1
|
Banjan B, Vishwakarma R, Ramakrishnan K, Dev RR, Kalath H, Kumar P, Soman S, Raju R, Revikumar A, Rehman N, Abhinand CS. Targeting AFP-RARβ complex formation: a potential strategy for treating AFP-positive hepatocellular carcinoma. Mol Divers 2025; 29:1337-1352. [PMID: 38955977 DOI: 10.1007/s11030-024-10915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
Alpha-fetoprotein (AFP) is a glycoprotein primarily expressed during embryogenesis, with declining levels postnatally. Elevated AFP levels correlate with pathological conditions such as liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Recent investigations underscore AFP's intracellular role in HCC progression, wherein it forms complexes with proteins like Phosphatase and tensin homolog (PTEN), Caspase 3 (CASP3), and Retinoic acid receptors and Retinoid X receptors (RAR/RXR). RAR and RXR regulate gene expression linked to cell death and tumorigenesis in normal physiology. AFP impedes RAR/RXR dimerization, nuclear translocation, and function, promoting gene expression favoring cancer progression in HCC that provoked us to target AFP as a drug candidate. Despite extensive studies, inhibitors targeting AFP to disrupt complex formation and activities remain scarce. In this study, employing protein-protein docking, amino acid residues involved in AFP-RARβ interaction were identified, guiding the definition of AFP's active site for potential inhibitor screening. Currently, kinase inhibitors play a significant role in cancer treatment and, the present study explores the potential of repurposing FDA-approved protein kinase inhibitors to target AFP. Molecular docking with kinase inhibitors revealed Lapatinib as a candidate drug of the AFP-RARβ complex. Molecular dynamics simulations and binding energy calculations, employing Mechanic/Poisson-Boltzmann Surface Area (MM-PBSA), confirmed Lapatinib's stability with AFP. The study suggests Lapatinib's potential in disrupting the AFP-RARβ complex, providing a promising avenue for treating molecularly stratified AFP-positive HCC or its early stages.
Collapse
Affiliation(s)
- Bhavya Banjan
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Riya Vishwakarma
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Krishnapriya Ramakrishnan
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Radul R Dev
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Haritha Kalath
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Pankaj Kumar
- Nitte (Deemed to Be University), Department of Pharmaceutical Chemistry, NGSMPS, NGSM Institute of Pharmaceutical Sciences, Mangalore, 575018, Karnataka, India
| | - Sowmya Soman
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
- Kerala Genome Data Centre, Kerala Development and Innovation Strategic Council, Vazhuthacaud, Thiruvananthapuram, Kerala, 695014, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India.
| | - Chandran S Abhinand
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
2
|
Hung Truong N, Hung Nguyen P, Nghi Do H, Ha Nguyen X, Loc Vu T, Hai Pham T, Trang Luu H, Cuong Nguyen M, Luu VC. Synthesis and Cytotoxic Activities of Novel Ether Conjugates of Dihydroartemisinin and Zerumbone: Evidenced by Integrating Network Pharmacology and In Vitro Assay. Chem Biodivers 2025; 22:e202401571. [PMID: 39495180 DOI: 10.1002/cbdv.202401571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 11/05/2024]
Abstract
O-alkylation of the hydroxy compounds, including acetaminophen, starting compounds for the synthesis of the drug, and natural compounds with the bromides of dihydroartemisinin (DHA) and zerumbone, produced twenty novel ether conjugates 15a-j and 16a-j, respectively. Their structures were elucidated by 1D-, 2D-NMR, and HRMS data. Their in vitro cytotoxic activity was screened using three cancer cell lines: HepG2, HeLa, and PC-12. The results showed that eight out of ten conjugates in series 15a-j containing DHA skeleton exhibited activity against the tested cell lines, with IC50 values ranging from 4.26-47.37 μM. Notably, all conjugates in series 16a-j containing zerumbone scaffolds inhibited the growth of HepG2, HeLa, and PC12 with IC50 in the range of 4.46-35.07 μM. Using network pharmacology and molecular docking to target anti-liver cancer in the above 20 synthetic compounds, 271 intersection targets were discovered, including 5 targets with high degree values (EGFR, ESR1, AKT1, MDM2, and NFKB1). Artemisinin derivative 15i gave the highest binding energy for targets AKT1, EGFR, and NFKB1, while zerumbone-murrayafoline A ether 16g in the remaining series also gave the highest energy for proteins EGFR, AKT1, and NFKB1.
Collapse
Affiliation(s)
- Ngoc Hung Truong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi, 100000, Vietnam
| | - Phi Hung Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi, 100000, Vietnam
| | - Huu Nghi Do
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi, 100000, Vietnam
| | - Xuan Ha Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi, 100000, Vietnam
| | - Thanh Loc Vu
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi, 100000, Vietnam
| | - The Hai Pham
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Hanh Trang Luu
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong Str., Hoan Kiem, Hanoi, 100000, Vietnam
| | - Manh Cuong Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Van Chinh Luu
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| |
Collapse
|
3
|
Myrsing E, Mouli HMC, Nikhil P, Deepali, Sahu A, Jana A, Ramalingam P. Protein profiling uncovers IGF-1R inhibition potential of 3-(2-furoyl)-indole scaffolds in hepatocellular carcinoma. Future Med Chem 2025; 17:513-528. [PMID: 40028717 PMCID: PMC11906113 DOI: 10.1080/17568919.2025.2467616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
AIM This study investigates the anti-proliferative potential and possible molecular mechanisms of 3-(2-furoyl)-indole derivatives against HepG2. METHOD Identified hit compounds (4a, 4b, 4c) using MTT screening, were further investigated for their efficacy and mechanism of action through FACS studies, in-silico molecular docking, molecular dynamics (MD) simulations, and label-free quantitative proteome and ADMET prediction. RESULTS Lead compound 4a, showed IC50 of 27 µM against HepG2 cells and a binding score of -8.077 kcal/mol against IGF-1 R (PDB ID: 5XFS) and formed a stable complex 100 ns. Proteomic study revealed significant downregulation of the IGF-1 R downstream signaling molecules and showed minimal toxicity and favorable drug-like properties. CONCLUSION These findings suggest that 4a is a promising IGF-1 R inhibitor and potential drug candidate against drug resistance hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Efficiency Myrsing
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - H M Chandra Mouli
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pallaprolu Nikhil
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Deepali
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Abhishek Sahu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Anupam Jana
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - P Ramalingam
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| |
Collapse
|
4
|
Lim JX, Yong YK, Dewi FRP, Chan SY, Lim V. Nanoscale strategies: doxorubicin resistance challenges and enhancing cancer therapy with advanced nanotechnological approaches. Drug Deliv Transl Res 2025:10.1007/s13346-025-01790-3. [PMID: 39955406 DOI: 10.1007/s13346-025-01790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
Doxorubicin (DOX), an anthracycline, is widely used in cancer treatment by interfering RNA and DNA synthesis. Its broad antitumour spectrum makes it an effective therapy for a wide array of cancers. However, the prevailing drug-resistant cancer has proven to be a significant drawback to the success of the conventional chemotherapy regime and DOX has been identified as a major hurdle. Furthermore, the clinical application of DOX has been limited by rapid breakdown, increased toxicity, and decreased half-time life, highlighting an urgent need for more innovative delivery methods. Although advancements have been made, achieving a complete cure for cancer remains elusive. The development of nanoparticles offers a promising avenue for the precise delivery of DOX into the tumour microenvironment, aiming to increase the drug concentration at the target site while reducing side effects. Despite the good aspects of this technology, the classical nanoparticles struggle with issues such as premature drug leakage, low bioavailability, and insufficient penetration into tumours due to an inadequate enhanced permeability and retention (EPR) effect. Recent advancements have focused on creating stimuli-responsive nanoparticles and employing various chemosensitisers, including natural compounds and nucleic acids, fortifying the efficacy of DOX against resistant cancers. The efforts to refine nanoparticle targeting precision to improve DOX delivery are reviewed. This includes using receptor-mediated endocytosis systems to maximise the internalisation of drugs. The potential benefits and drawbacks of these novel techniques constitute significant areas of ongoing study, pointing to a promising path forward in addressing the challenges posed by drug-resistant cancers.
