1
|
Hairsine B, Leire E, Rostam HM, Kristian SA, Rhodes E, Johnson A, Bushdyhan M, Chapman D, Pickford C, Westby M, Bright H. Harnessing endogenous anti-glycan antibodies using a novel, bifunctional immunotherapy to treat gram-negative bacterial infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf055. [PMID: 40344777 DOI: 10.1093/jimmun/vkaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/17/2025] [Indexed: 05/11/2025]
Abstract
The current array of traditional antibacterial agents targeting Gram-negative infections are failing to meet the clinical need. Here we present a novel, bifunctional immunotherapy (CTX-09) with the ability to harness endogenous anti-galactose-alpha-1,3-galactosyl-beta-1,4-N-acetyl-glucosamine (anti-αGal) antibodies to drive immune-mediated clearance of Gram-negative bacteria. In addition, CTX-09 has direct-acting broad-spectrum bactericidal activity equivalent to colistin and meropenem against 1952 Gram-negative clinical isolates. In vitro, CTX-09 demonstrated immune-mediated efficacy through recruitment of anti-αGal antibodies and engagement of antibody effector mechanisms that enhanced bacterial clearance at sub-bactericidal concentrations. In vivo, at sub-bactericidal doses, CTX-09 demonstrated anti-αGal antibody driven clearance of susceptible and multidrug-resistant (MDR) strains. In the presence of anti-αGal antibody, bacterial burden was reduced by >99.9% (3-log10) in neutropenic mouse thigh and pneumonia infection models. This data suggest that CTX-09 or other antibody-recruiting molecules have potential to address the urgent clinical need of patients with gram-negative infections using a novel immunotherapeutic mechanism.
Collapse
Affiliation(s)
| | - Emma Leire
- Centauri Therapeutics Limited, Cheshire, United Kingdom
- Asgard Therapeutics, Lund, Sweden
| | | | - Sascha A Kristian
- Centauri Therapeutics Limited, Cheshire, United Kingdom
- Immuno-ID Consulting, LLC, Trappe, PA, United States
| | - Edward Rhodes
- Centauri Therapeutics Limited, Cheshire, United Kingdom
- Global Product Development, AstraZeneca, Mölndal, Sweden
| | - Adam Johnson
- Centauri Therapeutics Limited, Cheshire, United Kingdom
| | | | - David Chapman
- Centauri Therapeutics Limited, Cheshire, United Kingdom
| | - Chris Pickford
- Centauri Therapeutics Limited, Cheshire, United Kingdom
- ADC Therapeutics, London, United Kingdom
| | - Mike Westby
- Centauri Therapeutics Limited, Cheshire, United Kingdom
- RQ Biotechnology Limited, London, United Kingdom
| | - Helen Bright
- Centauri Therapeutics Limited, Cheshire, United Kingdom
| |
Collapse
|
2
|
Cheng Y, Zhou L, Wang D, Li X, Lin R, Chen J, Tu F, Lin Y, Wu W, Liu M, Zhang H, Qiu H. Inhaled alone versus inhaled plus intravenous polymyxin B for the treatment of pneumonia due to carbapenem-resistant gram-negative bacteria: A prospective randomized controlled trial. Int J Antimicrob Agents 2025; 65:107483. [PMID: 40023452 DOI: 10.1016/j.ijantimicag.2025.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 02/12/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
OBJECTIVES Infections due to carbapenem-resistant Gram-negative bacteria (CR-GNB) are associated with considerable morbidity and mortality. Polymyxin B (PMB) is a first-line agent for CR-GNB-associated pneumonia, but limited data exist on the clinical use of inhaled (IH) PMB. METHODS A single-center, prospective randomized controlled trial was conducted in China to compare IH PMB alone with IH plus intravenous (IV) PMB between February 2022 and February 2024. The primary outcome was the clinical cure rate. RESULTS Twenty-two evaluable patients were assigned to the IH group, and 56 patients were included in the IH+IV group. Baseline characteristics were comparable between the two groups. No significant differences were observed in clinical cure rates, favorable clinical outcomes, microbiological outcomes, all-cause mortality, or pneumonia-related mortality. However, IH PMB alone was associated with a lower incidence of nephrotoxicity (P = 0.030). IH PMB demonstrated significantly higher drug concentrations in the epithelial lining fluid (ELF) compared to systemic administration. Patients with immunosuppressive therapy (OR, 0.066; 95% CI, 0.010-0.433; P = 0.005), malignancies (OR, 0.112; 95% CI, 0.016-0.797; P = 0.029), and higher SOFA scores (OR, 0.693; 95% CI, 0.518-0.929; P = 0.014) were less likely to achieve favorable clinical outcomes. Conversely, higher PMB ELF 1-hour concentrations (OR, 1.085; 95% CI, 1.026-1.148; P = 0.004) were associated with more favorable clinical outcomes. The combination of these four indicators demonstrated excellent diagnostic performance (AUC = 0.882). Plasma 1-hour PMB concentrations showed acceptable predictive performance for nephrotoxicity (AUC = 0.766). CONCLUSIONS The potential benefits of IH PMB outweigh the risks, making it an effective treatment for CR-GNB-associated pneumonia in combination with other empirical antimicrobial agents.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China; College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Lili Zhou
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Danjie Wang
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xueyong Li
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China; College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Rongqi Lin
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China; College of Pharmacy, Fujian Medical University, Fuzhou, China; Department of Pharmacy, Shanghang County Hospital, Shanghang, China
| | - Junnian Chen
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fuquan Tu
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yiqin Lin
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wenwei Wu
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China; College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hui Zhang
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Hongqiang Qiu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China; College of Pharmacy, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Abousaad O, Al-Ajji A, Abouazab N, Aljoaid A, Sreedharan JK. Strategies for preventing ventilator-associated pneumonia in adults in the Middle East and North Africa Region: A systematic review and meta-analysis. Ann Thorac Med 2025; 20:90-97. [PMID: 40236383 PMCID: PMC11996136 DOI: 10.4103/atm.atm_237_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Ventilator-associated pneumonia (VAP) is a common complication in intensive care units (ICUs), particularly in patients undergoing prolonged mechanical ventilation. VAP rates vary significantly across regions, with the Middle East and North Africa (MENA) region experiencing relatively high incidences. This study systematically reviews and analyses the efficacy of various VAP prevention strategies in the adult population of the MENA region. METHODS A systematic review and meta-analysis were conducted following PRISMA guidelines. Electronic databases (PubMed, Scopus, and CINAHL) were searched for studies from January 2004 to May 2024 that investigated VAP prevention strategies in adult ICU patients in the MENA region. Data extraction and quality assessment were performed by multiple independent reviewers. Meta-analysis was carried out using the DerSimonian and Laird random effect models. RESULTS A total of 10 randomized clinical trials conducted in Iran and Tunisia were included. The studies evaluated various interventions, including respiratory care programs, oral care protocols, and tracheal suction techniques. Significant reductions in VAP incidence were observed with interventions such as aerosolized colistin and comprehensive oral care (e.g., clove mouthwash). However, certain interventions, such as ondansetron and N-acetylcysteine, did not yield significant benefits. CONCLUSION This meta-analysis highlights effective VAP prevention strategies in the MENA region, with notable improvements in patient outcomes. These findings can potentially help in developing policies and guidelines to enhance VAP prevention efforts across ICUs in the region. Further research is essential to address existing gaps and refine prevention strategies.
Collapse
Affiliation(s)
- Omar Abousaad
- Department of Respiratory Therapy, College of Health Sciences, University of Doha for Science and Technology, Doha, Qatar
| | - Aisha Al-Ajji
- Department of Respiratory Therapy, College of Health Sciences, University of Doha for Science and Technology, Doha, Qatar
| | - Noor Abouazab
- Department of Respiratory Therapy, College of Health Sciences, University of Doha for Science and Technology, Doha, Qatar
| | - Adel Aljoaid
- Department of Respiratory Therapy, College of Health Sciences, University of Doha for Science and Technology, Doha, Qatar
| | - Jithin K. Sreedharan
- Department of Respiratory Therapy, College of Health Sciences, University of Doha for Science and Technology, Doha, Qatar
| |
Collapse
|
4
|
Tong R, Zou X, Shi X, Zhang X, Li X, Liu S, Duan X, Han B, Wang H, Zhang R, Sun L, Kong Y, Zhang F, Ma M, Ding X, Sun T. Intravenous combined with aerosolised polymyxins vs intravenous polymyxins monotherapy for ventilator-associated pneumonia: A systematic review and meta-analysis. Int J Antimicrob Agents 2024; 64:107357. [PMID: 39389385 DOI: 10.1016/j.ijantimicag.2024.107357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Polymyxins were applied via different administration routes to treat ventilator-associated pneumonia (VAP) caused by carbapenem-resistant Gram-negative bacteria (CR-GNB). The potential benefits of aerosolised polymyxins as adjunctive treatment for patients are contradictory. This review assessed the safety and efficacy of intravenous (IV) combined with aerosolised polymyxins vs IV polymyxins monotherapy in patients with VAP caused by CR-GNB. Two reviewers independently evaluated and extracted data from PubMed, Embase, Cochrane library and Web of Science. The primary outcome was all-cause mortality and secondary outcomes included clinical cure rate, clinical improvement rate, microbiological eradication rate and nephrotoxicity. Differences for dichotomous outcomes were expressed as odds ratios (ORs) with 95% confidence intervals (CIs). Eleven eligible studies were included. The results showed that compared with IV polymyxins monotherapy, IV plus aerosolised polymyxins therapy significantly reduced all-cause mortality rate (OR = 0.75, 95% CI 0.57-0.99, P = 0.045) and improved clinical improvement rate (OR = 1.62, 95% CI 1.02-2.60, P = 0.043) and microbial eradication rate (OR = 2.07, 95% CI 1.40-3.05, P = 0.000). However, there were no significant differences in terms of clinical cure rate (OR = 1.59, 95% CI 0.96-2.63, P = 0.072) and nephrotoxicity (OR = 1.14, 95% CI 0.80-1.63, P = 0.467) for IV plus aerosolised polymyxins therapy. Subgroup analysis revealed that the clinical improvement rate was significantly improved in case-control studies. Aerosolised polymyxins may be a useful adjunct to IV polymyxins for patients with CR-GNB VAP.
Collapse
Affiliation(s)
- Ran Tong
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Xinlei Zou
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xinge Shi
- Xinyang Central Hospital, Xinyang 464000, China.
| | - Xiaojuan Zhang
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Xiang Li
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Shaohua Liu
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Xiaoguang Duan
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Bin Han
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Haixu Wang
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Ruifang Zhang
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Limin Sun
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Yu Kong
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Fen Zhang
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Mingyu Ma
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Xianfei Ding
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Tongwen Sun
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| |
Collapse
|
5
|
Ding P, Li H, Nan Y, Liu C, Wang G, Cai H, Yu W. Outcome of intravenous and inhaled polymyxin B treatment in patients with multidrug-resistant gram-negative bacterial pneumonia. Int J Antimicrob Agents 2024; 64:107293. [PMID: 39094752 DOI: 10.1016/j.ijantimicag.2024.107293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE The incidence of pneumonia caused by multidrug-resistant gram-negative bacteria (MDR GNB) is increasing, which imposes significant burden on public health. Inhalation combined with intravenous polymyxins has emerged as a viable treatment option. However, pharmacokinetic studies focusing on intravenous and inhaled polymyxin B (PMB) are limited. METHODS This study included seven patients with MDR GNB-induced pneumonia who were treated with intravenous plus inhaled PMB from March 1 to November 30, 2022, in the intensive care unit of the First Affiliated Hospital of Zhejiang University School of Medicine. Clinical outcomes and therapeutic drug monitoring data of PMB in both plasma and epithelial lining fluid (ELF) were retrospectively reviewed. RESULTS Median PMB concentrations in the ELF were 7.83 (0.72-66.5), 116.72 (17.37-571.26), 41.1 (3.69-133.78) and 33.82 (0.83-126.68) mg/L at 0, 2, 6 and 12 h, respectively, and were much higher than those detected in the serum. ELF concentrations of PMB at 0, 2, 6 and 12 h were higher than the minimum inhibitory concentrations of pathogens isolated from the patients. Steady-state concentrations of PMB in the plasma were >2 mg/L in most patients. Of the patients, 57.14% were cured and 71.43% showed a favourable microbiological response. The incidence of side effects with PMB was low. CONCLUSIONS Inhaled plus intravenous PMB can achieve high ELF concentrations and favourable clinical outcomes without an increased adverse effect profile. This treatment approach appears promising for the treatment of patients with pneumonia caused by MDR-GNB.
