed on face-to-face examination but the surgery was canceled due to other reasons. The diagnosis of ptosis assessment via video consultation was corrected in 43 cases (95%) (p_value = 0.156, chi_ square). The accuracy of ptosis diagnosis was 13 out of 15 (86.7%) by fellow assessments and 30 out of 30 (100%) by consultant assessments (p_value = 0.041, chi_ square). In most of the cases ptosis assessment in video consultation included: rough judgment of levator function, eye motility and checking signs of lagophthalmos. CONCLUSIONS Video consultation is an efficient and reliable way to assess patients with ptosis, with 95% of reliability. Although a thorough ptosis assessment is advised, there was no difference between the accuracy of diagnosis on those who did not have the full suggested assessment.
Collapse
Affiliation(s)
- Ofira Zloto
- Adnexal Service, Moorfields Eye Hospital, London, EC1V 2PD, England, UK.
| | | | - Fabiola Murta
- Adnexal Service, Moorfields Eye Hospital, London, EC1V 2PD, England, UK
| |
Collapse
|
7
|
Carrazana E, Ruiz-Gil T, Fujiyoshi S, Tanaka D, Noda J, Maruyama F, Jorquera MA. Potential airborne human pathogens: A relevant inhabitant in built environments but not considered in indoor air quality standards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165879. [PMID: 37517716 DOI: 10.1016/j.scitotenv.2023.165879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Potential airborne human pathogens (PAHPs) may be a relevant component of the air microbiome in built environments. Despite that PAHPs can cause infections, particularly in immunosuppressed patients at medical centers, they are scarcely considered in standards of indoor air quality (IAQ) worldwide. Here, we reviewed the current information on microbial aerosols (bacteria, fungal and viruses) and PAHPs in different types of built environments (e.g., medical center, industrial and non-industrial), including the main factors involved in their dispersion, the methodologies used in their study and their associated biological risks. Our analysis identified the human occupancy and ventilation systems as the primary sources of dispersal of microbial aerosols indoors. We also observed temperature and relative humidity as relevant physicochemical factors regulating the dispersion and viability of some PAHPs. Our analysis revealed that some PAHPs can survive and coexist in different environments while other PAHPs are limited or specific for an environment. In relation to the methodologies (conventional or molecular) the nature of PAHPs and sampling type are pivotal. In this context, indoors air-borne viruses are the less studies because their small size, environmental lability, and absence of efficient sampling techniques and universal molecular markers for their study. Finally, it is noteworthy that PAHPs are not commonly considered and included in IAQ standards worldwide, and when they are included, the total abundance is the single parameter considered and biological risks is excluded. Therefore, we propose a revision, design and establishment of public health policies, regulations and IAQ standards, considering the interactions of diverse factors, such as nature of PAHPs, human occupancy and type of built environments where they develop.
Collapse
Affiliation(s)
- Elizabeth Carrazana
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco, Chile; Laboratorio de Ecología Microbiana Aplicada, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Tay Ruiz-Gil
- Laboratorio de Ecología Microbiana Aplicada, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - So Fujiyoshi
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan; Microbial Genomics and Ecology, PHIS, The IDEC institute, Hiroshima University, Hiroshima, Japan
| | - Daisuke Tanaka
- School of Science Academic Assembly, University of Toyama, Toyama, Japan
| | - Jun Noda
- Graduate School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Fumito Maruyama
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan; Microbial Genomics and Ecology, PHIS, The IDEC institute, Hiroshima University, Hiroshima, Japan
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
8
|
Mahmudiono T, Ramaiah P, Maleki H, Doewes RI, Shalaby MN, Alsaikhan F, Mohammadi MJ. Evaluation of the impact of different disinfectants on new coronavirus and human health. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:451-460. [PMID: 35508445 DOI: 10.1515/reveh-2022-0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/17/2022] [Indexed: 02/07/2023]
Abstract
A new health threat was appeared in 2019 known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19). The new coronavirus distributed all over the world and caused millions of deaths. One way to incomplete the process of COVID-19 transfer from one person to another is using disinfectants. A narrative review study was done on manuscript published documents about the stability of the virus, different types of disinfectants and the effects of disinfectants on SARS-CoV2 and environment from 2005 to 2022 based on Searched databases included Google Scholar, Springer, PubMed, Web of Science and Science Direct (Scopus). All relevant studies published 2005 until 2022 gathered. According to the databases, 670 articles were retrieved. Thirty studies were screened after review and 30 full-text articles entered into the analysis process. Finally, 14 articles were selected in this study. New coronavirus could survive until 9 days in room temperature; the surviving time decreases if temperature increases. The virus can survive in various plastic, glass, and metal surfaces for hours to days. Disinfectants, such as alcohol, isopropanol, formaldehyde, glutaraldehyde, and ethanol, can kill 70-90% viruses in up to 30 s but should be noted that these disinfectants are recognized by Occupational Safety and Health Administration (OSHA) as a potential carcinogen. According to the different reports, increased duration and level of disinfectant exposure can have negative impacts on human and animal health including upper and lower respiratory tract irritation, inflammation, edema, ulceration, and allergic reactions.
Collapse
Affiliation(s)
- Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | | | - Heydar Maleki
- Department of Environmental Health Engineering, School of Public Health, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Fahad Alsaikhan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
| | - Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Sekaran K, Karthik A, Varghese RP, Sathiyarajeswaran P, Shree Devi MS, Siva R, George Priya Doss C. In silico network pharmacology study on Glycyrrhiza glabra: Analyzing the immune-boosting phytochemical properties of Siddha medicinal plant against COVID-19. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:233-255. [PMID: 38220426 PMCID: PMC10275734 DOI: 10.1016/bs.apcsb.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Immunosenescence is a pertinent factor in the mortality rate caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The changes in the immune system are strongly associated with age and provoke the deterioration of the individual's health. Traditional medical practices in ancient India effectively deal with COVID-19 by boosting natural immunity through medicinal plants. The anti-inflammatory and antiviral properties of Glycyrrhiza glabra are potent in fighting against COVID-19 and promote immunity boost against the severity of the infection. Athimadhura Chooranam, a polyherbal formulation containing Glycyrrhiza glabra as the main ingredient, is recommended as an antiviral Siddha herb by the Ministry of AYUSH. This paper is intended to identify the phytoconstituents of Glycyrrhiza glabra that are actively involved in preventing individuals from COVID-19 transmission. The modulated pathways, enrichment study, and drug-likeness are calculated from the target proteins of the phytoconstituents at the pharmacological activity (Pa) of more than 0.7. Liquiritigenin and Isoliquiritin, the natural compounds in Glycyrrhiza glabra, belong to the flavonoid class and exhibit ameliorative effects against COVID-19. The latter compound displays a higher protein interaction to a maximum of six, out of which HMOX1, PLAU, and PGR are top-hub genes. ADMET screening further confirms the significance of the abovementioned components containing better drug-likeness. The molecular docking and molecular dynamics method identified liquiritigenin as a possible lead molecule capable of inhibiting the activity of the major protease protein of SARS-CoV-2. The findings emphasize the importance of in silico network pharmacological assessments in delivering cost-effective, time-bound clinical drugs.
Collapse
Affiliation(s)
- Karthik Sekaran
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ashwini Karthik
- Department of Biology, Mount Carmel College Autonomous, Bengaluru, India
| | | | | | | | - R Siva
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - C George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
10
|
Pelly FE, Tweedie J, O'Connor H. Food Provision at the Olympic Games in the New Millennium: A Meta-narrative Review. SPORTS MEDICINE - OPEN 2023; 9:24. [PMID: 37084149 PMCID: PMC10120499 DOI: 10.1186/s40798-023-00567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/19/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND AND OBJECTIVE The objective of this meta-narrative review was to identify, organise and map the literature on food provision and nutrition support at the summer and winter Olympic and Paralympic Games (OPG) and similar major competition events over the past 21 years. This builds on a comprehensive update of a previous historical review of the evolution of food provision at the summer Olympic Games up until 2000 and considers contemporary issues such as the global pandemic and sustainability goals. METHODS A range of sources included primary research and review articles, edited book chapters, theses, conference papers or abstracts, International Olympic Committee reports, Organising Committees' food vision and post-Games reports, independent professional reports, and media and periodicals including magazines and trade journals. The search strategy included four steps: a database search that complied with Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews criteria, a search of the Olympic Studies Centre, a review of reference lists for unpublished sources, and a Google search for additional media reports. The researchers followed an iterative process where emerging narratives were discussed, recorded and refined as data were extracted. RESULTS The data from 229 records were extracted into a spreadsheet and grouped according to the type of evidence and specific event, then presented chronologically to give a perspective on the development of food provision and nutrition support. Eleven narratives emerged from the data extraction: 'description of meals, menus and food', 'vision of the food provision', 'food safety', 'catering company involvement', 'sponsorship or contracts with food companies', 'athlete perspective', 'stakeholder perspective', 'athlete food intake,' 'nutrition input in food provision', 'food environment' and 'sustainability'. CONCLUSION Results suggest that athletes' dining expectations, organising committee budgets, expert input and current global trends have led to food delivery changes. The OPG food environment has the capacity to positively influence the dietary choices of athletes and teams, while evolving to meet contemporary global challenges such as COVID-19 and sustainability targets.
Collapse
Affiliation(s)
- Fiona E Pelly
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
| | - Judith Tweedie
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Helen O'Connor
- Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Camperdown, Australia
| |
Collapse
|
11
|
Cai Y, Zhao Y, Yadav AK, Ji B, Kang P, Wei T. Ozone based inactivation and disinfection in the pandemic time and beyond: Taking forward what has been learned and best practice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160711. [PMID: 36496014 PMCID: PMC9727960 DOI: 10.1016/j.scitotenv.2022.160711] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The large-scale global COVID-19 has a profound impact on human society. Timely and effectively blocking the virus spread is the key to controlling the pandemic growth. Ozone-based inactivation and disinfection techniques have been shown to effectively kill SARS-CoV-2 in water, aerosols and on solid surface. However, the lack of an unified information and discussion on ozone-based inactivation and disinfection in current and previous pandemics and the absence of consensus on the main mechanisms by which ozone-based inactivation of pandemic causing viruses have hindered the possibility of establishing a common basis for identifying best practices in the utilization of ozone technology. This article reviews the research status of ozone (O3) disinfection on pandemic viruses (especially SARS-CoV-2). Taking sterilization kinetics as the starting point while followed by distinguishing the pandemic viruses by enveloped and non-enveloped viruses, this review focuses on analyzing the scope of application of the sterilization model and the influencing factors from the experimental studies and data induction. It is expected that the review could provide an useful reference for the safe and effective O3 utilization of SARS-CoV-2 inactivation in the post-pandemic era.