Collapse
Affiliation(s)
- Jian Xin Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Siok Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
5
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
6
|
Vij P, Hussain MS, Satapathy SK, Cobos E, Tripathi MK. The Emerging Role of Long Noncoding RNAs in Sorafenib Resistance Within Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:3904. [PMID: 39682093 PMCID: PMC11639815 DOI: 10.3390/cancers16233904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a liver cancer originating from hepatocytes, is a major health concern and among the most common malignancies worldwide. Sorafenib, approved by the U.S. F.D.A., is the primary first-line treatment for patients with advanced HCC. While the preferred first-line systemic regimen for HCC is immunotherapy with Atezolizumab plus bevacizumab or Tremelimumab-actl + durvalumab, Sorafenib is still an alternative recommended regimen. While some patients with advanced HCC may benefit from Sorafenib treatment, most eventually develop resistance, leading to poor prognosis. Long noncoding RNAs (lncRNAs) have been found to play a critical role in tumorigenesis and the development of HCC, as well as other cancers. They are also key players in tumor drug resistance, though the mechanisms of lncRNAs in Sorafenib resistance in HCC remain poorly understood. This review summarizes the molecular mechanisms contributing to Sorafenib resistance in HCC with their potential correlation with lncRNAs, including the roles of transporters, receptors, cell death regulation, and other influencing factors.
Collapse
Affiliation(s)
- Puneet Vij
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA;
| | - Mohammad Shabir Hussain
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.H.); (E.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sanjaya K. Satapathy
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell Health Center for Liver Diseases & Transplantation, Northshore University Hospital, Manhasset, NY 11030, USA;
| | - Everardo Cobos
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.H.); (E.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Manish K. Tripathi
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.H.); (E.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
7
|
Xiang Y, Wu J, Qin H. Advances in hepatocellular carcinoma drug resistance models. Front Med (Lausanne) 2024; 11:1437226. [PMID: 39144662 PMCID: PMC11322137 DOI: 10.3389/fmed.2024.1437226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Surgery has been the major treatment method for HCC owing to HCC's poor sensitivity to radiotherapy and chemotherapy. However, its effectiveness is limited by postoperative tumour recurrence and metastasis. Systemic therapy is applied to eliminate postoperative residual tumour cells and improve the survival of patients with advanced HCC. Recently, the emergence of various novel targeted and immunotherapeutic drugs has significantly improved the prognosis of advanced HCC. However, targeted and immunological therapies may not always produce complete and long-lasting anti-tumour responses because of tumour heterogeneity and drug resistance. Traditional and patient-derived cell lines or animal models are used to investigate the drug resistance mechanisms of HCC and identify drugs that could reverse the resistance. This study comprehensively reviewed the established methods and applications of in-vivo and in-vitro HCC drug resistance models to further understand the resistance mechanisms in HCC treatment and provide a model basis for possible individualised therapy.
Collapse
Affiliation(s)
- Yien Xiang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Jun Wu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Younis MA, Harashima H. Understanding Gene Involvement in Hepatocellular Carcinoma: Implications for Gene Therapy and Personalized Medicine. Pharmgenomics Pers Med 2024; 17:193-213. [PMID: 38737776 PMCID: PMC11088404 DOI: 10.2147/pgpm.s431346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/09/2024] [Indexed: 05/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the dominant type of liver cancers and is one of the deadliest health threats globally. The conventional therapeutic options for HCC are hampered by low efficiency and intolerable side effects. Gene therapy, however, now offers hope for the treatment of many disorders previously considered incurable, and gene therapy is beginning to address many of the shortcomings of conventional therapies. Herein, we summarize the involvement of genes in the pathogenesis and prognosis of HCC, with a special focus on dysregulated signaling pathways, genes involved in immune evasion, and non-coding RNAs as novel two-edged players, which collectively offer potential targets for the gene therapy of HCC. Herein, the opportunities and challenges of HCC gene therapy are discussed. These include innovative therapies such as genome editing and cell therapies. Moreover, advanced gene delivery technologies that recruit nanomedicines for use in gene therapy for HCC are highlighted. Finally, suggestions are offered for improved clinical translation and future directions in this area of endeavor.
Collapse
Affiliation(s)
- Mahmoud A Younis
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
9
|
Rashid S, Sun Y, Ali Khan Saddozai U, Hayyat S, Munir MU, Akbar MU, Khawar MB, Ren Z, Ji X, Ihsan Ullah Khan M. Circulating tumor DNA and its role in detection, prognosis and therapeutics of hepatocellular carcinoma. Chin J Cancer Res 2024; 36:195-214. [PMID: 38751441 PMCID: PMC11090798 DOI: 10.21147/j.issn.1000-9604.2024.02.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is considered the fifth most prevalent cancer among all types of cancers and has the third most morbidity value. It has the most frequent duplication time and a high recurrence rate. Recently, the most unique technique used is liquid biopsies, which carry many markers; the most prominent is circulating tumor DNA (ctDNA). Varied methods are used to investigate ctDNA, including various forms of polymerase chain reaction (PCR) [emulsion PCR (ePCR), digital PCR (dPCR), and bead, emulsion, amplification, magnetic (BEAMing) PCR]. Hence ctDNA is being recognized as a potential biomarker that permits early cancer detection, treatment monitoring, and predictive data on tumor burden are subjective to therapy or surgery. Numerous ctDNA biomarkers have been investigated based on their alterations such as 1) single nucleotide variations (either insertion or deletion of a nucleotide) markers including TP53, KRAS, and CCND1; 2) copy number variations which include markers such as CDK6, EFGR, MYC and BRAF; 3) DNA methylation (RASSF1A, SEPT9, KMT2C and CCNA2); 4) homozygous mutation includes ctDNA markers as CDKN2A, AXIN1; and 5) gain or loss of function of the genes, particularly for HCC. Various researchers have conducted many studies and gotten fruitful results. Still, there are some drawbacks to ctDNA namely low quantity, fragment heterogeneity, less stability, limited mutant copies and standards, and differential sensitivity. However, plenty of investigations demonstrate ctDNA's significance as a polyvalent biomarker for cancer and can be viewed as a future diagnostic, prognostic and therapeutic agent. This article overviews many conditions in genetic changes linked to the onset and development of HCC, such as dysregulated signaling pathways, somatic mutations, single-nucleotide polymorphisms, and genomic instability. Additionally, efforts are also made to develop treatments for HCC that are molecularly targeted and to unravel some of the genetic pathways that facilitate its early identification.
