1
|
Kim T, Jeon EJ, Kwon KK, Ko M, Kim HN, Kim SK, Rha E, Shin J, Kim H, Lee DH, Sung BH, Kim SJ, Lee H, Lee SG. Cell-free biosensor with automated acoustic liquid handling for rapid and scalable characterization of cellobiohydrolases on microcrystalline cellulose. Synth Biol (Oxf) 2025; 10:ysaf005. [PMID: 40255683 PMCID: PMC12006790 DOI: 10.1093/synbio/ysaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/25/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025] Open
Abstract
Engineering enzymes to degrade solid substrates, such as crystalline cellulose from paper sludge or microplastics in sewage sludge, presents challenges for high-throughput screening (HTS), as solid substrates are not readily accessible in cell-based biosensor systems. To address this challenge, we developed a cell-free cellobiose-detectable biosensor (CB-biosensor) for rapid characterization of cellobiohydrolase (CBH) activity, enabling direct detection of hydrolysis products without cellular constraints. The CB-biosensor demonstrates higher sensitivity than conventional assays and distinguishes between CBH subtypes (CBHI and CBHII) based on their modes of action. Integration with the Echo 525 liquid handler enables precise and reproducible sample processing, with fluorescence signals from automated preparations comparable to manual experiments. Furthermore, assay volumes can be reduced to just a few microlitres-impractical with manual methods. This cell-free CB-biosensor with Echo 525 minimizes reagent consumption, accelerates testing, and facilitates reliable large-scale screening. These findings highlight its potential to overcome current HTS limitations, advancing enzyme screening and accelerating the Design-Build-Test-Learn cycle for sustainable biomanufacturing.
Collapse
Affiliation(s)
- Taeok Kim
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eun Jung Jeon
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kil Koang Kwon
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Minji Ko
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Ha-Neul Kim
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seong Keun Kim
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Eugene Rha
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jonghyeok Shin
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Haseong Kim
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyewon Lee
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Samaniego LVB, Scandelau SL, Silva CR, Pratavieira S, de Oliveira Arnoldi Pellegrini V, Dabul ANG, Esmerino LA, de Oliveira Neto M, Hernandes RT, Segato F, Pileggi M, Polikarpov I. Thermothelomyces thermophilus exo- and endo-glucanases as tools for pathogenic E. coli biofilm degradation. Sci Rep 2024; 14:22576. [PMID: 39343957 PMCID: PMC11439960 DOI: 10.1038/s41598-024-70144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/13/2024] [Indexed: 10/01/2024] Open
Abstract
The escalating prevalence of drug-resistant pathogens not only jeopardizes the effectiveness of existing treatments but also increases the complexity and severity of infectious diseases. Escherichia coli is one the most common pathogens across all healthcare-associated infections. Enzymatic treatment of bacterial biofilms, targeting extracellular polymeric substances (EPS), can be used for EPS degradation and consequent increase in susceptibility of pathogenic bacteria to antibiotics. Here, we characterized three recombinant cellulases from Thermothelomyces thermophilus: a cellobiohydrolase I (TthCel7A), an endoglucanase (TthCel7B), and a cellobiohydrolase II (TthCel6A) as tools for hydrolysis of E. coli and Gluconacetobacter hansenii biofilms. Using a design mixture approach, we optimized the composition of cellulases, enhancing their synergistic activity to degrade the biofilms and significantly reducing the enzymatic dosage. In line with the crystalline and ordered structure of bacterial cellulose, the mixture of exo-glucanases (0.5 TthCel7A:0.5 TthCel6A) is effective in the hydrolysis of G. hansenii biofilm. Meanwhile, a mixture of exo- and endo-glucanases is required for the eradication of E. coli 042 and clinical E. coli biofilms with significantly different proportions of the enzymes (0.56 TthCel7B:0.44 TthCel6A and 0.6 TthCel7A:0.4 TthCel7B, respectively). X-ray diffraction pattern and crystallinity index of E. coli cellulose are comparable to those of carboxymethyl cellulose (CMC) substrate. Our results illustrate the complexity of E. coli biofilms and show that successful hydrolysis is achieved by a specific combination of cellulases, with consistent recurrence of TthCel7B endoglucanase.