Collapse
Affiliation(s)
- Peili Ding
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Hangyang Li
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Yuyu Nan
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Chengwei Liu
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Guobin Wang
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Hongliu Cai
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Wenqiao Yu
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
6
|
Zhang Z, Li H, Hu Y, Sun B, Ke T, Wu Q, Lian X, Yu W. The efficacy and safety of inhaled antibiotics for pneumonia: A systematic review and meta-analysis. Pulm Pharmacol Ther 2024; 86:102315. [PMID: 39009240 DOI: 10.1016/j.pupt.2024.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/15/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVES The aim of this study was to evaluate the efficacy and safety of inhaled antibiotics for adults with pneumonia by meta-analysis. METHODS Literature retrieval was completed through five databases (PubMed, Embase, Cochrane Library, Web of Science and Scopus) by the deadline of May 31, 2024. The process of study selection and data extraction were performed independently by two reviewers. The quality of observational studies and randomized controlled trial (RCT) studies were evaluated by Newcastle Ottawa scale and Jadad scale, respectively. The primary outcomes included mortality, clinical cure, and microbiological cure. Secondary outcomes were recurrence and renal impairment. RESULTS There were 30 studies were analyzed, including 12 RCT studies and 18 observational studies. Inhaled antibiotics did not significantly reduce mortality in RCT studies (odds ratio (OR) = 1.06, 95 % confidence interval (CI): 0.80-1.41). Inhaled antibiotics were associated with higher rates of clinical cure (OR = 1.47 95%CI: 0.82-2.66 in RCT studies and OR = 2.09, 95%CI: 1.36-3.21 in observational studies) and microbiological cure (OR = 7.00 in RCT studies and OR = 2.20 in observational studies). Subgroup analysis showed patients received inhaled antibiotics combined with intravenous administration and inhaled amikacin had better improvements of mortality, clinical cure and microbiological cure. Inhaled antibiotics were not associated with recurrence. The pooled OR of renal impairment were 0.65 (95%CI: 0.27-1.13; I-squared = 43.5 %, P = 0.124) and 0.63(95%CI: 0.26-1.11; I-squared = 69.0 %, P = 0.110) in RCT studies and observational studies, respectively. CONCLUSIONS Inhaled antibiotics decreased risk of renal impairment and achieved significant improvements of clinical and microbiological cure in patients with pneumoniae.
Collapse
Affiliation(s)
- Zengzeng Zhang
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Xiangshan First People's Hospital Medical and Health Group, Ningbo Fourth Hospital, Ningbo, China
| | - Hong Li
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Xiangshan First People's Hospital Medical and Health Group, Ningbo Fourth Hospital, Ningbo, China
| | - Yutao Hu
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Xiangshan First People's Hospital Medical and Health Group, Ningbo Fourth Hospital, Ningbo, China
| | - Binhui Sun
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Xiangshan First People's Hospital Medical and Health Group, Ningbo Fourth Hospital, Ningbo, China
| | - Tingting Ke
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Xiangshan First People's Hospital Medical and Health Group, Ningbo Fourth Hospital, Ningbo, China
| | - Qihuan Wu
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Xiangshan First People's Hospital Medical and Health Group, Ningbo Fourth Hospital, Ningbo, China
| | - Xiang Lian
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Xiangshan First People's Hospital Medical and Health Group, Ningbo Fourth Hospital, Ningbo, China.
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Zhou Y, Wang G, Zhao Y, Chen W, Chen X, Qiu Y, Liu Y, Wu S, Guan J, Chang P, Liu Y, Liu Z. Efficacy and safety of different polymyxin-containing regimens for the treatment of pneumonia caused by multidrug-resistant gram-negative bacteria: a systematic review and network meta-analysis. Crit Care 2024; 28:239. [PMID: 39004760 PMCID: PMC11247855 DOI: 10.1186/s13054-024-05031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND The optimal administration of polymyxins for treating multidrug-resistant gram-negative bacterial (MDR-GNB) pneumonia remains unclear. This study aimed to systematically assess the efficacy and safety of three polymyxin-containing regimens by conducting a comprehensive network meta-analysis. METHODS We comprehensively searched nine databases. Overall mortality was the primary outcome, whereas the secondary outcomes encompassed microbial eradication rate, clinical success, acute kidney injury, and incidence of bronchospasm. Extracted study data were analyzed by pairwise and network meta-analyses. Version 2 of the Cochrane risk-of-bias tool and the Risk of Bias in Nonrandomized Studies of Interventions (ROBINS-I) assessment tool were used to assess the risk of bias in randomized trials and cohort studies, respectively. RESULTS This study included 19 observational studies and 3 randomized controlled trials (RCTs), encompassing 3318 patients. Six studies with high risk of bias were excluded from the primary analysis. In the pairwise meta-analysis, compared to the intravenous (IV) polymyxin-containing regimen, the intravenous plus inhaled (IV + IH) polymyxin-containing regimen showed a significant decrease in overall mortality, while no statistically significant difference was found in the inhaled (IH) polymyxin-containing regimen. The network meta-analysis indicated that the IV + IH polymyxin-containing regimen had significantly lower overall mortality (OR 0.67; 95% confidence interval [CI] 0.50-0.88), higher clinical success rate (OR 1.90; 95% CI 1.20-3.00), better microbial eradication rate (OR 2.70; 95% CI 1.90-3.90) than the IV polymyxin-containing regimen, and significantly better microbial eradication rate when compared with the IH polymyxin-containing regimen (OR 2.30; 95% CI 1.30-4.20). Furthermore, compared with IV + IH and IV polymyxin-containing regimens, the IH polymyxin-containing regimen showed a significant reduction in acute kidney injury. CONCLUSIONS Our study indicates that among the three administration regimens, the IV + IH polymyxin-containing regimen may be the most effective for treating MDR-GNB pneumonia, with a significantly lower overall mortality compared to the IV regimen and a considerably higher microbial eradication rate compared to the IH regimen. The IH regimen may be considered superior to the IV regimen due to its substantially lower incidence of acute kidney injury, even though the reduction in overall mortality was not significant.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Critical Care Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, 253 Gongye Rd, Guangzhou, 510282, China
| | - Guizhong Wang
- Department of Critical Care Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, 253 Gongye Rd, Guangzhou, 510282, China
| | - Ying Zhao
- Department of Critical Care Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, 253 Gongye Rd, Guangzhou, 510282, China
| | - Weijia Chen
- Department of Critical Care Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, 253 Gongye Rd, Guangzhou, 510282, China
| | - Xuyan Chen
- Department of Critical Care Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, 253 Gongye Rd, Guangzhou, 510282, China
| | - Yuqi Qiu
- Department of Critical Care Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, 253 Gongye Rd, Guangzhou, 510282, China
| | - Yuanyu Liu
- Department of Critical Care Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, 253 Gongye Rd, Guangzhou, 510282, China
| | - Shuqi Wu
- Department of Critical Care Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, 253 Gongye Rd, Guangzhou, 510282, China
| | - Jianbin Guan
- Department of Critical Care Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, 253 Gongye Rd, Guangzhou, 510282, China
| | - Ping Chang
- Department of Critical Care Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, 253 Gongye Rd, Guangzhou, 510282, China
| | - Yong Liu
- Department of Intensive Care Unit, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Zhanguo Liu
- Department of Critical Care Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, 253 Gongye Rd, Guangzhou, 510282, China.
| |
Collapse
|
8
|
Changsan N, Atipairin A, Muenraya P, Sritharadol R, Srichana T, Balekar N, Sawatdee S. In Vitro Evaluation of Colistin Conjugated with Chitosan-Capped Gold Nanoparticles as a Possible Formulation Applied in a Metered-Dose Inhaler. Antibiotics (Basel) 2024; 13:630. [PMID: 39061312 PMCID: PMC11274357 DOI: 10.3390/antibiotics13070630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Inhaled colistin is used to treat pneumonia and respiratory infections through nebulization or dry powder inhalers. Nevertheless, the development of a metered-dose inhaler (MDI) for colistin, which could enhance patient convenience and treatment efficacy, has not yet been developed. Colistin is known for its ability to induce cellular toxicity. Gold nanoparticles (AuNPs) can potentially mitigate colistin toxicity. Therefore, this study aimed to evaluate the antimicrobial effectiveness of colistin conjugated with chitosan-capped gold nanoparticles (Col-CS-AuNPs) and their potential formulation for use with MDIs to deliver the aerosol directly to the deep lung. Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and elemental analysis were used to characterize the synthesized Col-CS-AuNPs. Drug release profiles fitted with the most suitable release kinetic model were evaluated. An MDI formulation containing 100 µg of colistin per puff was prepared. The aerosol properties used to determine the MDI performance included the fine particle fraction, mass median aerodynamic diameter, and geometric standard deviation, which were evaluated using the Andersen Cascade Impactor. The delivered dose uniformity was also determined. The antimicrobial efficacy of the Col-CS-AuNP formulation in the MDI was assessed. The chitosan-capped gold nanoparticles (CS-AuNPs) and Col-CS-AuNPs had particle sizes of 44.34 ± 1.02 and 174.50 ± 4.46 nm, respectively. CS-AuNPs effectively entrapped 76.4% of colistin. Col-CS-AuNPs exhibited an initial burst release of up to 60% colistin within the first 6 h. The release mechanism was accurately described by the Korsmeyer-Peppas model, with an R2 > 0.95. The aerosol properties of the Col-CS-AuNP formulation in the MDI revealed a high fine particle fraction of 61.08%, mass median aerodynamic diameter of 2.34 µm, and geometric standard deviation of 0.21, with a delivered dose uniformity within 75-125% of the labeled claim. The Col-CS-AuNP MDI formulation completely killed Escherichia coli at 5× and 10× minimum inhibitory concentrations after 6 and 12 h of incubation, respectively. The toxicity of CS-AuNP and Col-CS-AuNP MDI formulations in upper and lower respiratory tract cell lines was lower than that of free colistin. The stability of the Col-CS-AuNP MDI formulation was maintained for at least 3 months. The Col-CS-AuNP MDI formulation effectively eradicated bacteria over a 12-h period, showing promise for advancing lung infection treatments.
Collapse
Affiliation(s)
- Narumon Changsan
- College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand;
| | - Apichart Atipairin
- School of Pharmacy, Walailak University, Thasala 80160, Nakhon Si Thammarat, Thailand; (A.A.); (P.M.)
- Drug and Cosmetics Excellence Center, Walailak University, Thasala 80160, Nakhon Si Thammarat, Thailand
| | - Poowadon Muenraya
- School of Pharmacy, Walailak University, Thasala 80160, Nakhon Si Thammarat, Thailand; (A.A.); (P.M.)
- Drug and Cosmetics Excellence Center, Walailak University, Thasala 80160, Nakhon Si Thammarat, Thailand
| | - Rutthapol Sritharadol
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
| | - Neelam Balekar
- College of Pharmacy, IPS Academy, Indore 452012, Madhya Pradesh, India;
| | - Somchai Sawatdee
- School of Pharmacy, Walailak University, Thasala 80160, Nakhon Si Thammarat, Thailand; (A.A.); (P.M.)
- Drug and Cosmetics Excellence Center, Walailak University, Thasala 80160, Nakhon Si Thammarat, Thailand
| |
Collapse
|
9
|
Teney C, Poupelin JC, Briot T, Le Bouar M, Fevre C, Brosset S, Martin O, Valour F, Roussel-Gaillard T, Leboucher G, Ader F, Lukaszewicz AC, Ferry T. Phage Therapy in a Burn Patient Colonized with Extensively Drug-Resistant Pseudomonas aeruginosa Responsible for Relapsing Ventilator-Associated Pneumonia and Bacteriemia. Viruses 2024; 16:1080. [PMID: 39066242 PMCID: PMC11281479 DOI: 10.3390/v16071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Pseudomonas aeruginosa is one of the main causes of healthcare-associated infection in Europe that increases patient morbidity and mortality. Multi-resistant pathogens are a major public health issue in burn centers. Mortality increases when the initial antibiotic treatment is inappropriate, especially if the patient is infected with P. aeruginosa strains that are resistant to many antibiotics. Phage therapy is an emerging option to treat severe P. aeruginosa infections. It involves using natural viruses called bacteriophages, which have the ability to infect, replicate, and, theoretically, destroy the P. aeruginosa population in an infected patient. We report here the case of a severely burned patient who experienced relapsing ventilator-associated pneumonia associated with skin graft infection and bacteremia due to extensively drug-resistant P. aeruginosa. The patient was successfully treated with personalized nebulized and intravenous phage therapy in combination with immunostimulation (interferon-γ) and last-resort antimicrobial therapy (imipenem-relebactam).
Collapse
Affiliation(s)
- Cécile Teney
- Centre des Grands Brûlés Pierre Colson, Hôpital Edouard Herriot; Lyon, Hospices Civils de Lyon, 69003 Lyon, France; (J.-C.P.); (O.M.); (A.-C.L.)
| | - Jean-Charles Poupelin
- Centre des Grands Brûlés Pierre Colson, Hôpital Edouard Herriot; Lyon, Hospices Civils de Lyon, 69003 Lyon, France; (J.-C.P.); (O.M.); (A.-C.L.)
| | - Thomas Briot
- Pharmacie de Centre Hospitalier Nord, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France; (T.B.); (G.L.)
| | - Myrtille Le Bouar
- Service de Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France; (M.L.B.); (F.V.); (F.A.)
| | - Cindy Fevre
- Phaxiam Therapeutics, 60 Avenue Rockefeller, Bâtiment Bioserra, 69008 Lyon, France;
| | - Sophie Brosset
- Service de Chirurgie Plastique et Reconstructrice, Hôpital Edouard Herriot; Lyon, Hospices Civils de Lyon, 69003 Lyon, France;
| | - Olivier Martin
- Centre des Grands Brûlés Pierre Colson, Hôpital Edouard Herriot; Lyon, Hospices Civils de Lyon, 69003 Lyon, France; (J.-C.P.); (O.M.); (A.-C.L.)
| | - Florent Valour
- Service de Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France; (M.L.B.); (F.V.); (F.A.)