Collapse
Affiliation(s)
- Sana Rashid
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54590, Pakistan
| | - Yingchuan Sun
- Department of Internal Oncology (Section I), Xuchang Municipal Central Hospital, Xuchang 461000, China
| | - Umair Ali Khan Saddozai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Sikandar Hayyat
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Usman Munir
- Australian Institute for Bioengineering & Nanotechnology, the University of Queensland, Brisbane 4072, Australia
| | - Muhammad Usman Akbar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan
| | - Muhammad Babar Khawar
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54590, Pakistan
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal Punjab 51600, Pakistan
| | - Zhiguang Ren
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xinying Ji
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou 450064, China
- Department of Medicine, Huaxian County People’s Hospital, Huaxian 456400, China
| | - Malik Ihsan Ullah Khan
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54590, Pakistan
| |
Collapse
|
10
|
Pal S, Kabeer SW, Sharma S, Tikoo K. l-Methionine potentiates anticancer activity of Sorafenib by epigenetically altering DUSP3/ERK pathway in hepatocellular carcinoma. J Biochem Mol Toxicol 2024; 38:e23663. [PMID: 38367245 DOI: 10.1002/jbt.23663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/29/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cancer-related cause of death worldwide. Although Sorafenib is the standard systemic therapy for treating HCC, but it develops resistance very quickly, leading to poor prognosis. The current study was planned to explore the effect of l-methionine on the anticancer activity of Sorafenib in HCC. Ten millimolar of l-methionine treatment significantly reduced the IC50 of Sorafenib from 5.513 ± 0.171 to 0.8095 ± 0.0465 µM in HepG2 cell line. It also resulted in concomitant increase in oxidative stress and deactivation of ERK/AMPK/AKT pathway. Additionally, it also resulted in the increased expression of dual specificity phosphatase 3 (DUSP3). In a rat model of sorafenib-resistant HCC induced by diethylnitrosamine (DEN) (100 mg/L/day) and Sorafenib (10 mg/kg), l-methionine (300 and 500 mg/kg/day) supplementation overcame the drug resistance, as indicated by the reduced formation of surface tumor nodules, prevention of cellular hypertrophy, hyperplasia and inflammation, and improved animal survival. Furthermore, l-methionine in combination with Sorafenib also inhibited AMPK/AKT and ERK pathway. At chromatin level, l-methionine supplementation prevented global methylation of H3K27me3, an inactivation mark, and demethylation of H3K36me2, an activation mark. Interestingly, our findings suggest that inhibition of the ERK pathway via increased activity of DUSP3 is epigenetically regulated. Besides, chromatin immunoprecipitation data exhibited augmented H3K36me2 (an activation mark) levels on the DUSP3 promoter region. To the best of our knowledge, we are the first to report that l-methionine supplementation improves the chemosensitivity in Sorafenib-resistant HCC via modulating the epigenetic landscape and can be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Swagata Pal
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Punjab, India
| | - Shaheen Wasil Kabeer
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Punjab, India
| | - Shivam Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Punjab, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Punjab, India
| |
Collapse
|
11
|
Balachandran AA, Raguraman P, Rahimizadeh K, Veedu RN. Splice-Switching Antisense Oligonucleotides Targeting Extra- and Intracellular Domains of Epidermal Growth Factor Receptor in Cancer Cells. Biomedicines 2023; 11:3299. [PMID: 38137520 PMCID: PMC10741442 DOI: 10.3390/biomedicines11123299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer is one of the leading causes of death globally. Epidermal growth factor receptor is one of the proteins involved in cancer cell proliferation, differentiation, and invasion. Antisense oligonucleotides are chemical nucleic acids that bind to target messenger ribonucleic acid and modulate its expression. Herein, we demonstrate the efficacy of splice-modulating antisense oligonucleotides to target specific exons in the extracellular (exon 3) and intracellular (exon 18, 21) domains of epidermal growth factor receptor. These antisense oligonucleotides were synthesized as 25mer 2'-O methyl phosphorothioate-modified ribonucleic acids that bind to complementary specific regions in respective exons. We found that PNAT524, PNAT525, PNAT576, and PNAT578 effectively skipped exon 3, exon 18, and exon 21 in glioblastoma, liver cancer, and breast cancer cell lines. PNAT578 treatment also skipped partial exon 19, complete exon 20, and partial exon 21 in addition to complete exon 21 skipping. We also found that a cocktail of PNAT576 and PNAT578 antisense oligonucleotides performed better than their individual counterparts. The migration potential of glioblastoma cancer cells was reduced to a greater extent after treatment with these antisense oligonucleotides. We firmly believe that using these splice-modulating antisense oligonucleotides in combination with existing EGFR-targeted therapies could improve therapeutic outcomes.
Collapse
Affiliation(s)
- Akilandeswari Ashwini Balachandran
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Prithi Raguraman
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| |
Collapse
|
12
|
Zhao J, Lin E, Bai Z, Jia Y, Wang B, Dai Y, Zhuo W, Zeng G, Liu X, Cai C, Li P, Zou B, Li J. Cancer-associated fibroblasts induce sorafenib resistance of hepatocellular carcinoma cells through CXCL12/FOLR1. BMC Cancer 2023; 23:1198. [PMID: 38057830 PMCID: PMC10701976 DOI: 10.1186/s12885-023-11613-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/04/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Due to the high drug resistance of hepatocellular carcinoma (HCC), sorafenib has limited efficacy in the treatment of advanced HCC. Cancer-associated fibroblasts (CAFs) play an important regulatory role in the induction of chemoresistance. This study aimed to clarify the mechanism underlying CAF-mediated resistance to sorafenib in HCC. METHODS Immunohistochemistry and immunofluorescence showed that the activation of CAFs was enhanced in HCC tissues. CAFs and paracancerous normal fibroblasts (NFs) were isolated from the cancer and paracancerous tissues of HCC, respectively. Cell cloning assays, ELISAs, and flow cytometry were used to detect whether CAFs induced sorafenib resistance in HCC cells via CXCL12. Western blotting and qPCR showed that CXCL12 induces sorafenib resistance in HCC cells by upregulating FOLR1. We investigated whether FOLR1 was the target molecule of CAFs regulating sorafenib resistance in HCC cells by querying gene expression data for human HCC specimens from the GEO database. RESULTS High levels of activated CAFs were present in HCC tissues but not in paracancerous tissues. CAFs decreased the sensitivity of HCC cells to sorafenib. We found that CAFs secrete CXCL12, which upregulates FOLR1 in HCC cells to induce sorafenib resistance. CONCLUSIONS CAFs induce sorafenib resistance in HCC cells through CXCL12/FOLR1.
Collapse
Affiliation(s)
- Jiali Zhao
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| | - En Lin
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Zirui Bai
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Yingbin Jia
- Department of Urology Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Yihua Dai
- Department of Anesthesiology, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Wenfeng Zhuo
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Guifang Zeng
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Xialei Liu
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Chaonong Cai
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Peiping Li
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| | - Baojia Zou
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| | - Jian Li
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
13
|
Sweed D, Gammal SSE, Kilany S, Abdelsattar S, Elhamed SMA. The expression of VEGF and cyclin D1/EGFR in common primary liver carcinomas in Egypt: an immunohistochemical study. Ecancermedicalscience 2023; 17:1641. [PMID: 38414954 PMCID: PMC10898887 DOI: 10.3332/ecancer.2023.1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Indexed: 02/29/2024] Open
Abstract
Background The most common types of primary malignant liver tumours are hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Treatment options for patients who are inoperable/advanced, or recurring are challenging. Cyclin D1, epidermal growth factor (EGFR) and vascular endothelial growth factor (VEGR) are common carcinogenic proteins that have potential therapeutic targets in various cancers. They have been implicated in the development of HCC and CCA. In this study, we aimed to evaluate the oncogenic function expression of cyclin D1, EGFR and VEGF in HCC and CCA of Egyptian patients. This could help to validate their therapeutic potential. Material and methods Tumour cases were selected from 82 cases of primary liver carcinomas, with 58 cases being from HCC and 24 cases from CCA compared to 51 non-tumour adjacent liver cases and 18 from normal liver tissue. The immunohistochemical study of cyclin D1, EGFR and VEGR was conducted. Results Cyclin D1, EGFR and VEGF are overexpressed in HCC and CCA as compared to the control group (p < 0.001). Cyclin D1 was related to well-differentiated grade and early pathologic stage in HCC (p = 0.016 and p = 0.042, respectively). The well-differentiated grade showed significantly higher VEGF levels (p = 0.04). In the CCA group, however, EGFR was strongly related to high tumour size (p = 0.047). EGFR and VEGF were overexpressed in HCC raised in the non-cirrhotic liver compared to those developed in post-hepatitic liver cirrhosis (p = 0.003 and p = 0.014). Conclusion Cyclin D1, EGFR and VEGF shared significant overexpression in HCC and CCA. EGFR and VEGF may play an oncogenic function in the development of HCC in non-cirrhotic liver. Furthermore, cyclin D1 and VEGF may play a good prognostic function in HCC, but EGFR may play a bad prognostic role in CCA.