Collapse
Affiliation(s)
- Yamei Cai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China.
| | - Asheesh Kumar Yadav
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Madrid, Spain
| | - Bin Ji
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; School of Civil Engineering, Yantai University, Yantai 264005, PR China
| | - Peiying Kang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Ting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| |
Collapse
|
12
|
Bhattacharya S, Abhishek K, Samiksha S, Sharma P. Occurrence and transport of SARS-CoV-2 in wastewater streams and its detection and remediation by chemical-biological methods. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2023; 9:100221. [PMID: 36818681 PMCID: PMC9762044 DOI: 10.1016/j.hazadv.2022.100221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 06/18/2023]
Abstract
This paper explains the transmission of SARS-CoV and influences of several environmental factors in the transmission process. The article highlighted several methods of collection, sampling and monitoring/estimation as well as surveillance tool for detecting SARS-CoV in wastewater streams. In this context, WBE (Wastewater based epidemiology) is found to be the most effective surveillance tool. Several methods of genomic sequencing are discussed in the paper, which are applied in WBE, like qPCR-based wastewater testing, metagenomics-based analysis, next generation sequencing etc. Additionally, several types of biosensors (colorimetric biosensor, mobile phone-based biosensors, and nanomaterials-based biosensors) showed promising results in sensing SARS-CoV in wastewater. Further, this review paper outlined the gaps in assessing the factors responsible for transmission and challenges in detection and monitoring along with the remediation and disinfection methods of this virus in wastewater. Various methods of disinfection of SARS-CoV-2 in wastewater are discussed (primary, secondary, and tertiary phases) and it is found that a suite of disinfection methods can be used for complete disinfection/removal of the virus. Application of ultraviolet light, ozone and chlorine-based disinfectants are also discussed in the context of treatment methods. This study calls for continuous efforts to gather more information about the virus through continuous monitoring and analyses and to address the existing gaps and identification of the most effective tool/ strategy to prevent SARS-CoV-2 transmission. Wastewater surveillance can be very useful in effective surveillance of future pandemics and epidemics caused by viruses, especially after development of new technologies in detecting and disinfecting viral pathogens more effectively.
Collapse
Affiliation(s)
- Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Kumar Abhishek
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
- Department of Environment Forest and Climate Change, Government of Bihar, Patna, 800015, Bihar, India
| | - Shilpi Samiksha
- Bihar State Pollution Control Board, Patna, 800015, Bihar, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| |
Collapse
|
13
|
Parvin R. A Statistical Investigation into the COVID-19 Outbreak Spread. ENVIRONMENTAL HEALTH INSIGHTS 2023; 17:11786302221147455. [PMID: 36699646 PMCID: PMC9868487 DOI: 10.1177/11786302221147455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Objective Coronavirus-19 (COVID-19) outbreaks have been reported in a range of climates worldwide, including Bangladesh. There is less evidence of a link between the COVID-19 pandemic and climatic variables. This research article's purpose is to examine the relationship between COVID-19 outbreaks and climatic factors in Dhaka, Bangladesh. Methods The daily time series COVID-19 data used in this study span from May 1, 2020, to April 14, 2021, for the study area, Dhaka, Bangladesh. The Climatic factors included in this study were average temperature, particulate matter ( P M 2 . 5 ), humidity, carbon emissions, and wind speed within the same timeframe and location. The strength and direction of the relationship between meteorological factors and COVID-19 positive cases are examined using the Spearman correlation. This study examines the asymmetric effect of climatic factors on the COVID-19 pandemic in Dhaka, Bangladesh, using the Nonlinear Autoregressive Distributed Lag (NARDL) model. Results COVID-19 widespread has a substantial positive association with wind speed (r = .781), temperature (r = .599), and carbon emissions (r = .309), whereas P M 2 . 5 (r = -.178) has a negative relationship at the 1% level of significance. Furthermore, with a 1% change in temperature, the incidence of COVID-19 increased by 1.23% in the short run and 1.53% in the long run, with the remaining variables remaining constant. Similarly, in the short-term, humidity was not significantly related to the COVID-19 pandemic. However, in the long term, it increased 1.13% because of a 1% change in humidity. The changes in PM2.5 level and wind speed are significantly associated with COVID-19 new cases after adjusting population density and the human development index.
Collapse
Affiliation(s)
- Rehana Parvin
- Department of Statistics, International University of Business Agriculture and Technology (IUBAT), Uttara, Dhaka, Bangladesh
| |
Collapse
|
14
|
Banik SP, Bhattacharyya M, Ghosh R, Chatterjee T, Basak P. Unveiling the prevalence and impact of diabetes on COVID-19. VIRAL, PARASITIC, BACTERIAL, AND FUNGAL INFECTIONS 2023:287-301. [DOI: 10.1016/b978-0-323-85730-7.00045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Sheraz M, Mir KA, Anus A, Le VCT, Kim S, Nguyen VQ, Lee WR. SARS-CoV-2 airborne transmission: a review of risk factors and possible preventative measures using air purifiers. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2191-2216. [PMID: 36278886 DOI: 10.1039/d2em00333c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting worldwide death toll have prompted worries regarding its transmission mechanisms. Direct, indirect, and droplet modes are the basic mechanisms of transmission. SARS-CoV-2 spreads by respiratory droplets (size range >10 μm size ranges), aerosols (5 μm), airborne, and particulate matter. The rapid transmission of SARS-CoV-2 is due to the involvement of tiny indoor air particulate matter (PM2.5), which functions as a vector. SARS-CoV-2 is more contagious in the indoor environment where particulate matter floats for a longer period and greater distances. Extended residence time in the environment raises the risk of SARS-CoV-2 entering the lower respiratory tract, which may cause serious infection and possibly death. To decrease viral transmission in the indoor environment, it is essential to catch and kill the SARS-CoV-2 virus and maintain virus-free air, which will significantly reduce viral exposure concerns. Therefore, effective air filters with anti-viral, anti-bacterial, and anti-air-pollutant characteristics are gaining popularity recently. It is essential to develop cost-effective materials based on nanoparticles and metal-organic frameworks in order to lower the risk of airborne transmission in developing countries. A diverse range of materials play an important role in the manufacturing of effective air filters. We have summarized in this review article the basic concepts of the transmission routes of SARS-CoV-2 virus and precautionary measures using air purifiers with efficient materials-based air filters for the indoor environment. The performance of air-filter materials, challenges and alternative approaches, and future perspectives are also presented. We believe that air purifiers fabricated with highly efficient materials can control various air pollutants and prevent upcoming pandemics.
Collapse
Affiliation(s)
- Mahshab Sheraz
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
| | - Kaleem Anwar Mir
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Global Change Impact Studies Centre, Ministry of Climate Change, Government of Pakistan, Islamabad, 44000, Pakistan
| | - Ali Anus
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
| | - Van Cam Thi Le
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Seungdo Kim
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
- Environment Strategy Development Institute, Hallym University, Chuncheon-si 24252, South Korea
| | - Van Quyet Nguyen
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
| | - Woo Ram Lee
- Department of Chemistry, School of Future Convergence, Hallym University, Engineering Building# 1348, 1 Hallymdaehak-gil, Chuncheon-si 24252, Gangwon-do, South Korea.
| |
Collapse
|
16
|
Mwiinde AM, Siankwilimba E, Sakala M, Banda F, Michelo C. Climatic and Environmental Factors Influencing COVID-19 Transmission-An African Perspective. Trop Med Infect Dis 2022; 7:433. [PMID: 36548688 PMCID: PMC9785776 DOI: 10.3390/tropicalmed7120433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Since the outbreak of COVID-19 was decreed by the World Health Organization as a public health emergency of worldwide concern, the epidemic has drawn attention from all around the world. The disease has since spread globally in developed and developing countries. The African continent has not been spared from the pandemic; however, the low number of cases in Africa compared to developed countries has brought about more questions than answers. Africa is known to have a poor healthcare system that cannot sustain the emerging infectious disease pandemic. This study explored climatic and environmental elements influencing COVID-19 transmission in Africa. This study involved manuscripts and data that evaluated and investigated the climatic and environmental elements of COVID-19 in African countries. Only articles written in English were considered in the systematic review. Seventeen articles and one database were selected for manuscript write-ups after the review process. The findings indicated that there is evidence that suggests the influence of climatic and environmental elements on the spread of COVID-19 in the continent of Africa; however, the evidence needs more investigation in all six regions of Africa and at the country level to understand the role of weather patterns and environmental aspects in the transmission of COVID-19.
Collapse
Affiliation(s)
- Allan Mayaba Mwiinde
- Graduate School of Public Health, Department of Epidemiology Ridgeway Campus, University of Zambia, Lusaka P.O. Box 50516, Zambia
- Department of Public Health, Mazabuka Municipal Council, Mazabuka P.O. Box 670022, Zambia
| | - Enock Siankwilimba
- Graduate School of Business, University of Zambia, Lusaka P.O. Box 50516, Zambia
| | - Masauso Sakala
- School of Engineering, Department of Geomatic Engineering, University of Zambia, Lusaka P.O. Box 50516, Zambia
| | - Faustin Banda
- School of Engineering, Department of Geomatic Engineering, University of Zambia, Lusaka P.O. Box 50516, Zambia
- The National Remote Sensing Centre, Plot Number 15302 Airport Road, Lusaka P.O. Box 310303, Zambia
| | - Charles Michelo
- Department of Public Health, Mazabuka Municipal Council, Mazabuka P.O. Box 670022, Zambia
- Harvest Research Institute, Lusaka P.O. Box 51176, Zambia
| |
Collapse
|
17
|
Luu MN, Alhady STM, Nguyen Tran MD, Truong LV, Qarawi A, Venkatesh U, Tiwari R, Rocha ICN, Minh LHN, Ravikulan R, Dumre SP, Giang HTN, Pavlenko D, Ali FY, Le BTD, Karimzadeh S, Bhandari P, Shah J, Abdul Aziz JM, Huy NT. Evaluation of risk factors associated with SARS-CoV-2 transmission. Curr Med Res Opin 2022; 38:2021-2028. [PMID: 36106710 DOI: 10.1080/03007995.2022.2125258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Coronavirus disease 2019 (COVID-19) has caused high morbidity and mortality worldwide. Since there is not enough evidence of risk factors of SARS-CoV-2 transmission, this study aimed to evaluate them. METHODS This survey-based study was conducted across 66 countries from May to November 2020 among suspected and confirmed individuals with COVID-19. The stepwise AIC method was utilized to determine the optimal multivariable logistic regression to explore predictive factors of SARS-CoV-2 transmission. RESULTS Among 2372 respondents who participated in the study, there were 1172 valid responses. The profession of non-healthcare-worker (OR: 1.77, 95%CI: 1.04-3.00, p = .032), history of SARS-CoV or MERS-CoV infection (OR: 4.78, 95%CI: 2.34-9.63, p < .001), higher frequency of contact with colleagues (OR: 1.17, 95%CI: 1.01-1.37, p = .041), and habit of hugging when greeting (OR: 1.25, 95%CI: 1.00-1.56, p = .049) were associated with an increased risk of contracting COVID-19. Current smokers had a lower likelihood of having COVID-19 compared to former smokers (OR: 5.41, 95%CI: 1.93-17.49, p = .002) or non-smokers (OR: 3.69, 95%CI: 1.48-11.11, p = .01). CONCLUSIONS Our study suggests several risk factors for SARS-CoV-2 transmission including the profession of non-healthcare workers, history of other coronavirus infections, frequent close contact with colleagues, the habit of hugging when greeting, and smoking status.