- Faculty of Medicine, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre International d’Infectiologie, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 46 Allée d’Italie, 69007 Lyon, France
| | - Tiphaine Roussel-Gaillard
- Institut des Agents Infectieux, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France;
| | - Gilles Leboucher
- Pharmacie de Centre Hospitalier Nord, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France; (T.B.); (G.L.)
| | - Florence Ader
- Service de Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France; (M.L.B.); (F.V.); (F.A.)
- Faculty of Medicine, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre International d’Infectiologie, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 46 Allée d’Italie, 69007 Lyon, France
| | - Anne-Claire Lukaszewicz
- Centre des Grands Brûlés Pierre Colson, Hôpital Edouard Herriot; Lyon, Hospices Civils de Lyon, 69003 Lyon, France; (J.-C.P.); (O.M.); (A.-C.L.)
- Faculty of Medicine, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Tristan Ferry
- Service de Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France; (M.L.B.); (F.V.); (F.A.)
- Faculty of Medicine, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre International d’Infectiologie, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 46 Allée d’Italie, 69007 Lyon, France
- Education and Clinical Officer of the ESCMID Study Group for Non-Traditional Antibacterial Therapy (ESGNTA), 4051 Basel, Switzerland
| |
Collapse
|
10
|
Luque Paz D, Chean D, Tattevin P, Luque Paz D, Bayeh BA, Kouatchet A, Douillet D, Riou J. Efficacy and safety of antibiotics targeting Gram-negative bacteria in nosocomial pneumonia: a systematic review and Bayesian network meta-analysis. Ann Intensive Care 2024; 14:66. [PMID: 38662091 PMCID: PMC11045692 DOI: 10.1186/s13613-024-01291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/06/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Multiple randomized controlled studies have compared numerous antibiotic regimens, including new, recently commercialized antibiotics in the treatment of nosocomial pneumonia (NP). The objective of this Bayesian network meta-analysis (NMA) was to compare the efficacy and the safety of different antibiotic treatments for NP. METHODS We conducted a systematic search of PubMed, Medline, Web of Science, EMBASE and the Cochrane Library databases from 2000 through 2021. The study selection included studies comparing antibiotics targeting Gram-negative bacilli in the setting of NP. The primary endpoint was 28 day mortality. Secondary outcomes were clinical cure, microbiological cure and adverse events. RESULTS Sixteen studies encompassing 4993 patients were included in this analysis comparing 13 antibiotic regimens. The level of evidence for mortality comparisons ranged from very low to moderate. No significant difference in 28 day mortality was found among all beta-lactam regimens. Only the combination of meropenem plus aerosolized colistin was associated with a significant decrease of mortality compared to using intravenous colistin alone (OR = 0.43; 95% credible interval [0.17-0.94]), based on the results of the smallest trial included. The clinical failure rate of ceftazidime was higher than meropenem with (OR = 1.97; 95% CrI [1.19-3.45]) or without aerosolized colistin (OR = 1.40; 95% CrI [1.00-2.01]), imipemen/cilastatin/relebactam (OR = 1.74; 95% CrI [1.03-2.90]) and ceftazidime/avibactam (OR = 1.48; 95% CrI [1.02-2.20]). For microbiological cure, no substantial difference between regimens was found, but ceftolozane/tazobactam had the highest probability of being superior to comparators. In safety analyses, there was no significant difference between treatments for the occurrence of adverse events, but acute kidney failure was more common in patients receiving intravenous colistin. CONCLUSIONS This network meta-analysis suggests that most antibiotic regimens, including new combinations and cefiderocol, have similar efficacy and safety in treating susceptible Gram-negative bacilli in NP. Further studies are necessary for NP caused by multidrug-resistant bacteria. Registration PROSPERO CRD42021226603.
Collapse
Affiliation(s)
- David Luque Paz
- Infectious Diseases and Intensive Care Unit, Pontchaillou Hospital, University Hospital of Rennes, 2, rue Henri Le Guilloux, 35033, Rennes Cedex 9, France.
- Inserm U1230, Université de Rennes, Rennes, France.
| | - Dara Chean
- Intensive Care Unit, University Hospital of Angers, Angers, France
| | - Pierre Tattevin
- Infectious Diseases and Intensive Care Unit, Pontchaillou Hospital, University Hospital of Rennes, 2, rue Henri Le Guilloux, 35033, Rennes Cedex 9, France
- Inserm U1230, Université de Rennes, Rennes, France
| | - Damien Luque Paz
- Laboratory of Hematology, Angers University Hospital, Angers, France
- INSERM, CRCINA, University of Angers, Angers, France
| | - Betsega Assefa Bayeh
- Department of Pneumology and Respiratory Functional Exploration, University Hospital of Tours, Tours, France
| | | | - Delphine Douillet
- Emergency Department, Angers University Hospital, Angers, France
- University of Angers, UMR MitoVasc CNRS 6015 - INSERM 1083, Angers, France
- FCRIN, INNOVTE, Saint Etienne, France
| | - Jérémie Riou
- University of Angers, Inserm, CNRS, MINT, SFR ICAT, 49000, Angers, France
- Methodology and Biostatistics Department, Delegation to Clinical Research and Innovation, Angers University Hospital, Angers, France
| |
Collapse
|
11
|
Talwar D, Prajapat D, Talwar S, Talwar D. Retrospective Observational Study to Assess Safety and Tolerability of Nebulized Colistin for the Treatment of Patients With Pneumonia in Real-World Settings in Respiratory ICU. Cureus 2024; 16:e54652. [PMID: 38524091 PMCID: PMC10959766 DOI: 10.7759/cureus.54652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
INTRODUCTION Colistin is used to treat hospital-acquired pneumonia and ventilator-associated pneumonia. However, direct drug deposition at the site of infection may improve its efficacy and reduce systemic exposure. The aim of this study was to assess the safety and tolerability of nebulized colistin among Indian patients diagnosed with pneumonia caused by multidrug-resistant gram-negative bacilli in real-world settings. METHODOLOGY We retrospectively reviewed the medical records of patients treated with nebulized colistin for pneumonia. We assessed the adverse events and relevant abnormal laboratory findings of nebulized colistin therapy. RESULTS All enrolled patients (N=30, males: 22, females: 8; average age: 71.06 years) were treated for 13.36 days. Almost 80% of patients had a history of shortness of breath, which was a major symptom when they were admitted to the hospital. The patients were administered nebulized colistin for an average of six days (8 hours per day). The most common dosing schedule was 1 million international units (MIU)/8 hours. No serious adverse event was observed, and only one patient died while on the treatment but the death was not related to colistin treatment. The average sequential organ failure assessment score for all patients was 6.5. CONCLUSION Our study demonstrated the efficient clinical utility and well-tolerated safety profile of nebulized colistin in the treatment of patients with pneumonia. Neurotoxicity and nephrotoxicity were not reported. Since a significant percentage of patients were with chronic respiratory diseases, our study further indicates the safety and effectiveness of nebulized colistin in chronic obstructive pulmonary disease (COPD) patients too.
Collapse
Affiliation(s)
- Deepak Talwar
- Pulmonary, Sleep, and Critical Care Medicine, Metro Centre for Respiratory Diseases, Noida, IND
| | - Deepak Prajapat
- Pulmonary and Critical Care Medicine, Metro Centre for Respiratory Diseases, Noida, IND
| | - Surbhi Talwar
- Nephrology, University Hospitals Coventry and Warwickshire (UHCW), Coventry, GBR
| | - Dhruv Talwar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, IND
| |
Collapse
|
12
|
Maan L, Anand N, Yadav G, Mishra M, Gupta MK. The Efficacy and Safety of Intravenous Colistin Plus Aerosolized Colistin Versus Intravenous Colistin Alone in Critically Ill Trauma Patients With Multi-Drug Resistant Gram-Negative Bacilli Infection. Cureus 2023; 15:e49314. [PMID: 38143689 PMCID: PMC10748797 DOI: 10.7759/cureus.49314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND AND AIM Gram-negative bacteria (GNB) with potential multiple drug resistance (MDR) have emerged as a major group of organisms causing ventilator-associated pneumonia (VAP). Higher concentrations are deposited directly in the lungs when antibiotics are given via inhalation, minimizing systemic side effects. This study aims to compare the efficacy and safety of intravenous plus aerosolized colistin versus intravenous (IV) colistin alone in critically ill trauma patients who reported MDR-GNB infection on endotracheal aspirate culture. METHODS A hundred patients were recruited in the Intensive Care Unit, Trauma Centre, Institute of Medical Sciences, Banaras Hindu University, Varanasi, and randomly assigned to the control (n=50) group, which received IV colistin plus aerosolized colistin and the intervention group (n = 50), which received IV colistin alone. Changes in total leucocyte count (TLC), renal function test (RFT), endotracheal aspirate culture, 24-hour urine output, length of ICU stay, and 28-day ICU mortality were investigated. RESULTS Patients receiving intravenous plus nebulized colistin therapy had a better outcome compared to IV colistin alone in terms of faster eradication of MDR-GNB infection. A rise in serum urea and creatinine levels was seen in both groups, which were significantly higher, along with a decrease in urine output in the group receiving intravenous colistin alone. No significant difference was observed in serum sodium and potassium levels in the RFT protocol, length of ICU stay, or 28-day ICU mortality. CONCLUSION Intravenous nebulized colistin could be considered a better alternative therapy for VAP caused by multi-drug-resistant Gram-negative bacteria in the ICU in terms of faster microbiological cure and lesser nephrotoxicity.
Collapse
Affiliation(s)
- Loveleen Maan
- Anaesthesiology and Critical Care, Institute of Medical Sciences, Banaras Hindu University, Varanasi, IND
| | - Neelesh Anand
- Anaesthesiology, Institute of Medical Sciences, Banaras Hindu University, Varansi, IND
| | - Ghanshyam Yadav
- Anaesthesiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, IND
| | - Manjaree Mishra
- Anaesthesiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, IND
| | | |
Collapse
|
13
|
Zhang X, Cui X, Jiang M, Huang S, Yang M. Nebulized colistin as the adjunctive treatment for ventilator-associated pneumonia: A systematic review and meta-analysis. J Crit Care 2023; 77:154315. [PMID: 37120926 DOI: 10.1016/j.jcrc.2023.154315] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE Nebulized colistin (NC) is a potential therapy for ventilator-associated pneumonia (VAP); however, the clinical efficacy and safety of NC remain unclear. This study investigated whether NC is an effective therapy for patients with VAP. MATERIALS AND METHODS We performed a search in Web of Science, PubMed, Embase, and the Cochrane Library to retrieve randomized controlled trials (RCTs) and observational studies published at any time until February 6, 2023. The primary outcome was clinical response. Secondary outcomes included microbiological eradication, overall mortality, length of mechanical ventilation (MV), length of intensive care unit stay (ICU-LOS), nephrotoxicity, neurotoxicity, and bronchospasm. RESULTS Seven observational studies and three RCTs were included. Despite exhibiting a higher microbiological eradication rate (OR,2.21; 95%CI, 1.25-3.92) and the same nephrotoxicity risk (OR,0.86; 95%CI, 0.60-1.23), NC was not significantly different in clinical response (OR,1.39; 95%CI, 0.87-2.20), overall mortality (OR,0.74; 95%CI, 0.50-1.12), MV length (mean difference (MD),-2.5; 95%CI, -5.20-0.19), and the ICU-LOS (MD,-1.91; 95%CI, -6.66-2.84) than by the intravenous antibiotic. Besides, the risk of bronchospasm raised significantly (OR, 5.19; 95%CI, 1.05-25.52) among NC. CONCLUSION NC was associated with better microbiological outcomes but did not result in any remarkable changes in the prognosis of patients with VAP.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei 230601, China; Laboratory of Cardiopulmonary Resuscitation and Critical Care, the Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei 230601, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui, Hefei 230601, China
| | - Xuanxuan Cui
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei 230601, China; Laboratory of Cardiopulmonary Resuscitation and Critical Care, the Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei 230601, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui, Hefei 230601, China
| | - Mengke Jiang
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei 230601, China; Laboratory of Cardiopulmonary Resuscitation and Critical Care, the Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei 230601, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui, Hefei 230601, China
| | - Shanshan Huang
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei 230601, China; Laboratory of Cardiopulmonary Resuscitation and Critical Care, the Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei 230601, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui, Hefei 230601, China
| | - Min Yang
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei 230601, China; Laboratory of Cardiopulmonary Resuscitation and Critical Care, the Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei 230601, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui, Hefei 230601, China.
| |
Collapse
|
14
|
Shi R, Fu Y, Gan Y, Wu D, Zhou S, Huang M. Use of polymyxin B with different administration methods in the critically ill patients with ventilation associated pneumonia: a single-center experience. Front Pharmacol 2023; 14:1222044. [PMID: 37719858 PMCID: PMC10502420 DOI: 10.3389/fphar.2023.1222044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Background: Whether nebulized polymyxin B should be used as an adjunctive therapy or substitution strategy to intravenous polymyxin B for the treatment of ventilator-associated pneumonia (VAP) remains controversial. This study's aim is to evaluate the efficacy and safety of different administration ways of polymyxin B in the treatment of ventilator-associated pneumonia caused by extensively drug-resistant Gram-negative bacteria(XDR-GNB). Methods: This retrospective cohort study enrolled ventilator-associated pneumonia patients caused by XDR-GNB treated with polymyxin B in the intensive care unit. Patients were categorized by the administration methods as intravenous (IV) group, inhaled (IH) group, and the intravenous combined with inhaled (IV + IH) group. Microbiological outcome and clinical outcome were compared in each group. The side effects were also explored. Results: A total of 111 patients were enrolled and there was no difference in demographic and clinical characteristics among the three groups. In terms of efficacy, clinical cure or improvement was achieved in 21 patients (55.3%) in the intravenous group, 19 patients (50%) in the IH group, and 20 patients (57.1%) in IV + IH group (p = 0.815). All three groups showed high success rates in microbiological eradication, as 29 patients with negative cultures after medication in inhaled group. Among all the patients who had negative bacterial cultures after polymyxin B, the inhaled group had significantly shorter clearance time than the intravenous group (p = 0.002), but with no significant difference in 28-day mortality. Compared with intravenous group, a trend towards a lower risk of acute kidney injury was observed in inhaled group (p = 0.025). Conclusion: From the perspective of minimal systemic renal toxicity, nebulized polymyxin B as a substitution strategy to intravenous polymyxin B for the treatment of ventilator-associated pneumonia caused by XDR-GNB is feasible.