Collapse
Affiliation(s)
- Dina Sweed
- Pathology Department, National Liver Institute, Shebin Elkom, Menofia University, Shebin Elkom 32511, Menoufia, Egypt
- https://orcid.org/0000-0001-6483-5056
| | - Shaymaa Sabry El Gammal
- Pathology Department, National Liver Institute, Shebin Elkom, Menofia University, Shebin Elkom 32511, Menoufia, Egypt
| | - Shimaa Kilany
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Shebin Elkom 32511, Menoufia, Egypt
| | - Shimaa Abdelsattar
- Clinical Biochemistry and Molecular Diagnostics Department, National Liver Institute, Menoufia University, Shebin Elkom 32511, Menoufia, Egypt
| | - Sara Mohamed Abd Elhamed
- Pathology Department, National Liver Institute, Shebin Elkom, Menofia University, Shebin Elkom 32511, Menoufia, Egypt
- https://orcid.org/0000-0003-0526-2627
| |
Collapse
|
14
|
Liu YC, Lin CH, Chen KT, Lai DW, Hsu FT. Inactivation of EGFR/ERK/NF-κB signalling associates with radiosensitizing effect of 18β-glycyrrhetinic acid on progression of hepatocellular carcinoma. J Cell Mol Med 2023. [PMID: 37177859 DOI: 10.1111/jcmm.17760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is recognized as the fifth most common cancer and the third most common cause of death in Asian population. Studies reported that HCC is relatively insensitive to radiotherapy (RT); thus, considering how to sensitize HCC to RT is worth to be elucidated. Epidermal growth factor receptor (EGFR)-mediated signalling transduction plays the important role in regulating treatment efficacy of HCC. An active compound, 18beta-glycyrrhetinic acid (18β-GA), has been reported to own anti-tumour effect. However, whether 18β-GA possess RT sensitization ability in HCC remains unclear. Here, we used RNA data from TCGA-LIHC (Liver hepatocellular carcinoma) to identify the role between EGFR/ERK/nuclear factor kappa B (NF-κB) signalling and RT by radiosensitivity index (RSI) analysis. We suggested that patients with activated NF-κB signalling may show resistance to RT treatment, whereas combining 18β-GA may reinforce RT efficacy in a Hep3B-bearing animal model. 18β-GA combined with RT showed superior tumour inhibition capacity as compared to monotherapy and even reached similar efficacy as erlotinib combined with RT. Treatment promotion of RT by 18β-GA in HCC is not only through diminishing RT-induced EGFR/ERK/NF-κB signalling but also promoting RT-induced apoptosis pathways. 18β-GA may act as radiosensitizer through inactivating EGFR-mediated HCC progression and inducing caspase-dependent apoptosis signalling.
Collapse
Affiliation(s)
- Yu-Chang Liu
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua, Taiwan
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Cheng Hsun Lin
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Kuan-Tin Chen
- Department of Radiation Oncology, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
| | - De-Wei Lai
- Experimental Animal Center, Department of Molecular Biology and Cell Research, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
- Department of Nursing, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
15
|
Eun JW, Yoon JH, Ahn HR, Kim S, Kim YB, Lim SB, Park W, Kang TW, Baek GO, Yoon MG, Son JA, Weon JH, Kim SS, Cho HJ, Cheong JY. Cancer-associated fibroblast-derived secreted phosphoprotein 1 contributes to resistance of hepatocellular carcinoma to sorafenib and lenvatinib. Cancer Commun (Lond) 2023; 43:455-479. [PMID: 36919193 PMCID: PMC10091107 DOI: 10.1002/cac2.12414] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/13/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) play an important role in the induction of chemo-resistance. This study aimed to clarify the mechanism underlying CAF-mediated resistance to two tyrosine kinase inhibitors (TKIs), sorafenib and lenvatinib, and to identify a novel therapeutic target for overcoming TKI resistance in hepatocellular carcinoma (HCC). METHODS We performed a systematic integrative analysis of publicly available gene expression datasets and whole-transcriptome sequencing data from 9 pairs of CAFs and para-cancer fibroblasts isolated from human HCC and para-tumor tissues, respectively, to identify key molecules that might induce resistance to TKIs. We then performed in vitro and in vivo experiments to validate selected targets and related mechanisms. The associations of plasma secreted phosphoprotein 1 (SPP1) expression levels before sorafenib/lenvatinib treatment with progression-free survival (PFS) and overall survival (OS) of 54 patients with advanced HCC were evaluated using Kaplan-Meier and Cox regression analysis. RESULTS Bioinformatic analysis identified CAF-derived SPP1 as a candidate molecule driving TKI resistance. SPP1 inhibitors reversed CAF-induced TKI resistance in vitro and in vivo. CAF-derived SPP1 activated rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) through the integrin-protein kinase C-alpha (PKCα) signaling pathway and promoted epithelial-to-mesenchymal transition (EMT). A high plasma SPP1 level before TKI treatment was identified as an independent predictor of poor PFS (P = 0.026) and OS (P = 0.047) in patients with advanced HCC after TKI treatment. CONCLUSIONS CAF-derived SPP1 enhances TKI resistance in HCC via bypass activation of oncogenic signals and EMT promotion. Its inhibition represents a promising therapeutic strategy against TKI resistance in HCC. Moreover, plasma SPP1 level before TKI treatment represents a potential biomarker for treatment response prediction.
Collapse
Affiliation(s)
- Jung Woo Eun
- Department of GastroenterologyAjou University School of MedicineSuwonSouth Korea
| | - Jung Hwan Yoon
- Department of PathologyCollege of MedicineThe Catholic University of KoreaSeoulSouth Korea
| | - Hye Ri Ahn
- Department of GastroenterologyAjou University School of MedicineSuwonSouth Korea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwonSouth Korea
| | - Seokhwi Kim
- Department of PathologyAjou University School of MedicineSuwonSouth Korea
| | - Young Bae Kim
- Department of PathologyAjou University School of MedicineSuwonSouth Korea
| | - Su Bin Lim
- Department of Biochemistry & Molecular BiologyAjou University School of MedicineSuwonSouth Korea
| | - Won Park
- The Moagen, IncDaejeonSouth Korea
| | | | - Geum Ok Baek
- Department of GastroenterologyAjou University School of MedicineSuwonSouth Korea
| | - Moon Gyeong Yoon
- Department of GastroenterologyAjou University School of MedicineSuwonSouth Korea
| | - Ju A Son
- Department of GastroenterologyAjou University School of MedicineSuwonSouth Korea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwonSouth Korea
| | - Ji Hyang Weon
- Department of GastroenterologyAjou University School of MedicineSuwonSouth Korea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwonSouth Korea
| | - Soon Sun Kim
- Department of GastroenterologyAjou University School of MedicineSuwonSouth Korea
| | - Hyo Jung Cho
- Department of GastroenterologyAjou University School of MedicineSuwonSouth Korea
| | - Jae Youn Cheong
- Department of GastroenterologyAjou University School of MedicineSuwonSouth Korea
| |
Collapse
|
16
|
HDAC6 promotes aggressive development of liver cancer by improving egfr mRNA stability. Neoplasia 2022; 35:100845. [PMID: 36334332 PMCID: PMC9640351 DOI: 10.1016/j.neo.2022.100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
|
17
|
Epidermal Growth Factor Receptor immunohistochemical expression in hepatocellular carcinoma without Epidermal Growth Factor Receptor exons 18–21 mutations. ROMANIAN JOURNAL OF INTERNAL MEDICINE 2022; 60:153-159. [DOI: 10.2478/rjim-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction: EGFR targeted therapies, have been proved beneficial for patients with HCC, nevertheless additional research on EGFR immunoexpresion and EGFR mutations is still needed, especially in population in which it has not been done yet. The aim of this study is to evaluate EGFR immunoexpression in HCC without EGFR exons 18–21 mutations and to evaluate its influence on survival in HCC patients in North Macedonia.