Collapse
Affiliation(s)
| | - Samuel Luis Scandelau
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil
| | - Caroline Rosa Silva
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Sebastião Pratavieira
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil
| | | | - Andrei Nicoli Gebieluca Dabul
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil
| | - Luís Antônio Esmerino
- Microbiology Laboratory, Clinical Analysis Department, Life Sciences and Health Institute, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Mario de Oliveira Neto
- Institute of Biosciences, Sao Paulo State University, District of Rubiao Jr., Botucatu, SP, 18618-970, Brazil
| | - Rodrigo Tavanelli Hernandes
- Institute of Biosciences, Sao Paulo State University, District of Rubiao Jr., Botucatu, SP, 18618-970, Brazil
| | - Fernando Segato
- Lorena School of Engineering, University of Sao Paulo, Estrada Municipal do Campinho, Lorena, SP, 12602-810, Brazil
| | - Marcos Pileggi
- Environmental Microbiology Laboratory, Structural and Molecular Biology, and Genetics Department, Life Sciences and Health Institute, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Igor Polikarpov
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil.
| |
Collapse
|
3
|
Aqeel A, Ahmed Z, Akram F, Abbas Q, Ikram-Ul-Haq. Cloning, expression and purification of cellobiohydrolase gene from Caldicellulosiruptor bescii for efficient saccharification of plant biomass. Int J Biol Macromol 2024; 271:132525. [PMID: 38797293 DOI: 10.1016/j.ijbiomac.2024.132525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/04/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Anthropogenic activities have led to a drastic shift from natural fuels to alternative renewable energy reserves that demand heat-stable cellulases. Cellobiohydrolase is an indispensable member of cellulases that play a critical role in the degradation of cellulosic biomass. This article details the process of cloning the cellobiohydrolase gene from the thermophilic bacterium Caldicellulosiruptor bescii and expressing it in Escherichia coli (BL21) CondonPlus DE3-(RIPL) using the pET-21a(+) expression vector. Multi-alignments and structural modeling studies reveal that recombinant CbCBH contained a conserved cellulose binding domain III. The enzyme's catalytic site included Asp-372 and Glu-620, which are either involved in substrate or metal binding. The purified CbCBH, with a molecular weight of 91.8 kDa, displayed peak activity against pNPC (167.93 U/mg) at 65°C and pH 6.0. Moreover, it demonstrated remarkable stability across a broad temperature range (60-80°C) for 8 h. Additionally, the Plackett-Burman experimental model was employed to assess the saccharification of pretreated sugarcane bagasse with CbCBH, aiming to evaluate the cultivation conditions. The optimized parameters, including a pH of 6.0, a temperature of 55°C, a 24-hour incubation period, a substrate concentration of 1.5% (w/v), and enzyme activity of 120 U, resulted in an observed saccharification efficiency of 28.45%. This discovery indicates that the recombinant CbCBH holds promising potential for biofuel sector.
Collapse
Affiliation(s)
- Amna Aqeel
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, 54000, Pakistan.