Collapse
Affiliation(s)
- Rupeng Shi
- Department of Geriatric ICU, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanyuan Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yujing Gan
- Department of Geriatric ICU, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Danying Wu
- Department of Geriatric ICU, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Suming Zhou
- Department of Geriatric ICU, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Huang
- Department of Geriatric ICU, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Wu Z, Zhang S, Cao Y, Wang Q, Sun K, Zheng X. Comparison of the clinical efficacy and toxicity of nebulized polymyxin monotherapy and combined intravenous and nebulized polymyxin for the treatment of ventilator-associated pneumonia caused by carbapenem-resistant gram-negative bacteria: a retrospective cohort study. Front Pharmacol 2023; 14:1209063. [PMID: 37663252 PMCID: PMC10470629 DOI: 10.3389/fphar.2023.1209063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Objective: To investigate the clinical efficacy and toxicity of nebulized polymyxin monotherapy and combined intravenous and nebulized polymyxin for the treatment of VAP caused by CR-GNB. Additionally, among patients treated with nebulized polymyxin monotherapy, we compared the clinical efficacy and toxicity of polymyxin B and polymyxin E. Methods: This study was a single-center, retrospective study. Included patients received aerosolized polymyxin for at least 72 h with or without intravenous polymyxin for the management of CR-GNB VAP. The primary endpoint was clinical cure at the end of polymyxin therapy. Secondary endpoints included AKI incidence, time of bacteria-negative conversion, duration of MV after inclusion, length of stay in ICU, and all-cause ICU mortality. Results: 39 patients treated with nebulized polymyxin monotherapy were assigned to the NL-polymyxin group. 39 patients treated with nebulized polymyxin combined with intravenous use of polymyxin were assigned to the IV-NL-polymyxin group. Among the NL-polymyxin group, 19 patients were treated with polymyxin B and 20 with polymyxin E. The clinical baseline characteristics before admission to the ICU and before nebulization of polymyxin were similar between the two groups. No differences were found between the two study groups in terms of microorganism distribution, VAP cure rate, time of bacteria-negative conversion, duration of MV after inclusion, length of stay in ICU and all-cause ICU mortality. Similarly, survival analysis did not differ between the two groups (χ2 = 3.539, p = 0.06). AKI incidence was higher in the IV-NL-polymyxin group. When comparing the clinical efficacy and toxicity to polymyxin B and polymyxin E, there was no difference between the two groups in terms of VAP cure rate, time of bacteria-negative conversion, duration of MV after inclusion, length of stay in ICU, SOFA score, CPIS, AKI incidence and all-cause ICU mortality. Conclusion: Our study found that nebulized polymyxin monotherapy was non-inferior to combination therapy with intravenous polymyxin in treating CR-GNB-VAP. Furthermore, we observed no differences in clinical efficacy or related toxic side effects between polymyxin B and polymyxin E during nebulized polymyxin therapy as monotherapy. However, future prospective studies with larger sample sizes are required to confirm these findings.
Collapse
Affiliation(s)
- Zhenping Wu
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siying Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yelin Cao
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiyu Wang
- Department of Critical Care Medicine, The People’s Hospital of Jinyun Country, Lishui, China
| | - Keyuan Sun
- Department of Critical Care Medicine, The People’s Hospital of Jinyun Country, Lishui, China
| | - Xia Zheng
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Cao B, Cao L. Case Report: A case of spinal muscular atrophy with extensively drug-resistant Acinetobacter baumannii pneumonia treated with nebulization combined with intravenous polymyxin B: experience and a literature review. Front Cell Infect Microbiol 2023; 13:1163341. [PMID: 37415826 PMCID: PMC10321296 DOI: 10.3389/fcimb.2023.1163341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/26/2023] [Indexed: 07/08/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease that results in progressive and symmetric muscle weakness and atrophy of the proximal limbs and trunk due to degeneration of spinal alpha-motor neurons. Children are classified into types 1-3, from severe to mild, according to the time of onset and motor ability. Children with type 1 are the most severe, are unable to sit independently, and experience a series of respiratory problems, such as hypoventilation, reduced cough, and sputum congestion. Respiratory failure is easily complicated by respiratory infections and is a major cause of death in children with SMA. Most type 1 children die within 2 years of age. Type 1 children with SMA usually require hospitalization for lower respiratory tract infections and invasive ventilator-assisted ventilation in severe cases. These children are frequently infected with drug-resistant bacteria due to repeated hospitalizations and require long hospital stays requiring invasive ventilation. In this paper, we report a case of nebulization combined with intravenous polymyxin B in a child with spinal muscular atrophy with extensively drug-resistant Acinetobacter baumannii pneumonia, hoping to provide a reference for the treatment of children with extensively drug-resistant Acinetobacter baumannii pneumonia.
Collapse
Affiliation(s)
| | - Ling Cao
- Department of Pulmonology, Affiliated Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
17
|
Li X, Guo X, Liu Y, Chen R, Ma C, Kang X, Fang Yang, Li W, Jiang W. A case of treatment of multidrug-resistant intracranial Klebsiella pneumoniae infection by multichannel colistin sulfate. Future Microbiol 2023; 18:547-552. [PMID: 37314362 DOI: 10.2217/fmb-2022-0277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
The management of severe neurologic infections due to multidrug-resistant (MDR) Klebsiella pneumoniae infection remains a challenge. Limited antibiotic treatment regimens make treatment of severe MDR K. pneumoniae infection more difficult. We describe a patient who developed severe meningitis and ventriculitis after craniotomy caused by MDR K. pneumoniae and was effectively treated with the administration of multichannel applications (intravenous, intrathecal and aerosol inhalation) of colistin sulfate. This case provides clinical evidence that the intrathecal, intravenous and aerosol inhalation of colistin sulfate by multichannel application can be a last resort in refractory intracranial infection by MDR K. pneumoniae.
Collapse
Affiliation(s)
- Xiaona Li
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710000, China
| | - Xin Guo
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710000, China
| | - Yangfeng Liu
- Department of Neurology, Xijing 986 Hospital, Fourth Military Medical University, Xi'an, 710000, China
| | - Rong Chen
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710000, China
| | - Chen Ma
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710000, China
| | - Xiaogang Kang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710000, China
| | - Fang Yang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710000, China
| | - Wen Li
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710000, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710000, China
| |
Collapse
|
18
|
Karaiskos I, Gkoufa A, Polyzou E, Schinas G, Athanassa Z, Akinosoglou K. High-Dose Nebulized Colistin Methanesulfonate and the Role in Hospital-Acquired Pneumonia Caused by Gram-Negative Bacteria with Difficult-to-Treat Resistance: A Review. Microorganisms 2023; 11:1459. [PMID: 37374959 DOI: 10.3390/microorganisms11061459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Hospital-acquired pneumonia, including ventilator-associated pneumonia (VAP) due to difficult-to-treat-resistant (DTR) Gram-negative bacteria, contributes significantly to morbidity and mortality in ICUs. In the era of COVID-19, the incidences of secondary nosocomial pneumonia and the demand for invasive mechanical ventilation have increased dramatically with extremely high attributable mortality. Treatment options for DTR pathogens are limited. Therefore, an increased interest in high-dose nebulized colistin methanesulfonate (CMS), defined as a nebulized dose above 6 million IU (MIU), has come into sight. Herein, the authors present the available modern knowledge regarding high-dose nebulized CMS and current information on pharmacokinetics, clinical studies, and toxicity issues. A brief report on types of nebulizers is also analyzed. High-dose nebulized CMS was administrated as an adjunctive and substitutive strategy. High-dose nebulized CMS up to 15 MIU was attributed with a clinical outcome of 63%. High-dose nebulized CMS administration offers advantages in terms of efficacy against DTR Gram-negative bacteria, a favorable safety profile, and improved pharmacokinetics in the treatment of VAP. However, due to the heterogeneity of studies and small sample population, the apparent benefit in clinical outcomes must be proven in large-scale trials to lead to the optimal use of high-dose nebulized CMS.
Collapse
Affiliation(s)
- Ilias Karaiskos
- First Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, 4, Erythrou Stavrou Str. & Kifisias, 15123 Athens, Greece
| | - Aikaterini Gkoufa
- Infectious Diseases and COVID-19 Unit, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Elena Polyzou
- School of Medicine, University of Patras, 26504 Patras, Greece
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Patras, Greece
| | | | - Zoe Athanassa
- Intensive Care Unit, Sismanoglio General Hospital, 15126 Athens, Greece
| | - Karolina Akinosoglou
- School of Medicine, University of Patras, 26504 Patras, Greece
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
19
|
Lu D, Mao W. Efficacy and safety of intravenous combined with aerosolised polymyxin versus intravenous polymyxin alone in the treatment of multidrug-resistant gram-negative bacterial pneumonia: A systematic review and meta-analysis. Heliyon 2023; 9:e15774. [PMID: 37159708 PMCID: PMC10163663 DOI: 10.1016/j.heliyon.2023.e15774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
Background Previous studies have questioned the efficacy and safety of intravenous combined with aerosolised (IV + AS) polymyxin versus intravenous (IV) polymyxin alone in the treatment of patients with multidrug-resistant gram-negative bacterial (MDR-GNB) pneumonia. Therefore, we conducted a meta-analysis to evaluate the efficacy and safety of IV + AS polymyxin in the treatment of MDR-GNB pneumonia. Methods We identified all relevant studies by searching the PubMed, EMBASE and Cochrane library databases from their inception to May 31, 2022. All included studies were evaluated using the Newcastle Ottawa scale (NOS) checklist. The summary relative risk (RR) and 95% confidence interval (CI) were used to determine the outcome differences between the IV + AS and the IV groups. Subgroup analysis was performed based on population, polymyxin dose and kinds of polymyxin. Results A total of 16 studies were included in the meta-analysis. The IV + AS group had lower mortality (RR = 0.86, 95% CI: 0.77-0.97, P = 0.01) than the IV group. Subgroup analysis revealed that IV + AS polymyxin could reduce mortality only when used in low doses. Simultaneously, the IV + AS group outperformed the IV group in terms of clinical response rate, clinical cure rate, microbiological eradication and duration of mechanical ventilation. The duration of hospitalisation and the incidence of nephrotoxicity did not differ significantly between the two groups. Conclusions IV + AS polymyxin is beneficial in the treatment of MDR-GNB pneumonia. It could lower patient mortality and improve clinical and microbial outcomes without increasing the risk of nephrotoxicity. However, retrospective analysis in the majority of studies and heterogeneity between studies implies that our findings must be interpreted carefully.
Collapse
Affiliation(s)
- Difan Lu
- Cardiovascular Ultrasound Center of the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Wenchao Mao
- Department of Critical Care Medicine, Zhejiang Hospital, Lingyin Road 12, Hangzhou, 310013, Zhejiang, China
- Corresponding author.
| |
Collapse
|
20
|
Ahumada Topete VH, de Dios Sanchez KJ, Casas Aparicio GA, Hernandez Silva G, Lopez Vejar CE, Torres Espíndola LM, Aquino-Galvez A, Rodriguez Ganen O, Castillejos Lopez MDJ. Adverse Events and Drug Resistance in Critically Ill Patients Treated with Colistimethate Sodium: A Review of the Literature. Infect Drug Resist 2023; 16:1357-1366. [PMID: 36925725 PMCID: PMC10013588 DOI: 10.2147/idr.s398930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/11/2023] [Indexed: 03/12/2023] Open
Abstract
The adverse events related to sodium colistimethate have had variability regarding the prevalence of nephrotoxicity, neurotoxicity, and less frequent respiratory depression. In recent years, its use has been relevant due to the increase of multidrug-resistant bacteria since it is considered the last-line drug, being its main adverse event and reason for discrepancies between authors' nephrotoxicity. The indiscriminate use of antibiotic therapy has generated multiple mechanisms of resistance, the most common being related to Colistin, the bactericidal escape effect. Based on the search criteria, no randomized clinical trials were identified showing safety and efficacy with the use of Colistin, inferring that the application of the appropriate dose is governed by expert opinion and retrospective and prospective observational studies, which confounding factors such as the severity of the patient and the predisposition to develop acute renal failure are constant. In this review, we focus on identifying the mechanism of nephrotoxicity and bacterial resistance, where much remains to be known.