Methods: We studied 31 cases of HCC for EGFR immunohistochemical expression and EGFR exons 18–21 mutations. The following clinical parameters were analyzed: Hepatitis B and C virus infection, presence of cirrhosis, tumor size, enlarged lymph nodes, metastases, alpha fetoprotein level and overall survival. Presence of the EGFR immunosignal (membranous and cytoplasmic) and the percentage of positive tumor cells in the entire tumor tissue specimen were semi-quantitatively determined.
Results: Hepatitis B and C virus infection, tumor size, metastatic disease and EGFR immunoexpression have influence on patient’s survival. No EGFR exons 18–21 mutations were detected in this group of HCCs. EGFR expression of 61%–80% in tumor tissue significantly influenced survival of the patients (p < 0.01). Multiple Cox regression confirmed tumor size of 5–10 cm (p < 0.05), tumor size > 10 cm (p < 0.01) and EGFR expression in range of 61% to 80% (p < 0.05) as independent survival predictors in patients with HCC.
Conclusion: EGFR overexpression in range of 61% to 80% was an independent survival predictor in patients with HCC, implying that these patients could benefit from EGFR inhibition. However, the absence of EGFR mutations in exons 18–21 in any of the cases of this study suggest that single drug EGFR targeted therapy in patients with HCC may be insufficient.
Collapse
|
18
|
Khan SA, Lee TKW. Investigations of nitazoxanide molecular targets and pathways for the treatment of hepatocellular carcinoma using network pharmacology and molecular docking. Front Pharmacol 2022; 13:968148. [PMID: 35959427 PMCID: PMC9358010 DOI: 10.3389/fphar.2022.968148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Nitazoxanide has been investigated for colorectal cancer and breast cancer. However, its molecular targets and pathways have not yet been explored for hepatocellular carcinoma (HCC) treatment. Utilizing a network pharmacology approach, nitazoxanide’s potential targets and molecular pathways for HCC treatment were investigated. HCC targets were extracted from the GeneCards database. Potential targets of nitazoxanide were predicted using Swiss Target Prediction and Super Pred. Intersecting targets were analyzed with VENNY online tool. Using Cytoscape, a protein-protein interaction (PPI), cluster, and core targets-pathways networks were constructed. Using the Database for Annotation, Visualization and Integrated Discovery (DAVID), gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. The nitazoxanide was molecularly docked with anti-HCC core targets by employing Auto Dock Vina. A total of 168 potential targets of nitazoxanide, 13,415 HCC-related targets, and 153 intersecting targets were identified. The top eight anti-HCC core targets were identified: SRC, EGFR, CASP3, MMP9, mTOR, HIF1A, ERBB2, and PPARG. GO enrichment analysis showed that nitazoxanide might have anti-HCC effects by affecting gene targets involved in multiple biological processes (BP) (protein phosphorylation, transmembrane receptor protein tyrosine kinase (RTKs) signaling pathway, positive regulation of MAP kinase activity, etc.). KEGG pathways and core targets-pathways network analysis indicated that pathways in cancer and proteoglycans in cancer are two key pathways that significantly contribute to the anti-HCC effects of nitazoxanide. Results of molecular docking demonstrated the potential for active interaction between the top eight anti-HCC core targets and nitazoxanide. Our research offers a theoretical basis for the notion that nitazoxanide may have distinct therapeutic effects in HCC, and the identified pharmacological targets and pathways might function as biomarkers for HCC therapy.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- *Correspondence: Shakeel Ahmad Khan, ; Terence Kin Wah Lee,
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- *Correspondence: Shakeel Ahmad Khan, ; Terence Kin Wah Lee,
| |
Collapse
|
19
|
Yang Y, Gao L, Chen J, Xiao W, Liu R, Kan H. Lamin B1 is a potential therapeutic target and prognostic biomarker for hepatocellular carcinoma. Bioengineered 2022; 13:9211-9231. [PMID: 35436411 PMCID: PMC9161935 DOI: 10.1080/21655979.2022.2057896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/01/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignancy. Previous studies have found that lamin B1 (LMNB1) contributes to the development of human cancers. However, the biological functions and prognostic values of LMNB1 in HCC have not been adequately elucidated. In our present research, the expression pattern of LMNB1 was analyzed. The prognostic values of LMNB1 were evaluated by Kaplan-Meier survival analysis and Cox proportional hazards regression analysis. The effects of LMNB1 on HCC progression were assessed by Cell Counting Kit-8 (CCK-8), colony formation, wound healing, Transwell and in vivo xenograft assays. The mechanisms of LMNB1 in HCC progression were elucidated by gene set enrichment analysis (GSEA) and loss-of-function assays. Besides, a nomogram for predicting overall survival (OS) was constructed. The results demonstrated that LMNB1 was overexpressed in HCC and that increased LMNB1 expression predicted a dismal prognosis. Further experiments showed that LMNB1 facilitated cell proliferation and metastasis in HCC. Functional enrichment analysis revealed that LMNB1 modulated metastasis-associated biological functions such as focal adhesion, extracellular matrix, cell junctions and cell adhesion. Mechanistically, we revealed that LMNB1 promoted HCC progression by regulating the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. Moreover, incorporating LMNB1, Ki67 and Barcelona Clinic Liver Cancer (BCLC) stage into a nomogram showed better predictive accuracy than the Tumor-Node-Metastasis (TNM) stage and BCLC stage. In conclusion, LMNB1 may serve as an effective therapeutic target as well as a reliable prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Yongyu Yang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Gao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junzhang Chen
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wang Xiao
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ruoqi Liu
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Heping Kan
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Tian Y, Lei Y, Fu Y, Sun H, Wang J, Xia F. Molecular Mechanisms of Resistance to Tyrosine Kinase Inhibitors Associated with Hepatocellular Carcinoma. Curr Cancer Drug Targets 2022; 22:454-462. [PMID: 35362393 DOI: 10.2174/1568009622666220330151725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/29/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death, which can be attributed to the high incidence and first diagnosis at an advanced stage. Tyrosine kinase inhibitors (TKIs), a class of small-molecule targeting drugs, are primarily used for the clinical treatment of HCC after chemotherapy because they show significant clinical efficacy and low incidence of clinical adverse reactions. However, resistance to sorafenib and other TKIs, which can be used to treat advanced HCC, poses a significant challenge. Recent mechanistic studies have shown that epithelial-mesenchymal transition or transformation (EMT), ATP binding cassette (ABC) transporters, hypoxia, autophagy, and angiogenesis are involved in apoptosis, angiogenesis, HCC cell proliferation, and TKI resistance in patients with HCC. Exploring and overcoming such resistance mechanisms is essential to extend the therapeutic benefits of TKIs to patients with TKI-resistant HCC. This review aims to summarize the potential resistance mechanism proposed in recent years and methods to reverse TKI resistance in the context of HCC.