Collapse
Affiliation(s)
- Mai Ngoc Luu
- Department of Internal Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Minh Duc Nguyen Tran
- Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Le Van Truong
- Ministry of the Public Security, Traditional Medicine Hospital, Hanoi, Vietnam
| | | | - U Venkatesh
- Department of Community Medicine & Family Medicine, All India Institute of Medical Sciences, Gorakhpur, India
| | - Ranjit Tiwari
- B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | | | - Le Huu Nhat Minh
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, Taiwan
- Global Clinical Scholars Research Training Program, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Dmytro Pavlenko
- Department of Ophthalmology, Bogomolets National Medical University, Kyiv, Ukraine
| | | | - Bao-Tran Do Le
- Faculty of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Sedighe Karimzadeh
- Department of Neurology, University Hospital Cologne, Cologne, Germany
- Online Research Club, Nagasaki University, Nagasaki, Japan
| | - Parshal Bhandari
- Department of Anesthesia and Intensive Care, PGMI/Lahore General Hospital, Lahore, Pakistan
| | - Jaffer Shah
- New York State Department of Health, New York, NY, USA
| | - Jeza Muhamad Abdul Aziz
- Baxshin research center, Baxshin Hospital, Sulaymaniyah, Kurdistan Region, Iraq
- Medical Laboratory Science, College of Health Sciences, University of Human Development, Sulaymaniyah, Kurdistan Region, Iraq
| | - Nguyen Tien Huy
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
18
|
Mojahed N, Mohammadkhani MA, Mohamadkhani A. Climate Crises and Developing Vector-Borne Diseases: A Narrative Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2022; 51:2664-2673. [PMID: 36742229 PMCID: PMC9874214 DOI: 10.18502/ijph.v51i12.11457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022]
Abstract
Background Climate change based on temperature, humidity and wind can improve many characteristics of the arthropod carrier life cycle, including survival, arthropod population, pathogen communication, and the spread of infectious agents from vectors. This study aimed to find association between content of disease followed climate change we demonstrate in humans. Methods All the articles from 2016 to 2021 associated with global climate change and the effect of vector-borne disease were selected form databases including PubMed and the Global Biodiversity information facility database. All the articles selected for this short review were English. Results Due to the high burden of infectious diseases and the growing evidence of the possible effects of climate change on the incidence of these diseases, these climate changes can potentially be involved with the COVID-19 epidemic. We highlighted the evidence of vector-borne diseases and the possible effects of climate change on these communicable diseases. Conclusion Climate change, specifically in rising temperature system is one of the world's greatest concerns already affected pathogen-vector and host relation. Lice parasitic, fleas, mites, ticks, and mosquitos are the prime public health importance in the transmission of virus to human hosts.
Collapse
Affiliation(s)
- Nooshin Mojahed
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran,Corresponding Author:
| |
Collapse
|
19
|
Karamese M. All Microbiological Aspects of SARS-CoV-2 Virus. Eurasian J Med 2022; 54:106-114. [PMID: 36655453 PMCID: PMC11163349 DOI: 10.5152/eurasianjmed.2022.22315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/22/2022] [Indexed: 01/19/2023] Open
Abstract
The COVID-19 disease, caused by SARS-CoV-2 virus, which was first seen in Wuhan (China) on December 31, 2019, rapidly spread to cities, countries, and continents and was noted in history as the first pandemic caused by coronaviruses. According to the World Health Organization reports, more than 645 million confirmed SARS-CoV-2-positive cases and more than 6.5 million confirmed deaths were noted all over the world during the pandemic (between December 2020 and December 2022). Although SARS-CoV-2 is a virus belonging to the coronavirus family, our knowledge of the pathogenesis and immune response of SARS-CoV-2 is still limited. Approximately 10 years (2012) after the Middle East Respiratory Syndrome (MERS-CoV) (nearly 2200 confirmed cases and 791 confirmed deaths) and 20 years (2002-2004) after the SARS-CoV epidemic (29 different countries, nearly 8000 confirmed cases, and 774 confirmed deaths), the current COVID-19 pandemic is a reminder of how new pathogens can emerge and spread rapidly, eventually causing serious public health problems. Further research is needed to establish animal models for SARSCoV-2 to investigate replication, transmission dynamics, and pathogenesis in humans in order to develop effective antiviral treatments and vaccines.
Collapse
Affiliation(s)
- Murat Karamese
- Faculty of Medicine, Department of Medical Microbiology, Kafkas University, Kars, Turkey
| |
Collapse
|
20
|
Jaya IGNM, Folmer H, Lundberg J. A joint Bayesian spatiotemporal risk prediction model of COVID-19 incidence, IC admission, and death with application to Sweden. THE ANNALS OF REGIONAL SCIENCE 2022; 72:1-34. [PMID: 36465998 PMCID: PMC9707215 DOI: 10.1007/s00168-022-01191-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
The three closely related COVID-19 outcomes of incidence, intensive care (IC) admission and death, are commonly modelled separately leading to biased estimation of the parameters and relatively poor forecasts. This paper presents a joint spatiotemporal model of the three outcomes based on weekly data that is used for risk prediction and identification of hotspots. The paper applies a pure spatiotemporal model consisting of structured and unstructured spatial and temporal effects and their interaction capturing the effects of the unobserved covariates. The pure spatiotemporal model limits the data requirements to the three outcomes and the population at risk per spatiotemporal unit. The empirical study for the 21 Swedish regions for the period 1 January 2020-4 May 2021 confirms that the joint model predictions outperform the separate model predictions. The fifteen-week-ahead spatiotemporal forecasts (5 May-11 August 2021) show a significant decline in the relative risk of COVID-19 incidence, IC admission, death and number of hotspots. Supplementary Information The online version contains supplementary material available at 10.1007/s00168-022-01191-1.
Collapse
Affiliation(s)
- I Gede Nyoman Mindra Jaya
- Faculty of Spatial Sciences, University of Groningen, Groningen, The Netherlands
- Statistics Department, Padjadjaran University, Bandung, Indonesia
| | - Henk Folmer
- Faculty of Spatial Sciences, University of Groningen, Groningen, The Netherlands
- Statistics Department, Padjadjaran University, Bandung, Indonesia
| | - Johan Lundberg
- Department of Economics and Centre for Regional Science (CERUM), Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
21
|
Valenzuela-Fernández A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, González-Montelongo R, Alcoba-Florez J, Trujillo-González R, García-Martínez de Artola D, Gil-Campesino H, Díez-Gil O, Lorenzo-Salazar JM, Flores C, Garcia-Luis J. Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Front Bioeng Biotechnol 2022; 10:1052436. [PMID: 36507266 PMCID: PMC9732709 DOI: 10.3389/fbioe.2022.1052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the associated coronavirus disease 2019 (COVID-19), which severely affect the respiratory system and several organs and tissues, and may lead to death, have shown how science can respond when challenged by a global emergency, offering as a response a myriad of rapid technological developments. Development of vaccines at lightning speed is one of them. SARS-CoV-2 outbreaks have stressed healthcare systems, questioning patients care by using standard non-adapted therapies and diagnostic tools. In this scenario, nanotechnology has offered new tools, techniques and opportunities for prevention, for rapid, accurate and sensitive diagnosis and treatment of COVID-19. In this review, we focus on the nanotechnological applications and nano-based materials (i.e., personal protective equipment) to combat SARS-CoV-2 transmission, infection, organ damage and for the development of new tools for virosurveillance, diagnose and immune protection by mRNA and other nano-based vaccines. All the nano-based developed tools have allowed a historical, unprecedented, real time epidemiological surveillance and diagnosis of SARS-CoV-2 infection, at community and international levels. The nano-based technology has help to predict and detect how this Sarbecovirus is mutating and the severity of the associated COVID-19 disease, thereby assisting the administration and public health services to make decisions and measures for preparedness against the emerging variants of SARS-CoV-2 and severe or lethal COVID-19.
Collapse
Affiliation(s)
- Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Romina Cabrera-Rodriguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Laura Ciuffreda
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Silvia Perez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Judith Estevez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jonay Garcia-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
22
|
The Effect of Face Mask, Air Temperature, and Humidity on COVID-19 Transmission: A Systematic Review and Meta-analysis. HEALTH SCOPE 2022. [DOI: 10.5812/jhealthscope-129121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Context: At the beginning of the COVID-19 pandemic, the effects of personal protective equipment (PPE) such as face masks, as well as environmental conditions, including temperature and humidity changes, were discussed due to the lack of effective medicine. Methods: The preferred reporting items for systematic reviews and meta-analysis (PRISMA) were implemented to conduct the present systematic review. The articles were selected from papers published by May 2020 in PubMed, Web of Science, Science Direct, Scopus, and Google Scholar databases. This meta-analysis estimated relative risk (RR) and pooled mean depicted as effect size (ES) using the random or fixed effects methods. Results: Ten studies met inclusion criteria, four of which addressed the effect of face masks and six of which dealt with temperature and humidity changes. This eta-analysis study showed that wearing face masks against the COVID-19 virus had a remarkable safety impact with RR (%95 CI) 8.56 (2.10 - 34.90), (I2 = %0.0 P = 0.999), and the pooled mean changes in temperature and humidity were estimated to be with ES (%95 CI) 9.03 (4.32 - 13.74), (I2 = %99.7, P = 0.0001) and with ES (%95 CI) 56.82 (46.12 - 67.51), ( I2 = %99.3, P = 0.0001) during the outbreak of the COVID-19. Conclusions: The findings of this systematic review and meta-analysis illustrate the effectiveness of face masks, in general, in preventing the transmission of the COVID-19 virus. According to the findings, temperature and humidity changes do not increase the outbreak of the COVID-19 virus.
Collapse
|
23
|
Zahmatkesh S, Klemeš JJ, Bokhari A, Wang C, Sillanpaa M, Amesho KTT, Vithanage M. Various advanced wastewater treatment methods to remove microplastics and prevent transmission of SARS-CoV-2 to airborne microplastics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 20:2229-2246. [PMID: 36438928 PMCID: PMC9676805 DOI: 10.1007/s13762-022-04654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 05/08/2023]
Abstract
Microplastics (MPs) and SARS-CoV-2 interact due to their widespread presence in our environment and affect the virus' behaviour indoors and outdoors. Therefore, it is necessary to study the interaction between MPs and SARS-CoV-2. The environmental damage caused by MPs is increasing globally. Emerging pollutants may adversely affect organisms, especially sewage, posing a threat to human health, animal health, and the ecological system. A significant concern with MPs in the air is that they are a vital component of MPs in the other environmental compartments, such as water and soil, which may affect human health through ingesting or inhaling. This work introduces the fundamental knowledge of various methods in advanced water treatment, including membrane bioreactors, advanced oxidation processes, adsorption, etc., are highly effective in removing MPs; they can still serve as an entrance route due to their constantly being discharged into aquatic environments. Following that, an analysis of each process for MPs' removal and mitigation or prevention of SARS-CoV-2 contamination is discussed. Next, an airborne microplastic has been reported in urban areas, raising health concerns since aerosols are considered a possible route of SARS-CoV-2 disease transmission and bind to airborne MP surfaces. The MPs can be removed from wastewater through conventional treatment processes with physical processes such as screening, grit chambers, and pre-sedimentation.