Collapse
Affiliation(s)
- Victor Hugo Ahumada Topete
- Hospital Epidemiology and Infectology Unit, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Kevin Jesus de Dios Sanchez
- Hospital Epidemiology and Infectology Unit, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Gustavo Alejandro Casas Aparicio
- Department of Infectious Disease Research, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Graciela Hernandez Silva
- Department of Infectious Disease Research, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Cesar Emmanuel Lopez Vejar
- Hospital Epidemiology and Infectology Unit, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | | | - Arnoldo Aquino-Galvez
- Molecular Biology Laboratory, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Odalis Rodriguez Ganen
- Department of Hospital Pharmacy, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The incidence of bacterial respiratory tract infections is growing. In a context of increasing antibiotic resistance and lack of new classes of antibiotics, inhaled antibiotics emerge as a promising therapeutic strategy. Although they are generally used for cystic fibrosis, their use in other conditions is becoming more frequent, including no-cystic fibrosis bronchiectasis, pneumonia and mycobacterial infections. RECENT FINDINGS Inhaled antibiotics exert beneficial microbiological effects in bronchiectasis and chronic bronchial infection. In nosocomial and ventilator-associated pneumonia, aerosolized antibiotics improve cure rates and bacterial eradication. In refractory Mycobacterium avium complex infections, amikacin liposome inhalation suspension is more effective in achieving long-lasting sputum conversion. In relation to biological inhaled antibiotics (antimicrobial peptides, interfering RNA and bacteriophages), currently in development, there is no still enough evidence that support their use in clinical practice. SUMMARY The effective antimicrobiological activity of inhaled antibiotics, added to their potential to overcoming resistances to systemic antibiotics, make inhaled antibiotics a plausible alternative.
Collapse
|
22
|
How to Use Nebulized Antibiotics in Severe Respiratory Infections. Antibiotics (Basel) 2023; 12:antibiotics12020267. [PMID: 36830177 PMCID: PMC9952454 DOI: 10.3390/antibiotics12020267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Difficult-to-treat pulmonary infections caused by multidrug-resistant (MDR) pathogens are of great concern because their incidence continues to increase worldwide and they are associated with high morbidity and mortality. Nebulized antibiotics are increasingly being used in this context. The advantages of the administration of a nebulized antibiotic in respiratory tract infections due to MDR include the potential to deliver higher drug concentrations to the site of infection, thus minimizing the systemic adverse effects observed with the use of parenteral or oral antibiotic agents. However, there is an inconsistency between the large amount of experimental evidence supporting the administration of nebulized antibiotics and the paucity of clinical studies confirming the efficacy and safety of these drugs. In this narrative review, we describe the current evidence on the use of nebulized antibiotics for the treatment of severe respiratory infections.
Collapse
|
23
|
Feng JY, Huang JR, Lee CC, Tseng YH, Pan SW, Chen YM, Yang KY. Role of nebulized colistin as a substitutive strategy against nosocomial pneumonia caused by CR-GNB in intensive care units: a retrospective cohort study. Ann Intensive Care 2023; 13:1. [PMID: 36609725 PMCID: PMC9825688 DOI: 10.1186/s13613-022-01088-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/26/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Adverse reactions, especially nephrotoxicity, are great concerns of intravenous colistin treatment. The role of substitutive nebulized colistin in treating nosocomial pneumonia caused by carbapenem-resistant Gram-negative bacterial (CR-GNB) in critically ill patients remains unknown. METHODS This retrospective study enrolled patients with nosocomial pneumonia caused by colistin-susceptible CRGNB in the intensive care unit (ICU) without intravenous colistin treatment. Patients were categorized based on whether substitutive nebulized colistin was used alongside other intravenous antibiotics. Clinical responses and mortality rates were compared between the two groups in the original and propensity score (PS)-matched cohorts. This study aimed to investigate the clinical effectiveness of substitutive nebulized colistin in treatment outcomes of nosocomial pneumonia caused by CR-GNB. The impact of dosing strategy of nebulized colistin was also explored. RESULTS In total, 343 and 214 patients with and without substitutive nebulized colistin, respectively, were enrolled for analysis. In the PS-matched cohort, clinical failure rates on day 7 (22.6 vs. 42.6%, p = 0.001), day 14 (27.0 vs. 42.6%, p = 0.013), and day 28 (27.8 vs. 41.7%, p = 0.027) were significantly lower in patients with nebulized colistin. In multivariate analysis, nebulized colistin was an independent factor associated with lower day 14 clinical failure (Original cohort: adjusted odds ratio (aOR) 0.45, 95% confidence interval (CI) 0.30-0.67; PS-matched cohort: aOR 0.48, 95% CI 0.27-0.87). There were no differences in clinical failure rate and mortality rate between patients receiving high (> 6 MIU/day) and low (≤ 6 MIU/day) dose nebulized colistin in the PS-matched cohort. CONCLUSIONS In ICU-admitted patients with nosocomial pneumonia caused by colistin-susceptible CRGNB, substitutive nebulized colistin was associated with better clinical outcomes.
Collapse
Affiliation(s)
- Jia-Yih Feng
- grid.278247.c0000 0004 0604 5314Department of Chest Medicine, Taipei Veterans General Hospital, #201, Sec. 2, Shih-Pai Road, Taipei, 11217 Taiwan ,grid.260539.b0000 0001 2059 7017School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jhong-Ru Huang
- grid.278247.c0000 0004 0604 5314Department of Chest Medicine, Taipei Veterans General Hospital, #201, Sec. 2, Shih-Pai Road, Taipei, 11217 Taiwan
| | - Chang-Ching Lee
- grid.278247.c0000 0004 0604 5314Department of Chest Medicine, Taipei Veterans General Hospital, #201, Sec. 2, Shih-Pai Road, Taipei, 11217 Taiwan
| | - Yen-Han Tseng
- grid.278247.c0000 0004 0604 5314Department of Chest Medicine, Taipei Veterans General Hospital, #201, Sec. 2, Shih-Pai Road, Taipei, 11217 Taiwan ,grid.260539.b0000 0001 2059 7017School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Wei Pan
- grid.278247.c0000 0004 0604 5314Department of Chest Medicine, Taipei Veterans General Hospital, #201, Sec. 2, Shih-Pai Road, Taipei, 11217 Taiwan ,grid.260539.b0000 0001 2059 7017School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan ,grid.260539.b0000 0001 2059 7017Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Min Chen
- grid.278247.c0000 0004 0604 5314Department of Chest Medicine, Taipei Veterans General Hospital, #201, Sec. 2, Shih-Pai Road, Taipei, 11217 Taiwan ,grid.260539.b0000 0001 2059 7017School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuang-Yao Yang
- grid.278247.c0000 0004 0604 5314Department of Chest Medicine, Taipei Veterans General Hospital, #201, Sec. 2, Shih-Pai Road, Taipei, 11217 Taiwan ,grid.260539.b0000 0001 2059 7017Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan ,grid.260539.b0000 0001 2059 7017Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
24
|
Wang JL, Xiang BX, Song XL, Que RM, Zuo XC, Xie YL. Prevalence of polymyxin-induced nephrotoxicity and its predictors in critically ill adult patients: A meta-analysis. World J Clin Cases 2022; 10:11466-11485. [PMID: 36387815 PMCID: PMC9649555 DOI: 10.12998/wjcc.v10.i31.11466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Polymyxin-induced nephrotoxicity is a major safety concern in clinical practice due to long-term adverse outcomes and high mortality.
AIM To conducted a systematic review and meta-analysis of the prevalence and potential predictors of polymyxin-induced nephrotoxicity in adult intensive care unit (ICU) patients.
METHODS PubMed, EMBASE, the Cochrane Library and Reference Citation Analysis database were searched for relevant studies from inception through May 30, 2022. The pooled prevalence of polymyxin-induced nephrotoxicity and pooled risk ratios of associated factors were analysed using a random-effects or fixed-effects model by Stata SE ver. 12.1. Additionally, subgroup analyses and meta-regression were conducted to assess heterogeneity.
RESULTS A total of 89 studies involving 12234 critically ill adult patients were included in the meta-analysis. The overall pooled incidence of polymyxin-induced nephrotoxicity was 34.8%. The pooled prevalence of colistin-induced nephrotoxicity was not higher than that of polymyxin B (PMB)-induced nephrotoxicity. The subgroup analyses showed that nephrotoxicity was significantly associated with dosing interval, nephrotoxicity criteria, age, publication year, study quality and sample size, which were confirmed in the univariable meta-regression analysis. Nephrotoxicity was significantly increased when the total daily dose was divided into 2 doses but not 3 or 4 doses. Furthermore, older age, the presence of sepsis or septic shock, hypoalbuminemia, and concomitant vancomycin or vasopressor use were independent risk factors for polymyxin-induced nephrotoxicity, while an elevated baseline glomerular filtration rate was a protective factor against colistin-induced nephrotoxicity.
CONCLUSION Our findings indicated that the incidence of polymyxin-induced nephrotoxicity among ICU patients was high. It emphasizes the importance of additional efforts to manage ICU patients receiving polymyxins to decrease the risk of adverse outcomes.
Collapse
Affiliation(s)
- Jiang-Lin Wang
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Bi-Xiao Xiang
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Xiao-Li Song
- Department of Pharmacy, Sanya Central Hospital, Sanya 572000, Hainan Province, China
| | - Rui-Man Que
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Xiao-Cong Zuo
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Yue-Liang Xie
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
25
|
Kyriakoudi A, Pontikis K, Valsami G, Avgeropoulou S, Neroutsos E, Christodoulou E, Moraitou E, Markantonis SL, Dokoumetzidis A, Rello J, Koutsoukou A. Pharmacokinetic Characteristics of Nebulized Colistimethate Sodium Using Two Different Types of Nebulizers in Critically Ill Patients with Ventilator-Associated Respiratory Infections. Antibiotics (Basel) 2022; 11:1528. [PMID: 36358184 PMCID: PMC9686516 DOI: 10.3390/antibiotics11111528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 05/25/2024] Open
Abstract
Background: Rising antimicrobial resistance has led to a revived interest in inhaled colistin treatment in the critically ill patient with ventilator-associated respiratory infection (VARI). Nebulization via vibrating mesh nebulizers (VMNs) is considered the current standard-of-care, yet the use of generic jet nebulizers (JNs) is more widespread. Few data exist on the intrapulmonary pharmacokinetics of colistin when administered through VMNs, while there is a complete paucity regarding the use of JNs. Methods: In this study, 18 VARI patients who received 2 million international units of inhaled colistimethate sodium (CMS) through a VMN were pharmacokinetically compared with six VARI patients who received the same drug dose through a JN, in the absence of systemic CMS administration. Results: Surprisingly, VMN and JN led to comparable formed colistin exposures in the epithelial lining fluid (ELF) (median (IQR) AUC0-24: 86.2 (46.0-185.9) mg/L∙h with VMN and 91.5 (78.1-110.3) mg/L∙h with JN). The maximum ELF concentration was 10.4 (4.7-22.6) mg/L and 7.4 (6.2-10.3) mg/L, respectively. Conclusions: Based on our results, JN might be considered a viable alternative to the theoretically superior VMN. Therapeutic drug monitoring in the ELF can be advised due to the observed low exposure, high variability, and appreciable systemic absorption.