| | - Zeeshan Ahmed
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, 54000, Pakistan
| | - Fatima Akram
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, 54000, Pakistan
| | - Qamar Abbas
- School of Biological Sciences, University of Punjab, Lahore 54000, Pakistan
| | - Ikram-Ul-Haq
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, 54000, Pakistan
| |
Collapse
|
4
|
Leadbeater DR, Bruce NC. Functional characterisation of a new halotolerant seawater active glycoside hydrolase family 6 cellobiohydrolase from a salt marsh. Sci Rep 2024; 14:3205. [PMID: 38332324 PMCID: PMC10853513 DOI: 10.1038/s41598-024-53886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Realising a fully circular bioeconomy requires the valorisation of lignocellulosic biomass. Cellulose is the most attractive component of lignocellulose but depolymerisation is inefficient, expensive and resource intensive requiring substantial volumes of potable water. Seawater is an attractive prospective replacement, however seawater tolerant enzymes are required for the development of seawater-based biorefineries. Here, we report a halophilic cellobiohydrolase SMECel6A, identified and isolated from a salt marsh meta-exo-proteome dataset with high sequence divergence to previously characterised cellobiohydrolases. SMECel6A contains a glycoside hydrolase family 6 (GH6) domain and a carbohydrate binding module family 2 (CBM2) domain. Characterisation of recombinant SMECel6A revealed SMECel6A to be active upon crystalline and amorphous cellulose. Mono- and oligosaccharide product profiles revealed cellobiose as the major hydrolysis product confirming SMECel6A as a cellobiohydrolase. We show SMECel6A to be halophilic with optimal activity achieved in 0.5X seawater displaying 80.6 ± 6.93% activity in 1 × seawater. Structural predictions revealed similarity to a characterised halophilic cellobiohydrolase despite sharing only 57% sequence identity. Sequential thermocycling revealed SMECel6A had the ability to partially reversibly denature exclusively in seawater retaining significant activity. Our study confirms that salt marsh ecosystems harbour enzymes with attractive traits with biotechnological potential for implementation in ionic solution based bioprocessing systems.
Collapse
Affiliation(s)
- Daniel R Leadbeater
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York, YO10 5DD, UK.
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
5
|
Li J, Wang Y, Yang K, Wang X, Wang Y, Zhang H, Huang H, Su X, Yao B, Luo H, Qin X. Development of an efficient protein expression system in the thermophilic fungus Myceliophthora thermophila. Microb Cell Fact 2023; 22:236. [PMID: 37974259 PMCID: PMC10652509 DOI: 10.1186/s12934-023-02245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Thermophilic fungus Myceliophthora thermophila has been widely used in industrial applications due to its ability to produce various enzymes. However, the lack of an efficient protein expression system has limited its biotechnological applications. RESULTS In this study, using a laccase gene reporting system, we developed an efficient protein expression system in M. thermophila through the selection of strong constitutive promoters, 5'UTRs and signal peptides. The expression of the laccase was confirmed by enzyme activity assays. The results showed that the Mtpdc promoter (Ppdc) was able to drive high-level expression of the target protein in M. thermophila. Manipulation of the 5'UTR also has significant effects on protein expression and secretion. The best 5'UTR (NCA-7d) was identified. The transformant containing the laccase gene under the Mtpdc promoter, NCA-7d 5'UTR and its own signal peptide with the highest laccase activity (1708 U/L) was obtained. In addition, the expression system was stable and could be used for the production of various proteins, including homologous proteins like MtCbh-1, MtGh5-1, MtLPMO9B, and MtEpl1, as well as a glucoamylase from Trichoderma reesei. CONCLUSIONS An efficient protein expression system was established in M. thermophila for the production of various proteins. This study provides a valuable tool for protein production in M. thermophila and expands its potential for biotechnological applications.
Collapse
Affiliation(s)
- Jinyang Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Yidi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Kun Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Honglian Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China.
| | - Xing Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10093, China.
| |
Collapse
|
6
|
Dadwal A, Sharma S, Satyanarayana T. Biochemical characteristics of Myceliophthora thermophila recombinant β-glucosidase (MtBgl3c) applicable in cellulose bioconversion. Prep Biochem Biotechnol 2023; 53:1187-1198. [PMID: 36799667 DOI: 10.1080/10826068.2023.2177869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The GH3 β-glucosidase gene of Myceliophthora thermophila (MtBgl3c) has been cloned and heterologously expressed in E. coli for the first time. This study highlights the important characteristics of recombinant MtBgl3c (rMtBgl3c) which make it a promising candidate in industrial applications. Optimization of the production of rMtBgl3c led to 28,000 U L-1. On purification, it has a molecular mass of ∼100 kDa. It is a broad substrate specific thermostable enzyme that exhibits pH and temperature optima at 5.0 and 55 °C, respectively. The amino acid residues Asp287 and Glu514 act as nucleophile and catalytic acid/base, respectively in the enzyme catalysis. Its low Km value (1.28 mM) indicates a high substrate affinity as compared to those previously reported. The rMtBgl3c displays a synergistic action with the commercial enzyme cocktail in the saccharification of sugarcane bagasse suggesting its utility in the cellulose bioconversion. Tolerance to solvents, detergents as well as glucose make this enzyme applicable in wine, detergent, paper and textile industries too.