Collapse
Affiliation(s)
- S. Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico
| | - J. J. Klemeš
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - A. Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - C. Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - M. Sillanpaa
- Department of Chemical Engineering, College of Engineering, King Khalid University, 61411 Abha, Kingdom of Saudi Arabia
- Research Laboratory of Processes, Energetics, Environment and Electrical Systems, National School of Engineers, Gabes University, 6072 Gabes, Tunisia
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - K. T. T. Amesho
- The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804 Taiwan
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804 Taiwan
| | - M. Vithanage
- Faculty of Applied Sciences, University of Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
24
|
Meskher H, Belhaouari SB, Thakur AK, Sathyamurthy R, Singh P, Khelfaoui I, Saidur R. A review about COVID-19 in the MENA region: environmental concerns and machine learning applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82709-82728. [PMID: 36223015 PMCID: PMC9554385 DOI: 10.1007/s11356-022-23392-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has delayed global economic growth, which has affected the economic life globally. On the one hand, numerous elements in the environment impact the transmission of this new coronavirus. Every country in the Middle East and North Africa (MENA) area has a different population density, air quality and contaminants, and water- and land-related conditions, all of which influence coronavirus transmission. The World Health Organization (WHO) has advocated fast evaluations to guide policymakers with timely evidence to respond to the situation. This review makes four unique contributions. One, many data about the transmission of the new coronavirus in various sorts of settings to provide clear answers to the current dispute over the virus's transmission were reviewed. Two, highlight the most significant application of machine learning to forecast and diagnose severe acute respiratory syndrome coronavirus (SARS-CoV-2). Three, our insights provide timely and accurate information along with compelling suggestions and methodical directions for investigators. Four, the present study provides decision-makers and community leaders with information on the effectiveness of environmental controls for COVID-19 dissemination.
Collapse
Affiliation(s)
- Hicham Meskher
- Division of Process Engineering, College of Applied Science, Kasdi-Merbah University, 30000, Ouargla, Algeria
| | - Samir Brahim Belhaouari
- Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Amrit Kumar Thakur
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore, Tamil Nadu, 641407, India
| | - Ravishankar Sathyamurthy
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dammam, Saudi Arabia.
| | - Punit Singh
- Institute of Engineering and Technology, Department of Mechanical Engineering, GLA University Mathura, Mathura, Uttar Pradesh, 281406, India
| | - Issam Khelfaoui
- School of Insurance and Economics, University of International Business and Economics, Beijing, China
| | - Rahman Saidur
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Malaysia
| |
Collapse
|
25
|
Radulovic A, Miocinovic J, Radulovic Z, Rajkovic MB. Relevance of corona virus in food industry: A literature review on risks, challenges, and potential preventive measures. J Food Saf 2022. [DOI: 10.1111/jfs.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana Radulovic
- Department of Animal Source Food Technology Faculty of Agriculture University of Belgrade Beograd Serbia
| | - Jelena Miocinovic
- Department of Animal Source Food Technology Faculty of Agriculture University of Belgrade Beograd Serbia
| | - Zorica Radulovic
- Department of Тechnological Мicrobiology Faculty of Agriculture University of Belgrade Beograd Serbia
| | - Milos B. Rajkovic
- Department of Chemistry and Biochemistry Faculty of Agriculture University of Belgrade Beograd Serbia
| |
Collapse
|
26
|
de Araújo JC, Mota VT, Teodoro A, Leal C, Leroy D, Madeira C, Machado EC, Dias MF, Souza CC, Coelho G, Bressani T, Morandi T, Freitas GTO, Duarte A, Perdigão C, Tröger F, Ayrimoraes S, de Melo MC, Laguardia F, Reis MTP, Mota C, Chernicharo CAL. Long-term monitoring of SARS-CoV-2 RNA in sewage samples from specific public places and STPs to track COVID-19 spread and identify potential hotspots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155959. [PMID: 35588823 DOI: 10.2139/ssrn.4055085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 05/21/2023]
Abstract
Coronavirus pandemic started in March 2020 and since then has caused millions of deaths worldwide. Wastewater-based epidemiology (WBE) can be used as an epidemiological surveillance tool to track SARS-CoV-2 dissemination and provide warning of COVID-19 outbreaks. Considering that there are public places that could be potential hotspots of infected people that may reflect the local epidemiological situation, the presence of SARS-CoV-2 RNA was analyzed by RT-qPCR for approximately 16 months in sewage samples from five public places located in the metropolitan area of Belo Horizonte, MG, Brazil: the sewage treatment plant of Confins International Airport (AIR), the main interstate bus terminal (BUS), an upscale shopping centre (SHC1), a popular shopping centre (SHC2) and a university institute (UNI). The results were compared to those of the influent sewage of the two main sewage treatment plants of Belo Horizonte (STP1 and STP2). Viral monitoring in the STPs proved to be an useful regional surveillance tool, reflecting the trends of COVID-19 cases. However, the viral concentrations in the samples from the selected public places were generally much lower than those of the municipal STPs, which may be due to the behaviour of the non-infected or asymptomatic people, who are likely to visit these places relatively more than the symptomatic infected ones. Among these places, the AIR samples presented the highest viral concentrations and concentration peaks were observed previously to local outbreaks. Therefore, airport sewage monitoring can provide an indication of the regional epidemiological situation. For the other places, particularly the UNI, the results suggested a greater potential to detect the infection and trace cases especially among employees and regular attendees. Taken together, the results indicate that for a regular and permanent sentinel sewage surveillance the sewage from STPs, AIR and UNI could be monitored.
Collapse
Affiliation(s)
- Juliana Calábria de Araújo
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil.
| | - Vera Tainá Mota
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Amanda Teodoro
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Cíntia Leal
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Deborah Leroy
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Camila Madeira
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Elayne C Machado
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Marcela F Dias
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Cassia C Souza
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Gabriela Coelho
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Thiago Bressani
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Thiago Morandi
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Gabriel Tadeu O Freitas
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Alyne Duarte
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | | | - Flávio Tröger
- National Agency for Water and Sanitation (ANA), Brazil
| | | | | | | | | | - César Mota
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Carlos A L Chernicharo
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| |
Collapse
|
27
|
de Araújo JC, Mota VT, Teodoro A, Leal C, Leroy D, Madeira C, Machado EC, Dias MF, Souza CC, Coelho G, Bressani T, Morandi T, Freitas GTO, Duarte A, Perdigão C, Tröger F, Ayrimoraes S, de Melo MC, Laguardia F, Reis MTP, Mota C, Chernicharo CAL. Long-term monitoring of SARS-CoV-2 RNA in sewage samples from specific public places and STPs to track COVID-19 spread and identify potential hotspots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155959. [PMID: 35588823 PMCID: PMC9110006 DOI: 10.1016/j.scitotenv.2022.155959] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 05/21/2023]
Abstract
Coronavirus pandemic started in March 2020 and since then has caused millions of deaths worldwide. Wastewater-based epidemiology (WBE) can be used as an epidemiological surveillance tool to track SARS-CoV-2 dissemination and provide warning of COVID-19 outbreaks. Considering that there are public places that could be potential hotspots of infected people that may reflect the local epidemiological situation, the presence of SARS-CoV-2 RNA was analyzed by RT-qPCR for approximately 16 months in sewage samples from five public places located in the metropolitan area of Belo Horizonte, MG, Brazil: the sewage treatment plant of Confins International Airport (AIR), the main interstate bus terminal (BUS), an upscale shopping centre (SHC1), a popular shopping centre (SHC2) and a university institute (UNI). The results were compared to those of the influent sewage of the two main sewage treatment plants of Belo Horizonte (STP1 and STP2). Viral monitoring in the STPs proved to be an useful regional surveillance tool, reflecting the trends of COVID-19 cases. However, the viral concentrations in the samples from the selected public places were generally much lower than those of the municipal STPs, which may be due to the behaviour of the non-infected or asymptomatic people, who are likely to visit these places relatively more than the symptomatic infected ones. Among these places, the AIR samples presented the highest viral concentrations and concentration peaks were observed previously to local outbreaks. Therefore, airport sewage monitoring can provide an indication of the regional epidemiological situation. For the other places, particularly the UNI, the results suggested a greater potential to detect the infection and trace cases especially among employees and regular attendees. Taken together, the results indicate that for a regular and permanent sentinel sewage surveillance the sewage from STPs, AIR and UNI could be monitored.
Collapse
Affiliation(s)
- Juliana Calábria de Araújo
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil.
| | - Vera Tainá Mota
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Amanda Teodoro
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Cíntia Leal
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Deborah Leroy
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Camila Madeira
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Elayne C Machado
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Marcela F Dias
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Cassia C Souza
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Gabriela Coelho
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Thiago Bressani
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Thiago Morandi
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Gabriel Tadeu O Freitas
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Alyne Duarte
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | | | - Flávio Tröger
- National Agency for Water and Sanitation (ANA), Brazil
| | | | | | | | | | - César Mota
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| | - Carlos A L Chernicharo
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Brazil
| |
Collapse
|
28
|
Seroprevalence of anti-SARS-CoV-2 IgG antibodies: relationship with COVID-19 diagnosis, symptoms, smoking, and method of transmission. IJID REGIONS 2022; 4:10-16. [PMID: 35720660 PMCID: PMC9137247 DOI: 10.1016/j.ijregi.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
The most discriminating symptom of COVID-19 by far was the loss of smell/taste. In smokers, the incidence of positive COVID-19 diagnoses was significantly lower. There was a discrepancy between COVID-19 diagnosis and the presence of IgG antibodies.
Aims The study of SARS-CoV-2 antibodies in the population is a crucial step towards overcoming the COVID-19 pandemic. Seroepidemiological studies allow an estimation of the number of people who have been exposed to the virus, as well as the number of people who are still susceptible to infection. Methods In total, 13 560 people from Arganda del Rey, Madrid (Spain) were assessed between January and March 2021 for the presence of IgG antibodies, using rapid tests and histories of symptoms compatible with COVID-19. Results 24.2% of the participants had IgG antibodies and 9% had a positive COVID-19 diagnosis. Loss of smell/taste was the most discriminating symptom of the disease. The main transmitters of infection were found to be household members. Unexpectedly, in smokers, the incidence of positive COVID-19 diagnoses was significantly lower. Additionally, it was found that there was a discrepancy between COVID-19 diagnosis and the presence of IgG antibodies. Conclusions Rapid anti-IgG tests are less reliable in detecting SARS-CoV-2 infection at an individual level, but are functional in estimating SARS-CoV-2 infection rates at an epidemiological level. The loss of smell/taste is a potential indicator for establishing COVID-19 infection.
Collapse
|
29
|
Low risk of environmental contagion by SARS-CoV-2 in non-sanitary spaces. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2022; 41:235-237. [PMID: 36167639 PMCID: PMC9482839 DOI: 10.1016/j.eimce.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 11/25/2022]
Abstract
Objective To study the presence of SARS-CoV-2 on surfaces (high, medium and low contact) and airs in non-sanitary spaces with high public influx to evaluate the risk of environmental contagion. Methods Surfaces and airs were analysed by RT-qPCR to detect the presence of SARS-CoV-2. Results 394 surfaces and air samples were obtained from spaces with high public influx such as offices, shopping centres and nursing homes. The virus was not detected in any of the samples analysed. Conclusion Although we cannot emphatically conclude that there is no risk of environmental 27 infection by SARS-CoV-2 in non-sanitary spaces, we can affirm that the risk is almost non- existent.