Collapse
Affiliation(s)
- Anna Kyriakoudi
- Intensive Care Unit, 1st Department of Pulmonology, Medical School, National & Kapodistrian University of Athens, General Hospital for the Diseases of the Chest “I Sotiria”, 11527 Athens, Greece
| | - Konstantinos Pontikis
- Intensive Care Unit, 1st Department of Pulmonology, Medical School, National & Kapodistrian University of Athens, General Hospital for the Diseases of the Chest “I Sotiria”, 11527 Athens, Greece
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | - Stavrina Avgeropoulou
- Intensive Care Unit, 1st Department of Pulmonology, Medical School, National & Kapodistrian University of Athens, General Hospital for the Diseases of the Chest “I Sotiria”, 11527 Athens, Greece
| | - Efthymios Neroutsos
- Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | - Eirini Christodoulou
- Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | - Eleni Moraitou
- Microbiology Department, General Hospital for the Diseases of the Chest “I Sotiria”, 11527 Athens, Greece
| | - Sophia L. Markantonis
- Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | - Aristides Dokoumetzidis
- Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | - Jordi Rello
- Clinical Research in Pneumonia (CRIPS), Vall d’Hebron Institute of Research, 08035 Barcelona, Spain
- Clinical Research, CHU Nîmes, 30900 Nîmes, France
| | - Antonia Koutsoukou
- Intensive Care Unit, 1st Department of Pulmonology, Medical School, National & Kapodistrian University of Athens, General Hospital for the Diseases of the Chest “I Sotiria”, 11527 Athens, Greece
| |
Collapse
|
26
|
Secondary Prophylaxis With Inhaled Colistin to Prevent Recurrence of Pseudomonas aeruginosa and Extended-spectrum β-lactamase-producing Enterobacterales Pneumonia in ICU After Lung Transplantation: A Before-and-after Retrospective Cohort Analysis. Transplantation 2022; 106:2232-2240. [PMID: 35675449 DOI: 10.1097/tp.0000000000004187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Early pneumonia is an independent risk factor for 1-y mortality after lung transplantation (LTx). Pseudomonas aeruginosa is the most common isolate in early pneumonia and is also associated with an increased risk of chronic lung allograft dysfunction. The aim of our study was to evaluate the efficacy of secondary prophylaxis with inhaled colistin (IC) in preventing the recurrence of P aeruginosa or extended-spectrum β-lactamase-producing Enterobacterales (ESBL-PE) pneumonia in the postoperative period in the intensive care unit after LTx. METHODS We conducted a before-and-after retrospective cohort study by including all patients who underwent LTx between January 2015 and December 2020 in our center. Secondary prophylaxis with IC was instituted in January 2018 (observation period from January 2015 to December 2017, intervention period from January 2018 to December 2020). RESULTS A total of 271 lung transplants were included (125 in the observation period and 146 in the intervention period). The patients were predominately male (64.2%) with a median age of 57 y and received double LTx (67.9%) for chronic obstructive pulmonary disease/emphysema (36.2%) or interstitial lung disease (48.3%). The proportion of patients who experienced at least 1 recurrence of P aeruginosa or ESBL-PE pneumonia was significantly lower in the intervention period than in the observation period (0.7% versus 7.2%, P = 0.007). CONCLUSIONS Our study suggests a potential benefit of secondary prophylaxis with IC to prevent the recurrence of P aeruginosa or ESBL-PE pneumonia in the intensive care unit after LTx.
Collapse
|
27
|
Assefa M. Multi-drug resistant gram-negative bacterial pneumonia: etiology, risk factors, and drug resistance patterns. Pneumonia (Nathan) 2022; 14:4. [PMID: 35509063 PMCID: PMC9069761 DOI: 10.1186/s41479-022-00096-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/11/2022] [Indexed: 12/27/2022] Open
Abstract
Bacterial pneumonia is one of the most serious public health issues owing to its medical and economic costs, which result in increased morbidity and mortality in people of all ages around the world. Furthermore, antimicrobial resistance has risen over time, and the advent of multi-drug resistance in GNB complicates therapy and has a detrimental impact on patient outcomes. The current review aimed to summarize bacterial pneumonia with an emphasis on gram-negative etiology, pathogenesis, risk factors, resistance mechanisms, treatment updates, and vaccine concerns to tackle the problem before it causes a serious consequence. In conclusion, the global prevalence of GNB in CAP was reported 49.7% to 83.1%, whereas in VAP patients ranged between 76.13% to 95.3%. The most commonly reported MDR-GNB causes of pneumonia were A. baumannii, K. pneumoniae, and P. aeruginosa, with A. baumannii isolated particularly in VAP patients and the elderly. In most studies, ampicillin, tetracyclines, amoxicillin-clavulanic acid, cephalosporins, and carbapenems were shown to be highly resistant. Prior MDR-GNB infection, older age, previous use of broad-spectrum antibiotics, high frequency of local antibiotic resistance, prolonged hospital stays, ICU admission, mechanical ventilation, and immunosuppression are associated with the MDR-GNB colonization. S. maltophilia was reported as a severe cause of HAP/VAP in patients with mechanically ventilated and having hematologic malignancy due to its ability of biofilm formation, site adhesion in respiratory devices, and its intrinsic and acquired drug resistance mechanisms. Effective combination therapies targeting PDR strains and drug-resistant genes, antibiofilm agents, gene-based vaccinations, and pathogen-specific lymphocytes should be developed in the future.
Collapse
Affiliation(s)
- Muluneh Assefa
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia.
| |
Collapse
|
28
|
Inhaled antibiotics in critical care: state of the art and future perspectives. Infect Dis Now 2022; 52:327-333. [DOI: 10.1016/j.idnow.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022]
|
29
|
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin Infect Dis 2022; 75:187-212. [PMID: 35439291 PMCID: PMC9890506 DOI: 10.1093/cid/ciac268] [Citation(s) in RCA: 298] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant infections. The initial guidance document on infections caused by extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa) was published on 17 September 2020. Over the past year, there have been a number of important publications furthering our understanding of the management of ESBL-E, CRE, and DTR-P. aeruginosa infections, prompting a rereview of the literature and this updated guidance document. METHODS A panel of 6 infectious diseases specialists with expertise in managing antimicrobial-resistant infections reviewed, updated, and expanded previously developed questions and recommendations about the treatment of ESBL-E, CRE, and DTR-P. aeruginosa infections. Because of differences in the epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment of infections in the United States. RESULTS Preferred and alternative treatment recommendations are provided with accompanying rationales, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, duration of therapy, and other management considerations are also discussed briefly. Recommendations apply for both adult and pediatric populations. CONCLUSIONS The field of antimicrobial resistance is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of antimicrobial-resistant infections. This document is current as of 24 October 2021. The most current versions of IDSA documents, including dates of publication, are available at www.idsociety.org/practice-guideline/amr-guidance/.
Collapse
Affiliation(s)
- Pranita D Tamma
- Correspondence: P. D. Tamma, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA ()
| | - Samuel L Aitken
- Department of Pharmacy, University of Michigan Health, Ann Arbor, Michigan, USA
| | - Robert A Bonomo
- Medical Service and Center for Antimicrobial Resistance and Epidemiology, Louis Stokes Cleveland Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy J Mathers
- Departments of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
Giacobbe DR, Roberts JA, Abdul-Aziz MH, de Montmollin E, Timsit JF, Bassetti M. Treatment of ventilator-associated pneumonia due to carbapenem-resistant Gram-negative bacteria with novel agents: a contemporary, multidisciplinary ESGCIP perspective. Expert Rev Anti Infect Ther 2022; 20:963-979. [PMID: 35385681 DOI: 10.1080/14787210.2022.2063838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION : In the past 15 years, treatment of VAP caused by carbapenem-resistant Gram-negative bacteria (CR-GNB) has represented an intricate challenge for clinicians. AREAS COVERED In this perspective article, we discuss the available clinical data about novel agents for the treatment of CR-GNB VAP, together with general PK/PD principles for the treatment of VAP, in the attempt to provide some suggestions for optimizing antimicrobial therapy of CR-GNB VAP in the daily clinical practice. EXPERT OPINION Recently, novel BL and BL/BLI combinations have become available that have shown potent in vitro activity against CR-GNB and have attracted much interest as novel, less toxic, and possibly more efficacious options for the treatment of CR-GNB VAP compared with previous standard of care. Besides randomized controlled trials, a good solution to enrich our knowledge on how to use these novel agents at best in the near future, while at the same time remaining adherent to current evidence-based guidelines, is to improve our collaboration to conduct larger multinational observational studies to collect sufficiently large populations treated in real life with those novel agents for which guidelines currently do not provide a recommendation (in favor or against) for certain causative organisms.
Collapse
Affiliation(s)
- Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID)
| | - Jason A Roberts
- Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID).,University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia.,Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes France
| | - Mohd H Abdul-Aziz
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Etienne de Montmollin
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France.,INSERM IAME UMR 1137, University of Paris, Sorbonne Paris Cite, Paris, France
| | - Jean-François Timsit
- Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID).,Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France.,INSERM IAME UMR 1137, University of Paris, Sorbonne Paris Cite, Paris, France
| | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID)
| |
Collapse
|
31
|
Jean SS, Harnod D, Hsueh PR. Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front Cell Infect Microbiol 2022; 12:823684. [PMID: 35372099 PMCID: PMC8965008 DOI: 10.3389/fcimb.2022.823684] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Infections caused by multidrug-resistant (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria (GNB), including carbapenem-resistant (CR) Enterobacterales (CRE; harboring mainly blaKPC, blaNDM, and blaOXA-48-like genes), CR- or MDR/XDR-Pseudomonas aeruginosa (production of VIM, IMP, or NDM carbapenemases combined with porin alteration), and Acinetobacter baumannii complex (producing mainly OXA-23, OXA-58-like carbapenemases), have gradually worsened and become a major challenge to public health because of limited antibiotic choice and high case-fatality rates. Diverse MDR/XDR-GNB isolates have been predominantly cultured from inpatients and hospital equipment/settings, but CRE has also been identified in community settings and long-term care facilities. Several CRE outbreaks cost hospitals and healthcare institutions huge economic burdens for disinfection and containment of their disseminations. Parenteral polymyxin B/E has been observed to have a poor pharmacokinetic profile for the treatment of CR- and XDR-GNB. It has been determined that tigecycline is suitable for the treatment of bloodstream infections owing to GNB, with a minimum inhibitory concentration of ≤ 0.5 mg/L. Ceftazidime-avibactam is a last-resort antibiotic against GNB of Ambler class A/C/D enzyme-producers and a majority of CR-P. aeruginosa isolates. Furthermore, ceftolozane-tazobactam is shown to exhibit excellent in vitro activity against CR- and XDR-P. aeruginosa isolates. Several pharmaceuticals have devoted to exploring novel antibiotics to combat these troublesome XDR-GNBs. Nevertheless, only few antibiotics are shown to be effective in vitro against CR/XDR-A. baumannii complex isolates. In this era of antibiotic pipelines, strict implementation of antibiotic stewardship is as important as in-time isolation cohorts in limiting the spread of CR/XDR-GNB and alleviating the worsening trends of resistance.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
- Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - Dorji Harnod
- Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Ph.D Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- *Correspondence: Po-Ren Hsueh,
| |
Collapse
|
32
|
Lynch JP, Zhanel GG. Pseudomonas aeruginosa Pneumonia: Evolution of Antimicrobial Resistance and Implications for Therapy. Semin Respir Crit Care Med 2022; 43:191-218. [PMID: 35062038 DOI: 10.1055/s-0041-1740109] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa (PA), a non-lactose-fermenting gram-negative bacillus, is a common cause of nosocomial infections in critically ill or debilitated patients, particularly ventilator-associated pneumonia (VAP), and infections of urinary tract, intra-abdominal, wounds, skin/soft tissue, and bloodstream. PA rarely affects healthy individuals, but may cause serious infections in patients with chronic structural lung disease, comorbidities, advanced age, impaired immune defenses, or with medical devices (e.g., urinary or intravascular catheters, foreign bodies). Treatment of pseudomonal infections is difficult, as PA is intrinsically resistant to multiple antimicrobials, and may acquire new resistance determinants even while on antimicrobial therapy. Mortality associated with pseudomonal VAP or bacteremias is high (> 35%) and optimal therapy is controversial. Over the past three decades, antimicrobial resistance (AMR) among PA has escalated globally, via dissemination of several international multidrug resistant "epidemic" clones. We discuss the importance of PA as a cause of pneumonia including health care-associated pneumonia, hospital-acquired pneumonia, VAP, the emergence of AMR to this pathogen, and approaches to therapy (both empirical and definitive).
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
33
|
Boisson M, Bouglé A, Sole-Lleonart C, Dhanani J, Arvaniti K, Rello J, Rouby JJ, Mimoz O. Nebulized Antibiotics for Healthcare- and Ventilator-Associated Pneumonia. Semin Respir Crit Care Med 2022; 43:255-270. [PMID: 35042259 DOI: 10.1055/s-0041-1740340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Global emergence of multidrug-resistant and extensive drug-resistant gram-negative bacteria has increased the risk of treatment failure, especially for healthcare- or ventilator-associated pneumonia (HAP/VAP). Nebulization of antibiotics, by providing high intrapulmonary antibiotic concentrations, represents a promising approach to optimize the treatment of HAP/VAP due to multidrug-resistant and extensive drug-resistant gram-negative bacteria, while limiting systemic antibiotic exposure. Aminoglycosides and colistin methanesulfonate are the most common nebulized antibiotics. Although optimal nebulized drug dosing regimen is not clearly established, high antibiotic doses should be administered using vibrating-mesh nebulizer with optimized ventilator settings to ensure safe and effective intrapulmonary concentrations. When used preventively, nebulized antibiotics reduced the incidence of VAP without any effect on mortality. This approach is not yet recommended and large randomized controlled trials should be conducted to confirm its benefit and explore the impact on antibiotic selection pressure. Compared with high-dose intravenous administration, high-dose nebulized colistin methanesulfonate seems to be more effective and safer in the treatment of ventilator-associated tracheobronchitis and VAP caused by multidrug resistant and extensive-drug resistant gram-negative bacteria. Adjunctive nebulized aminoglycosides could increase the clinical cure rate and bacteriological eradication in patients suffering from HAP/VAP due to multidrug-resistant and extensive drug-resistant gram-negative bacteria. As nebulized aminoglycosides broadly diffuse in the systemic circulation of patients with extensive bronchopneumonia, monitoring of plasma trough concentrations is recommended during the period of nebulization. Large randomized controlled trials comparing high dose of nebulized colistin methanesulfonate to high dose of intravenous colistin methanesulfonate or to intravenous new β-lactams in HAP/VAP due to multidrug-resistant and extensive drug-resistant gram-negative bacteria are urgently needed.