Collapse
Affiliation(s)
- Anica Dadwal
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Azad Hind Fauj Marg, Dwarka, New Delhi, India
| | - Shilpa Sharma
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Azad Hind Fauj Marg, Dwarka, New Delhi, India
| | - Tulasi Satyanarayana
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Azad Hind Fauj Marg, Dwarka, New Delhi, India
| |
Collapse
|
7
|
Dadwal A, Singh V, Sharma S, Sahoo AK, Satyanarayana T. Structural and thermostability insights into cellobiohydrolase of a thermophilic mould Myceliophthora thermophila: in-silico studies. J Biomol Struct Dyn 2023; 41:8373-8382. [PMID: 36238990 DOI: 10.1080/07391102.2022.2133012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/02/2022] [Indexed: 10/17/2022]
Abstract
Cellobiohydrolase (CBH) is one of the cellulases with a wide range of industrial applications; it plays a pivotal role in cellulose hydrolysis and thus in biofuel production. The structural and thermostability analysis of a CBHII of the thermophilic mold Myceliophthora thermophila (MtCel6A) had been carried out using various in-silico approaches. The validation of 3 D model by the Ramachandran plot indicated 88.5% amino acid residues in the favoured regions. Docking analysis suggested MtCel6A to display a high affinity towards cellotetraose as compared to other substrates. The enzyme exhibited a high tolerance to the end product, cellobiose. The thermostability evaluation by molecular dynamic simulations and principal component analysis confirmed its tolerance to elevated temperatures. The identified thermolabile regions could be targeted for site-directed mutagenesis in order to ameliorate thermostability further. Our experimental data published earlier confirmed the present findings of in-silico studies. The structural and functional characteristics of MtCel6A highlighted its critical features that make it a useful biocatalyst in several industrial processes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anica Dadwal
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
- Department of Applied Sciences and Humanities (Faculty of Technology), University of Delhi, Delhi, India
| | - Vishal Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, Uttar Pradesh, India
| | - Shilpa Sharma
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
- Department of Applied Sciences and Humanities (Faculty of Technology), University of Delhi, Delhi, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, Uttar Pradesh, India
| | - Tulasi Satyanarayana
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| |
Collapse
|
8
|
Ding S, Liu X, Hakulinen N, Taherzadeh MJ, Wang Y, Wang Y, Qin X, Wang X, Yao B, Luo H, Tu T. Boosting enzymatic degradation of cellulose using a fungal expansin: Structural insight into the pretreatment mechanism. BIORESOURCE TECHNOLOGY 2022; 358:127434. [PMID: 35680086 DOI: 10.1016/j.biortech.2022.127434] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
The recalcitrance of cellulosic biomass greatly hinders its enzymatic degradation. Expansins induce cell wall loosening and promote efficient cellulose utilization; however, the molecular mechanism underlying their action is not well understood. In this study, TlEXLX1, a fungal expansin from Talaromyces leycettanus JCM12802, was characterized in terms of phylogeny, synergy, structure, and mechanism of action. TlEXLX1 displayed varying degrees of synergism with commercial cellulase in the pretreatment of corn straw and filter paper. TlEXLX1 binds to cellulose via domain 2, mediated by CH-π interactions with residues Tyr291, Trp292, and Tyr327. Residues Asp237, Glu238, and Asp248 in domain 1 form hydrogen bonds with glucose units and break the inherent hydrogen bonding within the cellulose matrix. This study identified the expansin amino acid residues crucial for cellulose binding, and elucidated the structure and function of expansins in cell wall networks; this has potential applications in biomass utilization.
Collapse
Affiliation(s)
- Sunjia Ding
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, Joensuu 80130, Finland
| | | | - Yaru Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|