Collapse
|
30
|
Grigsby-Toussaint DS, Shin JC. COVID-19, green space exposure, and mask mandates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155302. [PMID: 35447167 PMCID: PMC9015714 DOI: 10.1016/j.scitotenv.2022.155302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 05/07/2023]
Abstract
INTRODUCTION Mask-wearing and social distancing are critical prevention measures that have been implemented to stem the spread of COVID-19. The degree to which these measures are adhered to in the US, however, may be influenced by access to outdoor resources such as green space, as well as mask mandates that may vary by state. PURPOSE To examine the association between the presence or absence of statewide mask mandates and green space exposure with COVID-19 cumulative incidence in the US. METHODS In October 2020, COVID-19 case data for each US county was downloaded from USA Facts, in addition to statewide mask mandates from a database maintained by the American Association of Retired Persons. The Normalized Difference Vegetation Index from the US Geological Survey (USGS), was used as a measure of greenspace, while the 2016 National Land Cover Database was used to assess tree canopy exposure as an alternative measure of greenspace. We performed generalized linear regression to evaluate associations with COVID-19 incidence, adjusting for potential confounders such as other environmental factors (i.e., air pollution and climate) and socio-economic factors derived from the CDC social vulnerability index. In addition, we also performed spatial regression analyses to account for spatial autocorrelation across counties. RESULTS Counties with mandatory mask-wearing policies had a lower cumulative incidence of COVID-19 (B = -0.299, SE = 0.038). Among environmental factors, precipitation (B = 0.005, SE = 0.001) and PM 2.5 (B = 0.072, SE = 0.012) were associated with a higher incidence of COVID-19, while tree canopy (B = -0.501, SE = 0.129) was associated with a lower risk of COVID-19. COVID-19 incidence was higher in counties with socially vulnerable populations regarding socioeconomic status, minority status, and housing and transportation. CONCLUSION Mandatory mask regulation, exposure to green space, and reduced exposure to air pollution may reduce COVID-19 incidence in the US. Additional public health policies should consider ways to mitigate environmental conditions that may contribute to the risk of COVID-19, especially for vulnerable populations.
Collapse
Affiliation(s)
- Diana S Grigsby-Toussaint
- Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, Rhode Island, United States of America; Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, United States of America.
| | - Jong Cheol Shin
- Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, Rhode Island, United States of America; Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, United States of America.
| |
Collapse
|
31
|
Naimoli A. Modelling the persistence of Covid-19 positivity rate in Italy. SOCIO-ECONOMIC PLANNING SCIENCES 2022; 82:101225. [PMID: 35017746 PMCID: PMC8739816 DOI: 10.1016/j.seps.2022.101225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 05/24/2023]
Abstract
The current Covid-19 pandemic is severely affecting public health and global economies. In this context, accurately predicting its evolution is essential for planning and providing resources effectively. This paper aims at capturing the dynamics of the positivity rate (PPR) of the novel coronavirus using the Heterogeneous Autoregressive (HAR) model. The use of this model is motivated by two main empirical features arising from the analysis of PPR time series: the changing long-run level and the persistent autocorrelation structure. Compared to the most frequently used Autoregressive Integrated Moving Average (ARIMA) models, the HAR is able to reproduce the strong persistence of the data by using components aggregated at different interval sizes, remaining parsimonious and easy to estimate. The relative merits of the proposed approach are assessed by performing a forecasting study on the Italian dataset. As a robustness check, the analysis of the positivity rate is also conducted by considering the case of the United States. The ability of the HAR-type models to predict the PPR at different horizons is evaluated through several loss functions, comparing the results with those generated by ARIMA models. The Model Confidence Set is used to test the significance of differences in the predictive performances of the models under analysis. Our findings suggest that HAR-type models significantly outperform ARIMA specifications in terms of forecasting accuracy. We also find that the PPR could represent an important metric for monitoring the evolution of hospitalizations, as the peak of patients in intensive care units occurs within 12-16 days after the peak in the positivity rate. This can help governments in planning socio-economic and health policies in advance.
Collapse
Affiliation(s)
- Antonio Naimoli
- Università di Salerno, Dipartimento di Scienze Economiche e Statistiche (DISES), Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
32
|
Alvis-Chirinos K, Angulo-Bazán Y, Escalante-Maldonado O, Fuentes D, Palomino-Rodriguez MG, Gonzales-Achuy E, Mormontoy H, Hinojosa-Mamani P, Huamán-Espino L, Aparco JP. Presence of SARS-CoV-2 on food surfaces and public space surfaces in three districts of Lima, Peru. Braz J Med Biol Res 2022; 55:e12003. [PMID: 35857998 PMCID: PMC9296125 DOI: 10.1590/1414-431x2022e12003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to determine the presence of SARS-CoV-2 on food surfaces and surfaces in public spaces in 3 districts of Lima, Peru. A cross-sectional descriptive study was carried out in three districts of the Lima metropolitan area. Surfaces that were most exposed to users were selected. Samples were swabbed for 4 weeks and transported to the laboratory to determine the presence of the virus. One thousand ninety-five inert surface samples and 960 food surface samples were evaluated for the identification of SARS-CoV-2 by the real time-PCR molecular test, whereby only one sample from an automated teller machine was positive. Most of the inert and food surfaces evaluated did not show the presence of SARS-CoV-2 during the time of sample collection. Despite the negative results, the frequency of disinfection and hygiene measures on high-contact surfaces should be maintained and increased to prevent other highly contagious infectious diseases.
Collapse
Affiliation(s)
- K Alvis-Chirinos
- Centro Nacional de Alimentación y Nutrición, Instituto Nacional de Salud, Lima, Perú
| | - Y Angulo-Bazán
- Oficina General de Investigación y Transferencia Tecnológica, Instituto Nacional de Salud, Lima, Perú
| | | | - D Fuentes
- Oficina General de Investigación y Transferencia Tecnológica, Instituto Nacional de Salud, Lima, Perú
| | | | - E Gonzales-Achuy
- Centro Nacional de Alimentación y Nutrición, Instituto Nacional de Salud, Lima, Perú
| | - H Mormontoy
- Oficina General de Investigación y Transferencia Tecnológica, Instituto Nacional de Salud, Lima, Perú
| | - P Hinojosa-Mamani
- Centro Nacional de Alimentación y Nutrición, Instituto Nacional de Salud, Lima, Perú
| | - L Huamán-Espino
- Oficina General de Investigación y Transferencia Tecnológica, Instituto Nacional de Salud, Lima, Perú
| | - J P Aparco
- Centro Nacional de Alimentación y Nutrición, Instituto Nacional de Salud, Lima, Perú.,Departamento Académico de Nutrición, Universidad Nacional Mayor de San Marcos, Lima, Perú
| |
Collapse
|
33
|
Sheta SM, El-Sheikh SM. Nanomaterials and metal-organic frameworks for biosensing applications of mutations of the emerging viruses. Anal Biochem 2022; 648:114680. [PMID: 35429447 PMCID: PMC9007753 DOI: 10.1016/j.ab.2022.114680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
The world today lives in a state of terrible fear due to the mutation of the emerging COVID-19. With the continuation of this pandemic, there is an urgent need for fast, accurate testing devices to detect the emerging SARS-CoV-2 pandemic in terms of biosensors and point-of-care testing. Besides, the urgent development in personal defense tools, anti-viral surfaces and wearables, and smartphones open the door for simplifying the self-diagnosis process everywhere. This review introduces a quick COVID-19 overview: definition, transmission, pathophysiology, the identification and diagnosis, mutation and transformation, and the global situation. It also focuses on an overview of the rapidly advanced technologies based on nanomaterials and MOFs for biosensing, diagnosing, and viral control of the SARS-CoV-2 pandemic. Finally, highlight the latest technologies, applications, existing achievements, and preventive diagnostic strategies to control this epidemic and combat the emerging coronavirus. This humble effort aims to provide a helpful survey that can be used to develop a creative solution and to lay down the future vision of diagnosis against COVID-19.
Collapse
Affiliation(s)
- Sheta M Sheta
- Department of Inorganic Chemistry, National Research Centre, 33 El-Behouth St., Dokki, Giza, 12622, Egypt.
| | - Said M El-Sheikh
- Department of Nanomaterials and Nanotechnology, Central Metallurgical R & D Institute, Cairo, 11421, Egypt.
| |
Collapse
|
34
|
Gurram MK, Wang MX, Wang YC, Pang J. Impact of urbanisation and environmental factors on spatial distribution of COVID-19 cases during the early phase of epidemic in Singapore. Sci Rep 2022; 12:9758. [PMID: 35697756 PMCID: PMC9191550 DOI: 10.1038/s41598-022-12941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/22/2022] [Indexed: 11/26/2022] Open
Abstract
Geographical weighted regression (GWR) can be used to explore the COVID-19 transmission pattern between cases. This study aimed to explore the influence from environmental and urbanisation factors, and the spatial relationship between epidemiologically-linked, unlinked and imported cases during the early phase of the epidemic in Singapore. Spatial relationships were evaluated with GWR modelling. Community COVID-19 cases with residential location reported from 21st January 2020 till 17th March 2020 were considered for analyses. Temperature, relative humidity, population density and urbanisation are the variables used as exploratory variables for analysis. ArcGIS was used to process the data and perform geospatial analyses. During the early phase of COVID-19 epidemic in Singapore, significant but weak correlation of temperature with COVID-19 incidence (significance 0.5-1.5) was observed in several sub-zones of Singapore. Correlations between humidity and incidence could not be established. Across sub-zones, high residential population density and high levels of urbanisation were associated with COVID-19 incidence. The incidence of COVID-19 case types (linked, unlinked and imported) within sub-zones varied differently, especially those in the western and north-eastern regions of Singapore. Areas with both high residential population density and high levels of urbanisation are potential risk factors for COVID-19 transmission. These findings provide further insights for directing appropriate resources to enhance infection prevention and control strategies to contain COVID-19 transmission.
Collapse
Affiliation(s)
- Murali Krishna Gurram
- Centre for Infectious Disease Epidemiology and Research, Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, 12 Science Drive 2, Singapore, 117549, Singapore
| | - Min Xian Wang
- Centre for Infectious Disease Epidemiology and Research, Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, 12 Science Drive 2, Singapore, 117549, Singapore
| | - Yi-Chen Wang
- Department of Geography, National University of Singapore, Block AS2, 1 Arts Link, Singapore, 117570, Singapore
| | - Junxiong Pang
- Centre for Infectious Disease Epidemiology and Research, Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, 12 Science Drive 2, Singapore, 117549, Singapore.