Collapse
Affiliation(s)
- Matthieu Boisson
- INSERM U1070, Université de Poitiers, UFR de Médecine Pharmacie, Poitiers, France.,Service de Prévention et de Contrôle de l'Infection, Hôpitaux Universitaires de Genève, Genève, Suisse
| | - Adrien Bouglé
- Medicine Sorbonne University, Anaesthesiology and Critical Care, Cardiology Institute, Paris, France.,Department of Anaesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Candela Sole-Lleonart
- Intensive Care Unit, Consorci Hospitalari de Vic (CHV), The University of Vic - Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Jayesh Dhanani
- Department of Intensive care medicine, Centre for Clinical Research, The University of Queensland, The Royal Brisbane and Women's Hospital Herston, Brisbane, Australia
| | - Kostoula Arvaniti
- Intensive Care Unit Department, Papageorgiou Hospital of Thessaloniki, Thessaloniki, Greece
| | - Jordi Rello
- Centro de Investigación Biomédica en Red (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Clinical Research and Innovation in Pneumonia and Sepsis, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Clinical Research, CHU Nîmes, Université Montpellier-Nîmes, Nîmes, France
| | - Jean-Jacques Rouby
- Department of Anaesthesiology and Critical Care, Medicine Sorbonne University, Multidisciplinary Intensive Care Unit, La Pitié Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Olivier Mimoz
- INSERM U1070 Université de Poitiers, UFR de Médecine Pharmacie and Service des Urgences Adultes & SAMU 86, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | | |
Collapse
|
34
|
Jung YJ, Kim EJ, Choi YH. Aerosolized antibiotics in the treatment of hospital-acquired pneumonia/ventilator-associated pneumonia. Korean J Intern Med 2022; 37:1-12. [PMID: 34666432 PMCID: PMC8747925 DOI: 10.3904/kjim.2021.277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/22/2021] [Indexed: 01/02/2023] Open
Abstract
Aerosolized antibiotics are being increasingly used to treat respiratory infections, especially those caused by drug-resistant pathogens. Their use in the treatment of hospital-acquired pneumonia and ventilator-associated pneumonia in critically ill patients is especially significant. They are also used as an efficient alternative to overcome the issues caused by systemic administration of antibiotics, including the occurrence of drug-resistant strains, drug toxicity, and insufficient drug concentration at the target site. However, the rationale for the use of aerosolized antibiotics is limited owing to their insufficient efficacy and the potential for underestimated risks of developing side effects. Despite the lack of availability of high-quality evidence, the use of aerosolized antibiotics is considered as an attractive alternative treatment approach, especially in patients with multidrug-resistant pathogens. In this review, we have discussed the effectiveness and side effects of aerosolized antibiotics as well as the latest advancements in this field and usage in the Republic of Korea.
Collapse
Affiliation(s)
- Yun Jung Jung
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Eun Jin Kim
- Department of Infectious Diseases, Ajou University School of Medicine, Suwon,
Korea
| | - Young Hwa Choi
- Department of Infectious Diseases, Ajou University School of Medicine, Suwon,
Korea
| |
Collapse
|
35
|
Bharathi KS, Bhat A, Pruthi G, Simha P. Randomized control study of nebulized colistin as an adjunctive therapy in ventilator-associated pneumonia in pediatric postoperative cardiac surgical population. Ann Card Anaesth 2022; 25:435-440. [DOI: 10.4103/aca.aca_81_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
36
|
Prediction of Potential Drug Targets and Vaccine Candidates Against Antibiotic-Resistant Pseudomonas aeruginosa. Int J Pept Res Ther 2022; 28:160. [PMCID: PMC9640888 DOI: 10.1007/s10989-022-10463-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 11/09/2022]
Abstract
Pseudomonas aeruginosa is one of the leading causes of nosocomial infections, characterized by increasing antibiotic resistance, severity and mortality. Therefore, numerous efforts have been made nowadays to identify new therapeutic targets. This study aimed to find potential drug targets and vaccine candidates in drug-resistant strains of P. aeruginosa. Extensive antibiotic-resistant and carbapenem-resistant strains of P. aeruginosa with complete genome were selected and ten common hypothetical proteins (HPs) containing more than 200 amino acids were obtained. The structural, functional and immunological predictions of these HPs were performed with the utility of bioinformatics approaches. Two common HPs (Gene ID: 2877781645 and 2877781936) among other investigated proteins were revealed as potential candidates for pharmaceutical and vaccine purposes based on structural and physicochemical properties, functional domains, subcellular localizations, signal peptides, toxicity, virulence factor, antigenicity, allergenicity and immunoinformatic predictions. The consequence of this predictive study will assist in novel drug and vaccine design through experimental investigations.
Collapse
|
37
|
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin Infect Dis 2021; 74:2089-2114. [PMID: 34864936 DOI: 10.1093/cid/ciab1013] [Citation(s) in RCA: 315] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant infections. A previous guidance document focused on infections caused by extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Here, guidance is provided for treating AmpC β-lactamase-producing Enterobacterales (AmpC-E), carbapenem-resistant Acinetobacter baumannii (CRAB), and Stenotrophomonas maltophilia infections. METHODS A panel of six infectious diseases specialists with expertise in managing antimicrobial-resistant infections formulated questions about the treatment of AmpC-E, CRAB, and S. maltophilia infections. Answers are presented as suggestions and corresponding rationales. In contrast to guidance in the previous document, published data on optimal treatment of AmpC-E, CRAB, and S. maltophilia infections are limited. As such, guidance in this document is provided as "suggested approaches" based on clinical experience, expert opinion, and a review of the available literature. Because of differences in the epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment of infections in the United States. RESULTS Preferred and alternative treatment suggestions are provided, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, duration of therapy, and other management considerations are also discussed briefly. Suggestions apply for both adult and pediatric populations. CONCLUSIONS The field of antimicrobial resistance is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of antimicrobial-resistant infections. This document is current as of September 17, 2021 and will be updated annually. The most current versions of IDSA documents, including dates of publication, are available at www.idsociety.org/practice-guideline/amr-guidance-2.0/.
Collapse
Affiliation(s)
- Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samuel L Aitken
- Department of Pharmacy, University of Michigan Health, Ann Arbor, Michigan, USA
| | - Robert A Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy J Mathers
- Departments of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
38
|
Karakonstantis S, Kritsotakis EI, Gikas A. Pandrug-resistant Gram-negative bacteria: a systematic review of current epidemiology, prognosis and treatment options. J Antimicrob Chemother 2021; 75:271-282. [PMID: 31586417 DOI: 10.1093/jac/dkz401] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The literature on the epidemiology, mortality and treatment of pandrug-resistant (PDR) Gram-negative bacteria (GNB) is scarce, scattered and controversial. OBJECTIVES To consolidate the relevant literature and identify treatment options for PDR GNB infections. METHODS A systematic search in MEDLINE, Scopus and clinical trial registries was conducted. Studies reporting PDR clinical isolates were eligible for review if susceptibility testing for all major antimicrobials had been performed. Characteristics and findings of retrieved studies were qualitatively synthesized. RESULTS Of 81 studies reviewed, 47 (58%) were published in the last 5 years. The reports reflected a worldwide dissemination of PDR GNB in 25 countries in 5 continents. Of 526 PDR isolates reported, Pseudomonas aeruginosa (n=175), Acinetobacter baumannii (n=172) and Klebsiella pneumoniae (n=125) were most common. PDR GNB were typically isolated in ICUs, but several studies demonstrated wider outbreak potential, including dissemination to long-term care facilities and international spread. All-cause mortality was high (range 20%-71%), but appeared to be substantially reduced in studies reporting treatment regimens active in vitro. No controlled trial has been performed to date, but several case reports and series noted successful use of various regimens, predominantly synergistic combinations, and in selected patients increased exposure regimens and newer antibiotics. CONCLUSIONS PDR GNB are increasingly being reported worldwide and are associated with high mortality. Several treatment regimens have been successfully used, of which synergistic combinations appear to be most promising and often the only available option. More pharmacokinetic/pharmacodynamic and outcome studies are needed to guide the use of synergistic combinations.
Collapse
Affiliation(s)
| | - Evangelos I Kritsotakis
- Laboratory of Biostatistics, School of Medicine, University of Crete, Heraklion, Crete, Greece.,Department of Epidemiology and Medical Statistics, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Achilleas Gikas
- Department of Internal Medicine, University Hospital of Heraklion, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
39
|
Ding L, Wang J, Cai S, Smyth H, Cui Z. Pulmonary biofilm-based chronic infections and inhaled treatment strategies. Int J Pharm 2021; 604:120768. [PMID: 34089796 DOI: 10.1016/j.ijpharm.2021.120768] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Certain pulmonary diseases, such as cystic fibrosis (CF), non-CF bronchiectasis, chronic obstructive pulmonary disease, and ventilator-associated pneumonia, are usually accompanied by respiratory tract infections due to the physiological alteration of the lung immunological defenses. Recurrent infections may lead to chronic infection through the formation of biofilms. Chronic biofilm-based infections are challenging to treat using antimicrobial agents. Therefore, effective ways to eradicate biofilms and thus relieve respiratory tract infection require the development of efficacious agents for biofilm destruction, the design of delivery carriers with biofilm-targeting and/or penetrating abilities for these agents, and the direct delivery of them into the lung. This review provides an in-depth description of biofilm-based infections caused by pulmonary diseases and focuses on current existing agents that are administered by inhalation into the lung to treat biofilm, which include i) inhalable antimicrobial agents and their combinations, ii) non-antimicrobial adjuvants such as matrix-targeting enzymes, mannitol, glutathione, cyclosporin A, and iii) liposomal formulations of anti-biofilm agents. Finally, novel agents that have shown promise against pulmonary biofilms as well as traditional and new devices for pulmonary delivery of anti-biofilm agents into the lung are also discussed.
Collapse
Affiliation(s)
- Li Ding
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jieliang Wang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shihao Cai
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hugh Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
40
|
Nebulized Colistin in Ventilator-Associated Pneumonia and Tracheobronchitis: Historical Background, Pharmacokinetics and Perspectives. Microorganisms 2021; 9:microorganisms9061154. [PMID: 34072189 PMCID: PMC8227626 DOI: 10.3390/microorganisms9061154] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Clinical evidence suggests that nebulized colistimethate sodium (CMS) has benefits for treating lower respiratory tract infections caused by multidrug-resistant Gram-negative bacteria (GNB). Colistin is positively charged, while CMS is negatively charged, and both have a high molecular mass and are hydrophilic. These physico-chemical characteristics impair crossing of the alveolo-capillary membrane but enable the disruption of the bacterial wall of GNB and the aggregation of the circulating lipopolysaccharide. Intravenous CMS is rapidly cleared by glomerular filtration and tubular excretion, and 20-25% is spontaneously hydrolyzed to colistin. Urine colistin is substantially reabsorbed by tubular cells and eliminated by biliary excretion. Colistin is a concentration-dependent antibiotic with post-antibiotic and inoculum effects. As CMS conversion to colistin is slower than its renal clearance, intravenous administration can lead to low plasma and lung colistin concentrations that risk treatment failure. Following nebulization of high doses, colistin (200,000 international units/24h) lung tissue concentrations are > five times minimum inhibitory concentration (MIC) of GNB in regions with multiple foci of bronchopneumonia and in the range of MIC breakpoints in regions with confluent pneumonia. Future research should include: (1) experimental studies using lung microdialysis to assess the PK/PD in the interstitial fluid of the lung following nebulization of high doses of colistin; (2) superiority multicenter randomized controlled trials comparing nebulized and intravenous CMS in patients with pandrug-resistant GNB ventilator-associated pneumonia and ventilator-associated tracheobronchitis; (3) non-inferiority multicenter randomized controlled trials comparing nebulized CMS to intravenous new cephalosporines/ß-lactamase inhibitors in patients with extensive drug-resistant GNB ventilator-associated pneumonia and ventilator-associated tracheobronchitis.
Collapse
|
41
|
Abstract
Antibiotic resistance is a major global health challenge and, worryingly, several key Gram negative pathogens can become resistant to most currently available antibiotics. Polymyxins have been revived as a last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram negative bacteria, in particular Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacterales. Polymyxins were first discovered in the late 1940s but were abandoned soon after their approval in the late 1950s as a result of toxicities (e.g., nephrotoxicity) and the availability of "safer" antibiotics approved at that time. Therefore, knowledge on polymyxins had been scarce until recently, when enormous efforts have been made by several research teams around the world to elucidate the chemical, microbiological, pharmacokinetic/pharmacodynamic, and toxicological properties of polymyxins. One of the major achievements is the development of the first scientifically based dosage regimens for colistin that are crucial to ensure its safe and effective use in patients. Although the guideline has not been developed for polymyxin B, a large clinical trial is currently being conducted to optimize its clinical use. Importantly, several novel, safer polymyxin-like lipopeptides are developed to overcome the nephrotoxicity, poor efficacy against pulmonary infections, and narrow therapeutic windows of the currently used polymyxin B and colistin. This review discusses the latest achievements on polymyxins and highlights the major challenges ahead in optimizing their clinical use and discovering new-generation polymyxins. To save lives from the deadly infections caused by Gram negative "superbugs," every effort must be made to improve the clinical utility of the last-line polymyxins. SIGNIFICANCE STATEMENT: Antimicrobial resistance poses a significant threat to global health. The increasing prevalence of multidrug-resistant (MDR) bacterial infections has been highlighted by leading global health organizations and authorities. Polymyxins are a last-line defense against difficult-to-treat MDR Gram negative pathogens. Unfortunately, the pharmacological information on polymyxins was very limited until recently. This review provides a comprehensive overview on the major achievements and challenges in polymyxin pharmacology and clinical use and how the recent findings have been employed to improve clinical practice worldwide.