Collapse
Affiliation(s)
- Yichen Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, 400038, China
| | - Yongrong Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, 400038, China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Feng Xia
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, 400038, China
| |
Collapse
|
21
|
Shang Y, Zhang H, Cheng Y, Cao P, Cui J, Yin X, Fan S, Li Y. Fluorescent Imaging-Guided Chemo- and Photodynamic Therapy of Hepatocellular Carcinoma with HCPT@NMOFs-RGD Nanocomposites. Int J Nanomedicine 2022; 17:1381-1395. [PMID: 35369034 PMCID: PMC8964448 DOI: 10.2147/ijn.s353803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/10/2022] [Indexed: 01/10/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC), arising from hepatocytes, is the most common primary liver cancer. It is urgent to develop novel therapeutic approaches to improve the grim prognosis of advanced HCC. 10-hydroxycamptothecin (HCPT) has good antitumor activity in cells; however, its hydrophobicity limits its application in the chemotherapy of HCC. Recently, nanoscale porphyrin metal-organic frameworks have been used as drug carriers due to their low biotoxicity and photodynamic properties. Methods Nanoscale zirconium porphyrin metal-organic frameworks (NMOFs) were coated with arginine-glycine-aspartic acid (RGD) peptide to prepare NMOFs-RGD first. The HepG2 cell line, zebrafish embryos and larvae were used to test the biotoxicity and fluorescence imaging capability of NMOFs-RGD both in vitro and in vivo. Then, NMOFs were used as the skeleton, HCPT was assembled into the pores of NMOFs, while RGD peptide was wrapped around to synthesize a novel kind of nanocomposites, HCPT@NMOFs-RGD. The tissue distribution and chemo- and photodynamic therapeutic effects of HCPT@NMOFs-RGD were evaluated in a doxycycline-induced zebrafish HCC model and xenograft mouse model. Results NMOFs-RGD had low biotoxicity, good biocompatibility and excellent imaging capability. In HCC-bearing zebrafish, HCPT@NMOFs-RGD were specifically enriched in the tumor by binding specifically to integrin αvβ3 and led to a reduction in tumor volume. Moreover, the xenografts in mice were eliminated remarkably following HCPT@NMOFs-RGD treatment with laser irradiation, while little morphological change was found in other main organs. Conclusion The nanocomposites HCPT@NMOFs-RGD accomplish tumor targeting and play synergistic chemo- and photodynamic therapeutic effects on HCC, offering a novel imaging-guided drug delivery and theranostic platform.
Collapse
Affiliation(s)
- Yue Shang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People’s Republic of China
| | - Hui Zhang
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai, People’s Republic of China
| | - Yajia Cheng
- Department of Pathology, Nankai University School of Medicine, Tianjin, People’s Republic of China
| | - Peipei Cao
- Department of Pathology, Nankai University School of Medicine, Tianjin, People’s Republic of China
| | - Jianlin Cui
- Department of Pathology, Nankai University School of Medicine, Tianjin, People’s Republic of China
| | - Xuebo Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, People’s Republic of China
| | - Saijun Fan
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People’s Republic of China
| | - Yuhao Li
- Beijing Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Yuhao Li, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China, Tel +86-10-83198269, Email
| |
Collapse
|
22
|
A network pharmacology approach to investigate the anticancer mechanism of cinobufagin against hepatocellular carcinoma via downregulation of EGFR-CDK2 signaling. Toxicol Appl Pharmacol 2021; 431:115739. [PMID: 34619160 DOI: 10.1016/j.taap.2021.115739] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers with high mortality and poor prognosis, and the investigation on new approaches and effective drugs for HCC therapy is of great significance. In our study, we demonstrate that treatment with cinobufagin, a natural compound isolated from traditional chinese medicine Chansu, reduces proliferation and the colony formation capacity of the human hepatoma cells in vitro, in addition, cinobufagin induces mitotic arrest in human hepatoma cells. The results of a network pharmacology-based analysis show that EGFR, MAPK1, PTK2, CDK2, MAPK3, ESR1, CDK1, PRKCA, AR, and CSNK2A1 are the key targets involved in the anti-tumor activities of cinobufagin, additionally, several signaling pathways such as proteoglycans in cancer, pathways in cancer, HIF-1 signaling pathway, VEGF signaling pathway, ErbB signaling pathway, and PI3K-AKT signaling pathway are identified as the potential pathways involved in the inhibitory effects of cinobufagin against HCC. Furthermore, at the molecular level, we find that cinobufagin decreases EGFR expression and CDK2 activity in human hepatoma cells. Inhibition of EGFR or CDK2 expression could not only suppress the growth of tumor cells but also enhance the inhibitory effects of cinobufagin on the proliferative potential of human hepatoma cells. We also demonstrate that EGFR positively regulates CDK2 expression. Furthermore, EGFR inhibitor gefitinib or CDK2 inhibitor CVT-313 synergistically enhances anticancer effects of cinobufagin in human hepatoma cells. Taken together, these findings indicate that cinobufagin may exert antitumor effects by suppressing EGFR-CDK2 signaling, and our study suggests that cinobufagin may be a novel, promising anticancer agent for the treatment of HCC.
Collapse
|
23
|
Briones-Orta MA, Delgado-Coello B, Gutiérrez-Vidal R, Sosa-Garrocho M, Macías-Silva M, Mas-Oliva J. Quantitative Expression of Key Cancer Markers in the AS-30D Hepatocarcinoma Model. Front Oncol 2021; 11:670292. [PMID: 34737944 PMCID: PMC8561839 DOI: 10.3389/fonc.2021.670292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma is one of the cancers with the highest mortality rate worldwide. HCC is often diagnosed when the disease is already in an advanced stage, making the discovery and implementation of biomarkers for the disease a critical aim in cancer research. In this study, we aim to quantify the transcript levels of key signaling molecules relevant to different pathways known to participate in tumorigenesis, with special emphasis on those related to cancer hallmarks and epithelial-mesenchymal transition, using as a model the murine transplantable hepatocarcinoma AS-30D. Using qPCR to quantify the mRNA levels of genes involved in tumorigenesis, we found elevated levels for Tgfb1 and Spp1, two master regulators of EMT. A mesenchymal signature profile for AS-30D cells is also supported by the overexpression of genes encoding for molecules known to be associated to aggressiveness and metastatic phenotypes such as Foxm1, C-met, and Inppl1. This study supports the use of the AS-30D cells as an efficient and cost-effective model to study gene expression changes in HCC, especially those associated with the EMT process.