| |
Collapse
|
35
|
Kumar M, Manna S, Jha AK, Mazumder P, Rastogi N. Game of transmissions (GoT) of SARS-CoV-2: Second wave of COVID-19 is here in India. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 27:100355. [PMID: 35340573 PMCID: PMC8933290 DOI: 10.1016/j.coesh.2022.100355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Corona virus disease (COVID-19) pandemic had taken the humankind by surprise, yet the world laid out a historical battle against all the odds. Laboratory findings have never been so rapidly made available to common public and authorities. Experimental data on COVID-19 from across the globe was directly made accessible worldwide. The second wave of the pandemic in India caused unprecedented havoc and it can be stated that all the knowledge of the game of transmission of COVID-19 acquired and shared was not played with right precision and preparations. Rapid spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the second phase made us rethink if the choice of information given to the common people pertaining to the selective transmission restriction pathways with pressing concern on lethality were inadequate. Most of the governmental and non-governmental organizations (NGOs) including the World Health Organization (WHO) recommended droplet-based and airborne transmission restrictions as the major steps to control rapid spread of the virus. While, no caution was advised for other plausible pathways like sewage, wastewater-based and non-ventilated indoor air-based transmissions, which are still unknown or not well investigated, and are equally dangerous. The main focus of this article is to analyse the past development about SARS-CoV-2 transmission pathway related recommendation(s) provided by WHO and track the trajectory to alert all the concerning stakeholders and policymakers to rethink and to collect adequate scientific data before they recommend or neglect any specific or all the possible transmission pathways to control the spread of infectious agents further.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Suvendu Manna
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Amritesh Kumar Jha
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Payal Mazumder
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Neeraj Rastogi
- Geosciences Division, Physical Research Laboratory, Ahmedabad 380009, India
| |
Collapse
|
36
|
Asif Z, Chen Z, Stranges S, Zhao X, Sadiq R, Olea-Popelka F, Peng C, Haghighat F, Yu T. Dynamics of SARS-CoV-2 spreading under the influence of environmental factors and strategies to tackle the pandemic: A systematic review. SUSTAINABLE CITIES AND SOCIETY 2022; 81:103840. [PMID: 35317188 PMCID: PMC8925199 DOI: 10.1016/j.scs.2022.103840] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 05/05/2023]
Abstract
COVID-19 is deemed as the most critical world health calamity of the 21st century, leading to dramatic life loss. There is a pressing need to understand the multi-stage dynamics, including transmission routes of the virus and environmental conditions due to the possibility of multiple waves of COVID-19 in the future. In this paper, a systematic examination of the literature is conducted associating the virus-laden-aerosol and transmission of these microparticles into the multimedia environment, including built environments. Particularly, this paper provides a critical review of state-of-the-art modelling tools apt for COVID-19 spread and transmission pathways. GIS-based, risk-based, and artificial intelligence-based tools are discussed for their application in the surveillance and forecasting of COVID-19. Primary environmental factors that act as simulators for the spread of the virus include meteorological variation, low air quality, pollen abundance, and spatial-temporal variation. However, the influence of these environmental factors on COVID-19 spread is still equivocal because of other non-pharmaceutical factors. The limitations of different modelling methods suggest the need for a multidisciplinary approach, including the 'One-Health' concept. Extended One-Health-based decision tools would assist policymakers in making informed decisions such as social gatherings, indoor environment improvement, and COVID-19 risk mitigation by adapting the control measurements.
Collapse
Affiliation(s)
- Zunaira Asif
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| | - Saverio Stranges
- Department of Epidemiology and Biostatistics, Western University, Ontario, Canada
- Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Xin Zhao
- Department of Animal Science, McGill University, Montreal, Canada
| | - Rehan Sadiq
- School of Engineering (Okanagan Campus), University of British Columbia, Kelowna, BC, Canada
| | | | - Changhui Peng
- Department of Biological Sciences, University of Quebec in Montreal, Canada
| | - Fariborz Haghighat
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| | - Tong Yu
- Department of Civil and Environmental Engineering, University of Alberta, Canada
| |
Collapse
|
37
|
Zamhuri SA, Soon CF, Nordin AN, Ab Rahim R, Sultana N, Khan MA, Lim GP, Tee KS. A review on the contamination of SARS-CoV-2 in water bodies: Transmission route, virus recovery and recent biosensor detection techniques. SENSING AND BIO-SENSING RESEARCH 2022; 36:100482. [PMID: 35251937 PMCID: PMC8889793 DOI: 10.1016/j.sbsr.2022.100482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
The discovery of SARS-CoV-2 virus in the water bodies has been reported, and the risk of virus transmission to human via the water route due to poor wastewater management cannot be disregarded. The main source of the virus in water bodies is the sewage network systems which connects to the surface water. Wastewater-based epidemiology has been applied as an early surveillance tool to sense SARS-CoV-2 virus in the sewage network. This review discussed possible transmission routes of the SARS-CoV-2 virus and the challenges of the existing method in detecting the virus in wastewater. One significant challenge for the detection of the virus is that the high virus loading is diluted by the sheer volume of the wastewater. Hence, virus preconcentration from water samples prior to the application of virus assay is essential to accurately detect traceable virus loading. The preparation time, materials and conditions, virus type, recovery percentage, and various virus recovery techniques are comprehensively discussed in this review. The practicability of molecular methods such as Polymer-Chain-Reaction (PCR) for the detection of SARS-CoV-2 in wastewater will be revealed. The conventional virus detection techniques have several shortcomings and the potential of biosensors as an alternative is also considered. Biosensing techniques have also been proposed as an alternative to PCR and have reported detection limits of 10 pg/μl. This review serves to guide the reader on the future designs and development of highly sensitive, robust and, cost effective SARS-CoV-2 lab-on-a-chip biosensors for use in complex wastewater.
Collapse
Affiliation(s)
- Siti Adibah Zamhuri
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Chin Fhong Soon
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Anis Nurashikin Nordin
- Department of Electrical and Computer Engineering, Kulliyah of Engineering, International University of Islam Malaysia, 53100, Jalan Gombak, Kuala Lumpur, Malaysia
| | - Rosminazuin Ab Rahim
- Department of Electrical and Computer Engineering, Kulliyah of Engineering, International University of Islam Malaysia, 53100, Jalan Gombak, Kuala Lumpur, Malaysia
| | | | - Muhammad Arif Khan
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Gim Pao Lim
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Kian Sek Tee
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| |
Collapse
|
38
|
Döhla M, Schulte B, Wilbring G, Kümmerer BM, Döhla C, Sib E, Richter E, Ottensmeyer PF, Haag A, Engelhart S, Eis-Hübinger AM, Exner M, Mutters NT, Schmithausen RM, Streeck H. SARS-CoV-2 in Environmental Samples of Quarantined Households. Viruses 2022; 14:1075. [PMID: 35632816 PMCID: PMC9147922 DOI: 10.3390/v14051075] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
The role of environmental transmission of SARS-CoV-2 remains unclear. Thus, the aim of this study was to investigate whether viral contamination of air, wastewater, and surfaces in quarantined households result in a higher risk for exposed persons. For this study, a source population of 21 households under quarantine conditions with at least one person who tested positive for SARS-CoV-2 RNA were randomly selected from a community in North Rhine-Westphalia in March 2020. All individuals living in these households participated in this study and provided throat swabs for analysis. Air and wastewater samples and surface swabs were obtained from each household and analysed using qRT-PCR. Positive swabs were further cultured to analyse for viral infectivity. Out of all the 43 tested adults, 26 (60.47%) tested positive using qRT-PCR. All 15 air samples were qRT-PCR-negative. In total, 10 out of 66 wastewater samples were positive for SARS-CoV-2 (15.15%) and 4 out of 119 surface samples (3.36%). No statistically significant correlation between qRT-PCR-positive environmental samples and the extent of the spread of infection between household members was observed. No infectious virus could be propagated under cell culture conditions. Taken together, our study demonstrates a low likelihood of transmission via surfaces. However, to definitively assess the importance of hygienic behavioural measures in the reduction of SARS-CoV-2 transmission, larger studies should be designed to determine the proportionate contribution of smear vs. droplet transmission.
Collapse
Affiliation(s)
- Manuel Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Bianca Schulte
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Gero Wilbring
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Christin Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Esther Sib
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Enrico Richter
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Patrick Frank Ottensmeyer
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Alexandra Haag
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Steffen Engelhart
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Anna Maria Eis-Hübinger
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Martin Exner
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Nico Tom Mutters
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Ricarda Maria Schmithausen
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Hendrik Streeck
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| |
Collapse
|
39
|
Döhla M, Schulte B, Wilbring G, Kümmerer BM, Döhla C, Sib E, Richter E, Ottensmeyer PF, Haag A, Engelhart S, Eis-Hübinger AM, Exner M, Mutters NT, Schmithausen RM, Streeck H. SARS-CoV-2 in Environmental Samples of Quarantined Households. Viruses 2022. [PMID: 35632816 DOI: 10.1101/2020.05.28.20114041] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The role of environmental transmission of SARS-CoV-2 remains unclear. Thus, the aim of this study was to investigate whether viral contamination of air, wastewater, and surfaces in quarantined households result in a higher risk for exposed persons. For this study, a source population of 21 households under quarantine conditions with at least one person who tested positive for SARS-CoV-2 RNA were randomly selected from a community in North Rhine-Westphalia in March 2020. All individuals living in these households participated in this study and provided throat swabs for analysis. Air and wastewater samples and surface swabs were obtained from each household and analysed using qRT-PCR. Positive swabs were further cultured to analyse for viral infectivity. Out of all the 43 tested adults, 26 (60.47%) tested positive using qRT-PCR. All 15 air samples were qRT-PCR-negative. In total, 10 out of 66 wastewater samples were positive for SARS-CoV-2 (15.15%) and 4 out of 119 surface samples (3.36%). No statistically significant correlation between qRT-PCR-positive environmental samples and the extent of the spread of infection between household members was observed. No infectious virus could be propagated under cell culture conditions. Taken together, our study demonstrates a low likelihood of transmission via surfaces. However, to definitively assess the importance of hygienic behavioural measures in the reduction of SARS-CoV-2 transmission, larger studies should be designed to determine the proportionate contribution of smear vs. droplet transmission.
Collapse
Affiliation(s)
- Manuel Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Bianca Schulte
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gero Wilbring
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christin Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Esther Sib
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Enrico Richter
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | | | - Alexandra Haag
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Steffen Engelhart
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Anna Maria Eis-Hübinger
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin Exner
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Nico Tom Mutters
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Ricarda Maria Schmithausen
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Hendrik Streeck
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
40
|
Songca SP. Applications of Nanozymology in the Detection and Identification of Viral, Bacterial and Fungal Pathogens. Int J Mol Sci 2022; 23:4638. [PMID: 35563029 PMCID: PMC9100627 DOI: 10.3390/ijms23094638] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
Nanozymes are synthetic nanoparticulate materials that mimic the biological activities of enzymes by virtue of their surface chemistry. Enzymes catalyze biological reactions with a very high degree of specificity. Examples include the horseradish peroxidase, lactate, glucose, and cholesterol oxidases. For this reason, many industrial uses of enzymes outside their natural environments have been developed. Similar to enzymes, many industrial applications of nanozymes have been developed and used. Unlike the enzymes, however, nanozymes are cost-effectively prepared, purified, stored, and reproducibly and repeatedly used for long periods of time. The detection and identification of pathogens is among some of the reported applications of nanozymes. Three of the methodologic milestones in the evolution of pathogen detection and identification include the incubation and growth, immunoassays and the polymerase chain reaction (PCR) strategies. Although advances in the history of pathogen detection and identification have given rise to novel methods and devices, these are still short of the response speed, accuracy and cost required for point-of-care use. Debuting recently, nanozymology offers significant improvements in the six methodological indicators that are proposed as being key in this review, including simplicity, sensitivity, speed of response, cost, reliability, and durability of the immunoassays and PCR strategies. This review will focus on the applications of nanozymes in the detection and identification of pathogens in samples obtained from foods, natural, and clinical sources. It will highlight the impact of nanozymes in the enzyme-linked immunosorbent and PCR strategies by discussing the mechanistic improvements and the role of the design and architecture of the nanozyme nanoconjugates. Because of their contribution to world health burden, the three most important pathogens that will be considered include viruses, bacteria and fungi. Although not quite seen as pathogens, the review will also consider the detection of cancer cells and helminth parasites. The review leaves very little doubt that nanozymology has introduced remarkable advances in enzyme-linked immunosorbent assays and PCR strategies for detecting these five classes of pathogens. However, a gap still exists in the application of nanozymes to detect and identify fungal pathogens directly, although indirect strategies in which nanozymes are used have been reported. From a mechanistic point of view, the nanozyme technology transfer to laboratory research methods in PCR and enzyme-linked immunosorbent assay studies, and the point-of-care devices such as electronic biosensors and lateral flow detection strips, that is currently taking place, is most likely to give rise to no small revolution in each of the six methodological indicators for pathogen detection and identification. While the evidence of widespread research reports, clinical trials and point-of-care device patents support this view, the gaps that still exist point to a need for more basic research studies to be conducted on the applications of nanozymology in pathogen detection and identification. The multidisciplinary nature of the research on the application of nanozymes in the detection and identification of pathogens requires chemists and physicists for the design, fabrication, and characterization of nanozymes; microbiologists for the design, testing and analysis of the methodologies, and clinicians or clinical researchers for the evaluation of the methodologies and devices in the clinic. Many reports have also implicated required skills in mathematical modelling, and electronic engineering. While the review will conclude with a synopsis of the impact of nanozymology on the detection and identification of viruses, bacteria, fungi, cancer cells, and helminths, it will also point out opportunities that exist in basic research as well as opportunities for innovation aimed at novel laboratory methodologies and devices. In this regard there is no doubt that there are numerous unexplored research areas in the application of nanozymes for the detection of pathogens. For example, most research on the applications of nanozymes for the detection and identification of fungi is so far limited only to the detection of mycotoxins and other chemical compounds associated with fungal infection. Therefore, there is scope for exploration of the application of nanozymes in the direct detection of fungi in foods, especially in the agricultural production thereof. Many fungal species found in seeds severely compromise their use by inactivating the germination thereof. Fungi also produce mycotoxins that can severely compromise the health of humans if consumed.