Collapse
Affiliation(s)
- Marco A Briones-Orta
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Blanca Delgado-Coello
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Roxana Gutiérrez-Vidal
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcela Sosa-Garrocho
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marina Macías-Silva
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jaime Mas-Oliva
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
24
|
He S, Tian S, He X, Le X, Ning Y, Chen J, Chen H, Mu J, Xu K, Xiang Q, Wu Y, Chen J, Xiang T. Multiple targeted self-emulsifying compound RGO reveals obvious anti-tumor potential in hepatocellular carcinoma. Mol Ther Oncolytics 2021; 22:604-616. [PMID: 34589579 PMCID: PMC8449031 DOI: 10.1016/j.omto.2021.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly vascularized, inflammatory, and abnormally proliferating tumor. Monotherapy is often unable to effectively and comprehensively inhibit the progress of HCC. In present study, we selected ginsenoside Rg3, ganoderma lucidum polysaccharide (GLP), and oridonin as the combined therapy. These three plant monomers play important roles in anti-angiogenesis, immunological activation, and apoptosis promotion, respectively. However, the low solubility and poor bioavailability seriously hinder their clinical application. To resolve these problems, we constructed a new drug, Rg3, GLP, and oridonin self-microemulsifying drug delivery system (RGO-SMEDDS). We found that this drug effectively inhibits the progression of HCC by simultaneously targeting multiple signaling pathways. RGO-SMEDDS restored immune function by suppressing the production of immunosuppressive cytokine and M2-polarized macrophages, reduced angiogenesis by downregulation of vascular endothelial growth factor and its receptor, and retarded proliferation by inhibiting the epidermal growth factor receptor EGFR/AKT/epidermal growth factor receptor/protein kinase B/glycogen synthase kinase-3 (GSK3) signaling pathway. In addition, RGO-SMEDDS showed considerable safety in acute toxicity tests. Results from this study show that RGO-SMEDDS is a promising therapy for the treatment of HCC.
Collapse
Affiliation(s)
- Sanxiu He
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shaorong Tian
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian He
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Le
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yijiao Ning
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jialin Chen
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Hongyi Chen
- Chongqing College of Humanities, Science & Technology, Chongqing, China
| | - Junhao Mu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Xu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Wu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiong Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Charneau J, Suzuki T, Shimomura M, Fujinami N, Nakatsura T. Peptide-Based Vaccines for Hepatocellular Carcinoma: A Review of Recent Advances. J Hepatocell Carcinoma 2021; 8:1035-1054. [PMID: 34513746 PMCID: PMC8424432 DOI: 10.2147/jhc.s291558] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Primary liver cancer is the sixth most commonly diagnosed cancer and the third leading cause of cancer-related deaths worldwide. After surgery, up to 70% of patients experience relapses. The current first-line therapy for advanced cases of hepatocellular carcinoma (HCC) comprises sorafenib and lenvatinib administered as single-drug therapies. Regorafenib, cabozantinib, and ramucirumab are administered as second-line therapies. Recently, it has been reported that using the immune checkpoint inhibitors atezolizumab (anti-PDL1 antibody) and bevacizumab (anti-VEGF antibody) leads to longer overall survival of unresectable cases, when compared with the use of sorafenib. The role of cancer immunity against HCC has attracted the attention of clinicians. In this review, we describe our phase I/II clinical trials of peptide vaccines targeting GPC3 in HCC and discuss the potential of peptide vaccines targeting common cancer antigens that are highly expressed in HCC, such as WT-I, AFP, ROBO1, and FOXM1. Further, we introduce recent cancer vaccines targeting neoantigens, which have attracted attention in recent times, as well as present our preclinical studies, the results of which might aid to initiate a neoantigen vaccine clinical trial, which would be the first of its kind in Japan.
Collapse
Affiliation(s)
- Jimmy Charneau
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City, Japan
| | - Toshihiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City, Japan.,Department of Pharmacology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City, Japan
| | - Norihiro Fujinami
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City, Japan
| |
Collapse
|
26
|
Álvarez-Mercado AI, Caballeria-Casals A, Rojano-Alfonso C, Chávez-Reyes J, Micó-Carnero M, Sanchez-Gonzalez A, Casillas-Ramírez A, Gracia-Sancho J, Peralta C. Insights into Growth Factors in Liver Carcinogenesis and Regeneration: An Ongoing Debate on Minimizing Cancer Recurrence after Liver Resection. Biomedicines 2021; 9:1158. [PMID: 34572344 PMCID: PMC8470173 DOI: 10.3390/biomedicines9091158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma has become a leading cause of cancer-associated mortality throughout the world, and is of great concern. Currently used chemotherapeutic drugs in the treatment of hepatocellular carcinoma lead to severe side effects, thus underscoring the need for further research to develop novel and safer therapies. Liver resection in cancer patients is routinely performed. After partial resection, liver regeneration is a perfectly calibrated response apparently sensed by the body's required liver function. This process hinges on the effect of several growth factors, among other molecules. However, dysregulation of growth factor signals also leads to growth signaling autonomy and tumor progression, so control of growth factor expression may prevent tumor progression. This review describes the role of some of the main growth factors whose dysregulation promotes liver tumor progression, and are also key in regenerating the remaining liver following resection. We herein summarize and discuss studies focused on partial hepatectomy and liver carcinogenesis, referring to hepatocyte growth factor, insulin-like growth factor, and epidermal growth factor, as well as their suitability as targets in the treatment of hepatocellular carcinoma. Finally, and given that drugs remain one of the mainstay treatment options in liver carcinogenesis, we have reviewed the current pharmacological approaches approved for clinical use or research targeting these factors.
Collapse
Affiliation(s)
- Ana I. Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Albert Caballeria-Casals
- Hepatic Ischemia-Reperfusion Injury Department, Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.C.-C.); (C.R.-A.); (M.M.-C.)
| | - Carlos Rojano-Alfonso
- Hepatic Ischemia-Reperfusion Injury Department, Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.C.-C.); (C.R.-A.); (M.M.-C.)
| | - Jesús Chávez-Reyes
- Facultad de Medicina e Ingeniería en Sistemas Computacionales Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico; (J.C.-R.); (A.C.-R.)
| | - Marc Micó-Carnero
- Hepatic Ischemia-Reperfusion Injury Department, Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.C.-C.); (C.R.-A.); (M.M.-C.)
| | - Alfredo Sanchez-Gonzalez
- Teaching and Research Department, Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico;
| | - Araní Casillas-Ramírez
- Facultad de Medicina e Ingeniería en Sistemas Computacionales Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico; (J.C.-R.); (A.C.-R.)
- Teaching and Research Department, Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico;
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, CIBEREHD, 03036 Barcelona, Spain;
- Barcelona Hepatic Hemodynamic Laboratory, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Carmen Peralta
- Hepatic Ischemia-Reperfusion Injury Department, Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.C.-C.); (C.R.-A.); (M.M.-C.)
| |
Collapse
|
27
|
Toan VN, Thanh ND. Synthesis and antiproliferative activity of hybrid thiosemicarbazone derivatives bearing coumarin and d-galactose moieties with EGFR inhibitory activity and molecular docking study. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02773-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Li TT, Mou J, Pan YJ, Huo FC, Du WQ, Liang J, Wang Y, Zhang LS, Pei DS. MicroRNA-138-1-3p sensitizes sorafenib to hepatocellular carcinoma by targeting PAK5 mediated β-catenin/ABCB1 signaling pathway. J Biomed Sci 2021; 28:56. [PMID: 34340705 PMCID: PMC8327419 DOI: 10.1186/s12929-021-00752-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022] Open
Abstract
Background Sorafenib is a kinase inhibitor that is used as a first-line therapy in advanced hepatocellular carcinoma (HCC) patients. However, the existence of sorafenib resistance has limited its therapeutic effect. Through RNA sequencing, we demonstrated that miR-138-1-3p was downregulated in sorafenib resistant HCC cell lines. This study aimed to investigate the role of miR-138-1-3p in sorafenib resistance of HCC. Methods In this study, quantitative real-time PCR (qPCR) and Western Blot were utilized to detect the levels of PAK5 in sorafenib-resistant HCC cells and parental cells. The biological functions of miR-138-1-3p and PAK5 in sorafenib-resistant cells and their parental cells were explored by cell viability assays and flow cytometric analyses. The mechanisms for the involvement of PAK5 were examined via co-immunoprecipitation (co-IP), immunofluorescence, dual luciferase reporter assay and chromatin immunoprecipitation (ChIP). The effects of miR-138-1-3p and PAK5 on HCC sorafenib resistant characteristics were investigated by a xenotransplantation model. Results We detected significant down-regulation of miR-138-1-3p and up-regulation of PAK5 in sorafenib-resistance HCC cell lines. Mechanistic studies revealed that miR-138-1-3p reduced the protein expression of PAK5 by directly targeting the 3′-UTR of PAK5 mRNA. In addition, we verified that PAK5 enhanced the phosphorylation and nuclear translocation of β-catenin that increased the transcriptional activity of a multidrug resistance protein ABCB1. Conclusions PAK5 contributed to the sorafenib resistant characteristics of HCC via β-catenin/ABCB1 signaling pathway. Our findings identified the correlation between miR-138-1-3p and PAK5 and the molecular mechanisms of PAK5-mediated sorafenib resistance in HCC, which provided a potential therapeutic target in advanced HCC patients.