Collapse
Affiliation(s)
- Sandile Phinda Songca
- School of Chemistry and Physics, College of Agriculture Engineering and Science, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
41
|
Anagoni S, Mudhigeti N, Alladi M, Anju V, Am P, Kalawat U. Effect of delay in processing and storage temperature on diagnosis of SARS-CoV-2 by RTPCR testing. Indian J Med Microbiol 2022; 40:427-432. [PMID: 35393127 PMCID: PMC8979488 DOI: 10.1016/j.ijmmb.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/19/2022] [Accepted: 03/20/2022] [Indexed: 11/20/2022]
Abstract
Purpose A large number of new molecular or virology laboratories have been established to increase the testing capacity for SARS-CoV-2. Due to heavy workload, there is delay in testing of samples. In order to avoid the negative effect of delayed testing on RTPCR results guidelines are issued from WHO and CDC to transport samples in cold chain. However, in pandemic situations the recommended guidelines for transport and storage conditions are often compromised. This study was conducted to evaluate the effect of sample storage conditions at different temperatures on the results of RT PCR test. Methods Total 275 samples were included in this study, among these 126 samples tested positive and 149 samples tested negative. All samples were aliquoted into two and the aliquotes stored in duplicate at 4 °C and room temperature. All aliquots stored at both the temperatures were tested by RTPCR every 24 hours up to 5 days. Results Diagnostic accuracy decreased from day1 to day 5 at both the storage temperatures i,e 4 °C and room temperature in comparison to the initial day results. Positivity decreased on an average of 9.02% at 4 °C and at 9.27% at room temperature per day. Among total 126 positive samples on an average false negative and failure of internal control at 4 °C and room temperature was 8.86%, 8.22% and 3.64%, and 4.12%, respectively. All the samples with CT value < 30 remained positive at both temperatures up to 5 days. Few samples with >30 CT value showed variable results i.e. positive, negative or internal control failure from day 1 (2nd day after sample collection) onwards. Conclusions There was no significant difference between RT PCR results of samples stored at 4 °C and room temperature up to 5 days of collection. However internal control failure was more in samples stored at room temperature. Therefore, samples received without cold chain also may be processed by RTPCR and should not be rejected.
Collapse
Affiliation(s)
- Srikar Anagoni
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, India.
| | - Nagaraja Mudhigeti
- State Level Virology Laboratory, Sri Venkateswara Institute of Medical Sciences, Tirupati, India.
| | - Mohan Alladi
- Department of Medicine, Sri Venkateswara Institute of Medical Sciences, Tirupati, India.
| | - Verma Anju
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, India.
| | - Padmalatha Am
- State Level Virology Laboratory, Sri Venkateswara Institute of Medical Sciences, Tirupati, India.
| | - Usha Kalawat
- Department of Clinical Virology, Sri Venkateswara Institute of Medical Sciences, 517501, Tirupati, Andhra Pradesh, India.
| |
Collapse
|
42
|
Otolorin GR, Oluwatobi AI, Olufemi OT, Esonu DO, Dunka HI, Adanu WA, Danjuma FA, Abiayi DC, Adegoke VA, Omoniwa DO, Oghenefega ON, Mshelbwala PP. COVID-19 pandemic and its impacts on the environment: A global perspective. NARRA J 2022; 2:e72. [PMID: 38450389 PMCID: PMC10914043 DOI: 10.52225/narra.v2i1.72] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/27/2022] [Indexed: 03/08/2024]
Abstract
Many researchers worldwide have focused on the health impact of the coronavirus disease 2019 (COVID-19) pandemic without paying much emphasis to the environmental impacts associated with the pandemic. Evidence suggests that prior to the pandemic there was an alarming increase in environmental pollution due to rising industrialization, in particular in urban areas. Following the COVID-19 pandemic, satellite data over Asia and Europe showed a substantial decrease in air pollution, in particular nitrogen dioxide. However, the increase in industrial and household wastes may pose a significant challenge to environmental management. The improper management of these wastes poses an unforeseen "knock-on" effect on human health and the environment. It is imperative to establish an effective and safe procedure, for handling and disposing of the consequential wastes accumulating during the pandemic. The review aims to highlight both the beneficial and detrimental effects of COVID-19 pandemic on the natural environment and to discuss the possible strategies to improve the quality of the global environment during the period of the pandemic and beyond.
Collapse
Affiliation(s)
- Gbeminiyi R. Otolorin
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria
| | - Akefe I. Oluwatobi
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia
| | - Olaolu T. Olufemi
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, United Kingdom
| | - Daniel O. Esonu
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Hassana I. Dunka
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria
| | - Williams A. Adanu
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria
| | - Friday A. Danjuma
- Department of Theriogenology and Production, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria
| | - David C. Abiayi
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria
| | - Victoria A. Adegoke
- Department of Science and Laboratory Technology, Ekiti State University, Ado Ekiti, Nigeria
| | - David O. Omoniwa
- Department of Veterinary Medicine, Surgery and Radiology, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria
| | - Ovwighose N. Oghenefega
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria
| | - Philip P. Mshelbwala
- University of Queensland Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, Australia
| |
Collapse
|
43
|
Canga A, Bidegain G. Modelling the Effect of the Interaction between Vaccination and Nonpharmaceutical Measures on COVID-19 Incidence. Glob Health Epidemiol Genom 2022; 2022:9244953. [PMID: 35392137 PMCID: PMC8968356 DOI: 10.1155/2022/9244953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Since December 2019, the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly from Wuhan (China) across the globe, affecting more than 200 countries by mid-2021, with over 190 M reported cases and around 4 M fatalities. During the first year of the pandemic, affected countries implemented a variety of nonpharmaceutical interventions to control virus transmission. In December 2020, countries started administering several authorised vaccines under a limited supply scenario. In this context, the aim of this study was to develop a SEIR-type continuous-time deterministic disease model, to determine the impact of interaction between different vaccination scenarios and levels of protection measures on disease incidence. For this, the model incorporates (i) a protection measure including low (self-protection), medium (mobility limitation), high (closure of indoor facilities), and very high (lockdown) protection levels, (ii) quarantine for confirmed cases, and (iii) vaccination rate and efficacy of four types of vaccines (Pfizer, Moderna, Astra Zeneca, and Janssen). The model was verified and evaluated using the response timeline and vaccination strategies and rates in the Basque Country (N. Spain). Once the model performance was validated, different initial phase (when 30% of the population is vaccinated) vaccination scenarios were simulated, including (i) a realistic vaccine limited supply scenario and (ii) four potential full vaccine supply scenarios where a unique vaccine type is administered. Significant differences in disease prevalence and cumulative mortality were found between vaccination scenarios for low and medium-level protection measures. For high-level protection measures, any vaccine scenario is effective at limiting the virus transmission and disease mortality. The results obtained here may vary in further studies since there may be some unpredictable factors/covariates. With this in mind, the model here could be easily applied to other regions or countries, modifying the strategies implemented and initial conditions.
Collapse
Affiliation(s)
- Atsegine Canga
- Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48490 Leioa, Spain
- Department of Applied Mathematics, Engineering School of Bilbao, University of the Basque Country (UPV/EHU), Ingeniero Torres Quevedo s/n, 48013 Bilbao, Spain
| | - Gorka Bidegain
- Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48490 Leioa, Spain
| |
Collapse
|
44
|
The Impact of COVID-19 Pandemic on Halting Sustainable Development in the Colca y Volcanes de Andagua UNESCO Global Geopark in Peru—Prospects and Future. SUSTAINABILITY 2022. [DOI: 10.3390/su14074043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Events, such as the COVID-19 pandemic, that rapidly impact global communication and travel have significant consequences for the tourism industry, which is one of the pillars of global development. We assess the impacts of the COVID-19 crisis on the Colca y Volcanes de Andagua UNESCO Global Geopark in Peru. The Colca y Volcanes de Andagua Geopark was established immediately prior to the pandemic in October 2019. The instability of the government in Peru during the pandemic and the difficult living conditions in the high Andes, such as the lack of drinking water, cleaning agents, medical care, and the high levels of poverty, particularly in the geopark region, has contributed to the significantly high COVID-19 infection rates. In addition, detrimental impacts faced by the local community are a direct result of a reduction in travellers to the area due to legislative restrictions, which have had negative consequences on the local tourism industry. There is an urgent need for the recovery of the local tourism industry to prevent the permanent closure of tourism facilities and to minimise poverty rates.
Collapse
|
45
|
MacLachlan R, Vahedi F, Imani SM, Ashkar AA, Didar TF, Soleymani L. Pathogen-Repellent Plastic Warp with Built-In Hierarchical Structuring Prevents the Contamination of Surfaces with Coronaviruses. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11068-11077. [PMID: 35225604 PMCID: PMC8903211 DOI: 10.1021/acsami.1c21476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Amidst the COVID-19 pandemic, it is evident that viral spread is mediated through several different transmission pathways. Reduction of these transmission pathways is urgently needed to control the spread of viruses between infected and susceptible individuals. Herein, we report the use of pathogen-repellent plastic wraps (RepelWrap) with engineered surface structures at multiple length scales (nanoscale to microscale) as a means of reducing the indirect contact transmission of viruses through fomites. To quantify viral repellency, we developed a touch-based viral quantification assay to mimic the interaction of a contaminated human touch with a surface through the modification of traditional viral quantification methods (viral plaque and TCID50 assays). These studies demonstrate that RepelWrap reduced contamination with an enveloped DNA virus as well as the human coronavirus 229E (HuCoV-229E) by more than 4 log 10 (>99.99%) compared to a standard commercially available polyethylene plastic wrap. In addition, RepelWrap maintained its repellent properties after repeated 300 touches and did not show an accumulation in viral titer after multiple contacts with contaminated surfaces, while increases were seen on other commonly used surfaces. These findings show the potential use of repellent surfaces in reducing viral contamination on surfaces, which could, in turn, reduce the surface-based spread and transmission.