Collapse
Affiliation(s)
- Tong-Tong Li
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China.,Department of Pathology and Pathophysiology, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China
| | - Jie Mou
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221006, China
| | - Yao-Jie Pan
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Fu-Chun Huo
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Wen-Qi Du
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Jia Liang
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yang Wang
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Lan-Sheng Zhang
- Department of Oncological Radiotherapy, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China.
| |
Collapse
|
29
|
Zhu Y, Xu J, Hu W, Wang F, Zhou Y, Gong W, Xu W. Inhibiting USP8 overcomes hepatocellular carcinoma resistance via suppressing receptor tyrosine kinases. Aging (Albany NY) 2021; 13:14999-15012. [PMID: 34081623 PMCID: PMC8221339 DOI: 10.18632/aging.203061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/29/2021] [Indexed: 01/05/2023]
Abstract
The ubiquitin-specific protease 8 (USP8) is a prototypic multidomain deubiquitinating enzyme with pleiotropic functions. We investigated the role of USP8 in hepatocellular carcinoma (HCC) by analyzing expression patterns of USP8 in HCC patients, and evaluating its functions and underlying signaling. Among 20 HCC patients investigated, we found that USP8 protein upregulation was a common phenomenon (17 out of 20) in HCC compared to normal liver tissue. Furthermore, the upregulation of USP8 was not associated with any clinicopathology. USP8 inhibition via genetic and pharmacological approaches resulted in growth inhibition and apoptosis induction in both sensitive and doxorubicin-resistant HCC cells. Of note, USP8 inhibition significantly enhanced doxorubicin or sorafenib's efficacy in HCC cells and mouse models. We further found that USP8 inhibition decreased levels of multiple receptor tyrosine kinases (RTKs) by ~90%, such as epidermal growth factor receptor (EGFR) and c-Met. Consistently, the downstream signaling regulated by RTKs was disrupted in HCC cells after USP8 inhibition, as shown by the decreased p-Akt, p-STAT3 and p-Raf. Our findings demonstrate that USP8 is a novel therapeutic target in HCC. Inhibiting USP8 has potential to overcome current drug resistance, particularly on HCC patients with high USP8 expression.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Jianguo Xu
- Department of Liver Disease Center, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Fang Wang
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Yan Zhou
- Information Management Section, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Wen Xu
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
30
|
Zheng J, Zeng L, Tang M, Lin H, Pi C, Xu R, Cui X. Novel Ferrocene Derivatives Induce G0/G1 Cell Cycle Arrest and Apoptosis through the Mitochondrial Pathway in Human Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22063097. [PMID: 33803555 PMCID: PMC8003055 DOI: 10.3390/ijms22063097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
In this study, detailed information on hepatocellular carcinoma (HCC) cells (HepG-2, SMMC-7721, and HuH-7) and normal human liver cell L02 treated by ferrocene derivatives (compounds 1, 2 and 3) is provided. The cell viability assay showed that compound 1 presented the most potent and selective anti-HCC activity. Further mechanism study indicated that the proliferation inhibition effect of compound 1 was associated with the cycle arrest at the G0/G1 phase and downregulation of cyclin D1/CDK4. Moreover, compound 1 could induce apoptosis in HCC cells by loss of mitochondrial membrane potential (ΔΨm), accumulation of reactive oxygen species (ROS), decrease in Bcl-2, increase in BAX and Bad, translocation of Cytochrome c, activation of Caspase-9, -3, and cleavage of PARP. These results indicated that compound 1 would be a promising candidate against HCC through G0/G1 cell cycle arrest-related proliferation inhibition and mitochondrial pathway-dependent apoptosis.
Collapse
Affiliation(s)
- Jianrong Zheng
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Medicine, Huaqiao University, Xiamen 361021, China; (J.Z.); (L.Z.); (H.L.); (R.X.)
| | - Liao Zeng
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Medicine, Huaqiao University, Xiamen 361021, China; (J.Z.); (L.Z.); (H.L.); (R.X.)
| | - Mingqing Tang
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Medicine, Huaqiao University, Xiamen 361021, China; (J.Z.); (L.Z.); (H.L.); (R.X.)
- Correspondence: (M.T.); (X.C.)
| | - Hongjun Lin
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Medicine, Huaqiao University, Xiamen 361021, China; (J.Z.); (L.Z.); (H.L.); (R.X.)
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China;
| | - Ruian Xu
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Medicine, Huaqiao University, Xiamen 361021, China; (J.Z.); (L.Z.); (H.L.); (R.X.)
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Medicine, Huaqiao University, Xiamen 361021, China; (J.Z.); (L.Z.); (H.L.); (R.X.)
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China;
- Correspondence: (M.T.); (X.C.)
| |
Collapse
|
31
|
Cabral LKD, Tiribelli C, Sukowati CHC. Sorafenib Resistance in Hepatocellular Carcinoma: The Relevance of Genetic Heterogeneity. Cancers (Basel) 2020; 12:1576. [PMID: 32549224 PMCID: PMC7352671 DOI: 10.3390/cancers12061576] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Despite advances in biomedicine, the incidence and the mortality of hepatocellular carcinoma (HCC) remain high. The majority of HCC cases are diagnosed in later stages leading to the less than optimal outcome of the treatments. Molecular targeted therapy with sorafenib, a dual-target inhibitor targeting the serine-threonine kinase Raf and the tyrosine kinases VEGFR/PDGFR, is at present the main treatment for advanced-stage HCC, either in a single or combinatory regimen. However, it was observed in a large number of patients that its effectiveness is hampered by drug resistance. HCC is highly heterogeneous, within the tumor and among individuals, and this influences disease progression, classification, prognosis, and naturally cellular susceptibility to drug resistance. This review aims to provide an insight on how HCC heterogeneity influences the different primary mechanisms of chemoresistance against sorafenib including reduced drug intake, enhanced drug efflux, intracellular drug metabolism, alteration of molecular targets, activation/inactivation of signaling pathways, changes in the DNA repair machinery, and negative balance between apoptosis and survival of the cancer cells. The diverse variants, mutations, and polymorphisms in molecules and their association with drug response can be a helpful tool in treatment decision making. Accordingly, the existence of heterogeneous biomarkers in the tumor must be considered to strengthen multi-target strategies in patient-tailored treatment.
Collapse
Affiliation(s)
| | | | - Caecilia H. C. Sukowati
- Fondazione Italiana Fegato (Italian Liver Foundation), AREA Science Park, Basovizza, 34149 Trieste, Italy; (L.K.D.C.); (C.T.)
| |
Collapse
|