Collapse
Affiliation(s)
- Roderick MacLachlan
- Department
of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Fatemeh Vahedi
- Department
of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Sara M. Imani
- School
of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Ali A. Ashkar
- Department
of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
- McMaster
Immunology Research Center, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Tohid F. Didar
- School
of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
- Department
of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4L7, Canada
- Michael G.
DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Leyla Soleymani
- Department
of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
- School
of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
- Michael G.
DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
46
|
Optimal control and cost-effective analysis of an age-structured emerging infectious disease model. Infect Dis Model 2022; 7:149-169. [PMID: 35059531 PMCID: PMC8733274 DOI: 10.1016/j.idm.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
Emerging infectious diseases are one of the global public health problems which may lead to widespread epidemics and potentially life-threatening infection. Integrated vaccination and physical distancing interventions are two elementary methods for preventing infectious diseases transmission. In this paper, we construct a continuous age-structured model for investigating the transmission dynamics of an emerging infection disease during a short period. We derive the basic regeneration number R0, the spectral radius of the next generation operator K, which determines the disease outbreak or not. Furthermore, we propose an optimal control problem to take account for the cost-effectiveness of social distancing intervention and vaccination. We rigorously obtain sufficient conditions for a L1 control problem. Numerical simulations show that coupling integrated vaccination and physical distancing intervention could effectively eliminate the infection, and such control strategy is more sensitive for people aged 10–39 and over 60.
Collapse
|
47
|
Tong L, Ji L, Li D, Xu H. The occurrence of COVID-19 is associated with air quality and relative humidity. J Med Virol 2022; 94:965-970. [PMID: 34647628 PMCID: PMC8661927 DOI: 10.1002/jmv.27395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/23/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022]
Abstract
The association between meteorological factors and COVID-19 is important for the prevention and control of COVID-19. However, similar studies are relatively rare in China. This study aims to investigate the association between COVID-19 and meteorological factors, such as average temperature, relative humidity, and air quality index (AQI), and average wind speed. We collected the daily confirmed cases of COVID-19 and meteorological factors in Shanghai China from January 10, 2020 to March 31, 2020. A generalized additive model was fitted to quantify the associations between meteorological factors and COVID-19 during the study period. A negative association between average temperature and daily confirmed cases of COVID-19 was found on lag 13 days. In addition, we observed a significant positive correlation between meteorological factors (AQI, relative humidity) and daily confirmed cases of COVID-19. A 10 increase in AQI (lag1/7/8/9/10 days) was correlated with a 4.2%-9.0% increase in the daily confirmed cases of COVID-19. A 1% increase in relative humidity (lag1/4/7/8/9/10 days) was correlated with 1.7%-3.7% increase in the daily confirmed cases of COVID-19. However, the associations between average wind speed and the daily confirmed cases of COVID-19 is complex in different lag days. In summary, meteorological factors could affect the occurrence of COVID-19. Reducing the effects of meteorological factors on COVID-19 may be an important public health action for the prevention and control of COVID-19.
Collapse
Affiliation(s)
- Ling Tong
- Division of Health Risk Factors Monitoring and Control, Department of Environmental HealthShanghai Municipal Center for Disease Control and Prevention/Shanghai Institutes of Preventive MedicineShanghaiChina
| | - Lu Ji
- Department of Infectious Diseases Monitoring and ControlShanghai Yangpu Center for Disease Control and PreventionShanghaiChina
| | - Dan Li
- Division of Infectious Disease, Key Laboratory of Infectious Disease Surveillance and Ear‐warningChinese Center for Disease Control and PreventionBeijingChina
| | - Huihui Xu
- Division of Health Risk Factors Monitoring and Control, Department of Environmental HealthShanghai Municipal Center for Disease Control and Prevention/Shanghai Institutes of Preventive MedicineShanghaiChina
| |
Collapse
|
48
|
Mirahmadizadeh A, Rezaei F, Jokari K, Moftakhar L, Hemmati A, Dehghani SS, Hassani AH, Lotfi M, Jafari A, Ghelichi-Ghojogh M. Correlation between environmental factors and COVID-19 indices: a global level ecological study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16667-16677. [PMID: 34651278 PMCID: PMC8516493 DOI: 10.1007/s11356-021-16876-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
This global level ecological study aimed to investigate the correlation between environmental factors and the COVID-19 indices. This survey is an ecological study, so all studied variables are aggregate variables. To collect the variables in the study, a data set was provided, which includes the information of each country based on the cumulative deaths, case fatality rate, recovery rate, and the number of performed COVID-19 tests. Scatter plots of environmental factors for the studied countries were drawn based on cumulative incidence rate of cases, cumulative incidence rate of death, tests, recovery rate, and case fatality rate of COVID-19. Furthermore, Spearman correlation coefficient was also used to verify the correlation between environmental factors and indicators related to COVID-19. The results of this ecological study showed that among all countries surveyed, Montenegro (60,310.56 per million) and Luxembourg (54,807.89 per million) had the highest cumulative incidence rates of COVID-19 cases, when Tanzania (8.42 per million) and Vietnam (13.78 per million) had the lowest cumulative incidence rates of COVID-19. In addition, in this study, it was shown that the cumulative incidence rate of cases, the cumulative incidence rate of deaths, and performed COVID-19 tests had significant direct correlations with the access to drinking water and the access to sanitation services (p < 0.001). The findings of the present study showed an inverse correlation between the mortality rate due to unhealthy water consumption, poor health status, and a positive correlation between access to drinking water and health services with the cumulative incidence and mortality rates of COVID-19. The differences between our findings and many other studies could be due to the ecological nature of the study. Nevertheless, our findings will help health policymakers to develop timely strategies to reduce the mortality and incidence rate of COVID-19.
Collapse
Affiliation(s)
- Alireza Mirahmadizadeh
- Non-Communicable Diseases Research Center, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Rezaei
- Department of Social Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Kimia Jokari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leyla Moftakhar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | - Mehrzad Lotfi
- Department of Radiology, Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Jafari
- Department of Health Education and Health Promotion, School of Health, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | | |
Collapse
|
49
|
Yassin MF, Aldashti HA. Stochastic analysis of the relationship between atmospheric variables and coronavirus disease (COVID-19) in a hot, arid climate. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:500-516. [PMID: 34156152 PMCID: PMC8427079 DOI: 10.1002/ieam.4481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/02/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The rapid outbreak of the coronavirus disease (COVID-19) has affected millions of people all over the world and killed hundreds of thousands. Atmospheric conditions can play a fundamental role in the transmission of a virus. The relationship between several atmospheric variables and the transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are therefore investigated in this study, in which the State of Kuwait, which has a hot, arid climate, is considered during free movement (without restriction), partial lockdown (partial restrictions), and full lockdown (full restriction). The relationship between the infection rate, growth rate, and doubling time for SARS-CoV-2 and atmospheric variables are also investigated in this study. Daily data describing the number of COVID-19 cases and atmospheric variables, such as temperature, relative humidity, wind speed, visibility, and solar radiation, were collected for the period February 24 to May 30, 2020. Stochastic models were employed to analyze how atmospheric variables can affect the transmission of SARS-CoV-2. The normal and lognormal probability and cumulative density functions (PDF and CDF) were applied to analyze the relationship between atmospheric variables and COVID-19 cases. The Spearman's rank correlation test and multiple regression model were used to investigate the correlation of the studied variables with the transmission of SARS-CoV-2 and to confirm the findings obtained from the stochastic models. The results indicate that relative humidity had a significant negative correlation with the number of COVID-19 cases, whereas positive correlations were observed for cases of infection and temperature, wind speed, and visibility. The infection rate for SARS-CoV-2 is directly proportional to the air temperature, wind speed, and visibility, whereas inversely related to the humidity. The lowest growth rate and longest doubling time of the COVID-19 infection occurred during the full lockdown period. The results in this study may help the World Health Organization (WHO) make specific recommendations about the outbreak of COVID-19 for decision-makers around the world. Integr Environ Assess Manag 2022;18:500-516. © 2021 SETAC.
Collapse
Affiliation(s)
- Mohamed F. Yassin
- Environmental Pollution and Climate ProgramKuwait Institute for Research and Science, SafatKuwait
| | - Hassan A. Aldashti
- Department of MeteorologyDirectorate General of Civil Aviation, SafatKuwait
| |
Collapse
|
50
|
Agaoglu NB, Yildiz J, Akgun Dogan O, Kose B, Alkurt G, Kendir Demirkol Y, Irvem A, Doganay L, Dinler Doganay G. COVID-19 PCR test performance on samples stored at ambient temperature. J Virol Methods 2022; 301:114404. [PMID: 34921841 PMCID: PMC8673954 DOI: 10.1016/j.jviromet.2021.114404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 11/20/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022]
Abstract
The WHO-named Coronavirus Disease 2019 (COVID-19) infection had become a pandemic within a short time period since it was detected in Wuhan. The outbreak required the screening of millions of samples daily and overwhelmed diagnostic laboratories worldwide. During this pandemic, the handling of patient specimens according to the universal guidelines was extremely difficult as the WHO, CDC and ECDC required cold chain compliance during transport and storage of the swab samples. The aim of this study was to compare the effects of two different storage conditions on the COVID-19 real-time PCR assay on 30 positive nasopharyngeal and/or oropharyngeal samples stored at both ambient temperature (22 ± 2 °C) and +4 °C. The results revealed that all the samples stored at ambient temperature remain PCR positive for at least six days without any false-negative result. In conclusion, transporting and storing these types of swab samples at ambient temperature for six days under resource-limited conditions during the COVID-19 pandemics are acceptable.
Collapse
Affiliation(s)
- Nihat Bugra Agaoglu
- Genomic Laboratory (GLAB), Umraniye Teaching and Research Hospital, University of Health Sciences, Istanbul, Turkey; Department of Medical Genetics, Umraniye Teaching and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Jale Yildiz
- Genomic Laboratory (GLAB), Umraniye Teaching and Research Hospital, University of Health Sciences, Istanbul, Turkey; Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Ozlem Akgun Dogan
- Genomic Laboratory (GLAB), Umraniye Teaching and Research Hospital, University of Health Sciences, Istanbul, Turkey; Department of Pediatric Genetics, Umraniye Teaching and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Betsi Kose
- Genomic Laboratory (GLAB), Umraniye Teaching and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Gizem Alkurt
- Genomic Laboratory (GLAB), Umraniye Teaching and Research Hospital, University of Health Sciences, Istanbul, Turkey; Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Yasemin Kendir Demirkol
- Genomic Laboratory (GLAB), Umraniye Teaching and Research Hospital, University of Health Sciences, Istanbul, Turkey; Department of Medical Genetics, Umraniye Teaching and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Arzu Irvem
- Department of Microbiology, Umraniye Teaching and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Levent Doganay
- Genomic Laboratory (GLAB), Umraniye Teaching and Research Hospital, University of Health Sciences, Istanbul, Turkey; Department of Gastroenterology, Umraniye Teaching and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Gizem Dinler Doganay
- Genomic Laboratory (GLAB), Umraniye Teaching and Research Hospital, University of Health Sciences, Istanbul, Turkey; Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.
| |
Collapse
|