Collapse
Affiliation(s)
- Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Mohammad A K Azad
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Tony Velkov
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Qi Tony Zhou
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| |
Collapse
|
42
|
Desgrouas M, Ehrmann S. Inhaled antibiotics during mechanical ventilation-why it will work. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:598. [PMID: 33987296 DOI: 10.21037/atm-20-3686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inhaled antibiotics are a common therapy among patients suffering recurrent or chronic pulmonary infections. Their use is less frequent in acutely ill patients despite a strong theoretical rationale and growing evidence of their efficiency, safety and beneficial effect on reducing bacterial resistance emergence. Clinical trials of inhaled antibiotics have shown contradictory results among mechanically ventilated patients. The optimal nebulization setup, not always implemented in all trials, the difficulty to identify the population most likely to benefit and the testing of various therapeutic strategies such as adjunctive versus alternative to systemic antibiotics may explain the disparity in trial results. The present review first presents the reasons why inhaled antibiotics have to be developed and the benefits to be expected of inhaled anti-infectious therapy among mechanically ventilated patients. A second part develops the constraints of aerosolized therapies that one has to be aware of and the simple actions required during nebulization to ensure optimal delivery to the distal lung parenchyma. Positive and negative studies concerning inhaled antibiotics are compared to understand the discrepancies of their findings and conclusions. The last part presents current developments and perspective which will likely turn it into a fully successful therapeutic modality, and makes the link between inhaled antibiotics and inhaled anti-infectious therapy.
Collapse
Affiliation(s)
- Maxime Desgrouas
- CHRU Tours, Médecine Intensive Réanimation, Tours, France.,CHR Orléans, Médecine Intensive Réanimation, Orléans, France.,INSERM, Centre d'étude des pathologies respiratoires, U1100, Université de Tours, Tours, France
| | - Stephan Ehrmann
- CHRU Tours, Médecine Intensive Réanimation, Tours, France.,INSERM, Centre d'étude des pathologies respiratoires, U1100, Université de Tours, Tours, France
| |
Collapse
|
43
|
Ling L, Joynt GM, Lipman J. A narrative review on antimicrobial therapy in septic shock: updates and controversies. Curr Opin Anaesthesiol 2021; 34:92-98. [PMID: 33470662 DOI: 10.1097/aco.0000000000000954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Antibiotics are an essential treatment for septic shock. This review provides an overview of the key issues in antimicrobial therapy for septic shock. We include a summary of available evidence with an emphasis on data published in the last few years. RECENT FINDINGS We examine apparently contradictory data supporting the importance of minimizing time to antimicrobial therapy in sepsis, discuss approaches to choosing appropriate antibiotics, and review the importance and challenges presented by antimicrobial dosing. Lastly, we evaluate the evolving concepts of de-escalation, and optimization of the duration of antimicrobials. SUMMARY The topics discussed in this review provide background to key clinical decisions in antimicrobial therapy for septic shock: timing, antibiotic choice, dosage, de-escalation, and duration. Although acknowledging some controversy, antimicrobial therapy in septic shock should be delivered early, be of the adequate spectrum, appropriately and individually dosed, rationalized when possible, and of minimal effective duration.
Collapse
Affiliation(s)
- Lowell Ling
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Gavin Matthew Joynt
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeffrey Lipman
- Intensive Care Services, Royal Brisbane and Women's Hospital
- The University of Queensland Centre for Clinical Research, Brisbane, Australia
- Scientific Consultant, Nimes University Hospital, University of Montpellier, Nimes, France
| |
Collapse
|
44
|
Almangour TA, Garcia E, Zhou Q, Forrest A, Kaye KS, Li J, Velkov T, Rao GG. Polymyxins for the treatment of lower respiratory tract infections: lessons learned from the integration of clinical pharmacokinetic studies and clinical outcomes. Int J Antimicrob Agents 2021; 57:106328. [PMID: 33785362 DOI: 10.1016/j.ijantimicag.2021.106328] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/18/2021] [Accepted: 03/20/2021] [Indexed: 11/26/2022]
Abstract
The global rise in nosocomial pneumonia caused by multidrug-resistant (MDR) Gram-negative pathogens and the increasingly limited antibiotic treatment options are growing threats to modern medicine. As a result, older antibiotics such as polymyxins are being used as last-resort drugs for MDR nosocomial pneumonia. Polymyxins are bactericidal against most aerobic Gram-negative bacilli. High-dose intravenous (IV) adminsitration of polymyxins, however, results in subtherapeutic concentrations at the site of infection making treatment challenging. Alternative forms of polymyxin delivery have been considered in order to better achieve the necessary concentrations at the site of infection. Several studies have evaluated the effectiveness of aerosolised polymyxins in patients with nosocomial pneumonia caused by MDR Gram-negative pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae. Here we evaluated the pharmacokinetic data supporting the use of inhaled polymyxins in nosocomial pneumonia and provide insight into the limitations and challenges that future studies should address. We have also reviewed the literature published between 2006 and 2020 on the use of aerosolised polymyxins for the treatment of nosocomial pneumonia, including ventilator-associated pneumonia, in patients without cystic fibrosis to evaluate their safety and efficacy as monotherapy or as an adjunct to IV antimicrobials. This review highlights the need for well-designed multicentre studies with standardised methodologies to further evaluate the effectiveness of inhaled polymyxins and to provide reliable pharmacokinetic/pharmacodynamic data in order to redefine appropriate dosing strategies.
Collapse
Affiliation(s)
- Thamer A Almangour
- Department of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA; Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Estefany Garcia
- Department of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Qi Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Alan Forrest
- Department of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Keith S Kaye
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gauri G Rao
- Department of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA.
| |
Collapse
|
45
|
Feng JY, Peng CK, Sheu CC, Lin YC, Chan MC, Wang SH, Chen CM, Shen YC, Zheng ZR, Lin YT, Yang KY. Efficacy of adjunctive nebulized colistin in critically ill patients with nosocomial carbapenem-resistant Gram-negative bacterial pneumonia: a multi-centre observational study. Clin Microbiol Infect 2021; 27:1465-1473. [PMID: 33540113 DOI: 10.1016/j.cmi.2021.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To investigate the association between adjunctive nebulized colistin and treatment outcomes in critically ill patients with nosocomial carbapenem-resistant Gram-negative bacterial (CR-GNB) pneumonia. METHODS This retrospective, multi-centre, cohort study included individuals admitted to the intensive care unit with nosocomial pneumonia caused by colistin-susceptible CR-GNB. Enrolled patients were divided into groups with/without nebulized colistin as adjunct to at least one effective intravenous antibiotic. Propensity score matching was performed in the original cohort (model 1) and a time-window bias-adjusted cohort (model 2). The association between adjunctive nebulized colistin and treatment outcomes was analysed. RESULTS In total, 181 and 326 patients treated with and without nebulized colistin, respectively, were enrolled for analysis. The day 14 clinical failure rate and mortality rate were 41.4% (75/181) versus 46% (150/326), and 14.9% (27/181) versus 21.8% (71/326), respectively. In the propensity score-matching analysis, patients with nebulized colistin had lower day 14 clinical failure rates (model 1: 41% (68/166) versus 54.2% (90/166), p 0.016; model 2: 35.3% (41/116) versus 56.9% (66/116), p 0.001). On multivariate analysis, nebulized colistin was an independent factor associated with fewer day 14 clinical failures (model 1: adjusted odds ratio (aOR) 0.59, 95% CI 0.37-0.92; model 2: aOR 0.37, 95% CI 0.21-0.65). Nebulized colistin was not associated independently with a lower 14-day mortality rate in the time-dependent analysis in both models 1 and 2. CONCLUSIONS Adjunctive nebulized colistin was associated with lower day 14 clinical failure rate, but not lower 14-day mortality rate, in critically ill patients with nosocomial pneumonia caused by colistin-susceptible CR-GNB.
Collapse
Affiliation(s)
- Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan
| | - Chau-Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chao Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Cheng Chan
- Division of Critical Care and Respiratory Therapy, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; College of Science, Tunghai University, Taichung, Taiwan
| | - Sheng-Huei Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan
| | - Chia-Min Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Cheng Shen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Zhe-Rong Zheng
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuang-Yao Yang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan.
| | | |
Collapse
|
46
|
Wagenlehner F, Lucenteforte E, Pea F, Soriano A, Tavoschi L, Steele VR, Henriksen AS, Longshaw C, Manissero D, Pecini R, Pogue JM. Systematic review on estimated rates of nephrotoxicity and neurotoxicity in patients treated with polymyxins. Clin Microbiol Infect 2021; 27:S1198-743X(20)30764-3. [PMID: 33359542 DOI: 10.1016/j.cmi.2020.12.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/03/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Nephrotoxicity and neurotoxicity are commonly associated with polymyxin treatment; however, the emergence of multidrug-resistant Gram-negative bacteria with limited therapeutic options has resulted in increased use of polymyxins. OBJECTIVES To determine the rates of nephrotoxicity and neurotoxicity during polymyxin treatment and whether any factors influence these. DATA SOURCES Medline, Embase and Cochrane Library databases were searched on 2 January 2020. STUDY ELIGIBILITY CRITERIA Studies reporting nephrotoxicity and/or neurotoxicity rates in patients with infections treated with polymyxins were included. Reviews, meta-analyses and reports not in English were excluded. PARTICIPANTS Patients hospitalized with infections treated with systemic or inhaled polymyxins were included. For comparative analyses, patients treated with non-polymyxin-based regimens were also included. METHODS Meta-analyses were performed using a random-effects model; subgroup meta-analyses were conducted where data permitted using a mixed-effects model. RESULTS In total, 237 reports of randomized controlled trials, cohort and case-control studies were eligible for inclusion; most were single-arm observational studies. Nephrotoxic events in 35,569 patients receiving polymyxins were analysed. Overall nephrotoxicity rate was 0.282 (95% confidence interval (CI) 0.259-0.307). When excluding studies where >50% of patients received inhaled-only polymyxin treatment or nephrotoxicity assessment was by methods other than internationally recognized criteria (RIFLE, KDIGO or AKIN), the nephrotoxicity rate was 0.391 (95% CI 0.364-0.419). The odds of nephrotoxicity were greater with polymyxin therapies compared to non-polymyxin-based regimens (odds ratio 2.23 (95% CI 1.58-3.15); p < 0.001). Meta-analyses showed a significant effect of polymyxin type, dose, patient age, number of concomitant nephrotoxins and use of diuretics, glycopeptides or vasopressors on the rate of nephrotoxicity. Polymyxin therapies were not associated with a significantly different rate of neurotoxicity than non-polymyxin-based regimens (p 0.051). The overall rate of neurotoxicity during polymyxin therapy was 0.030 (95% CI 0.020-0.043). CONCLUSIONS Polymyxins are associated with a higher risk of nephrotoxicity than non-polymyxin-based regimens.
Collapse
Affiliation(s)
- Florian Wagenlehner
- Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico Pea
- Department of Medicine, University of Udine and Institute of Clinical Pharmacology, SM Misericordia University Hospital, ASUIUD, Udine, Italy
| | - Alex Soriano
- Infectious Diseases Department, Hospital Clínic of Barcelona, University of Barcelona IDIBAPS, Barcelona, Spain
| | - Lara Tavoschi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | | - Davide Manissero
- University College of London, Institute for Global Health, London, UK
| | | | - Jason M Pogue
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA.
| |
Collapse
|
47
|
Nadeem K, Raja K, Attalla M, Patel M, Philips M. Safety of Nebulized Colistin Solution as Adjunctive Treatment of Lower Respiratory Tract Infections. J Pharm Pract 2020; 35:75-79. [PMID: 32935618 DOI: 10.1177/0897190020958246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Systemic colistin is often utilized for management of drug resistant lower respiratory tract infections (LRTI). Nebulized administration of colistin allows direct instillation of active agent to maximize concentrations and limit systemic toxicities. Current literature supports efficacy of nebulized colistin as adjunctive treatment for LRTI. However, there is a paucity of data surrounding safety of this administration technique. METHODS The electronic medical record (EMR) was queried to identify patients treated with nebulized colistin between January 1, 2016 and December 31, 2018. The data collected from the EMR and hospital adverse drug reaction (ADR) reporting systems included: demographics, dose, serum creatinine (SCr), concomitant nephrotoxins, infecting pathogen, treatment-emergent ADRs, and drug toxicities. The primary outcome was prevalence of renal, neurologic, or respiratory ADRs secondary to nebulized colistin. RESULTS Thirty-two patients were administered nebulized colistin during the study period. Approximately 19% of patients had baseline chronic kidney disease. Cultures were positive in 29 patients of which 11 organisms were resistant to all tested antimicrobials. Three patients experienced acute kidney injury (AKI), 1 patient experienced a neurologic reaction, and 1 patient experienced a respiratory reaction, though none were considered treatment-related. CONCLUSION The results of our study signify localized administration of colistin results in a low incidence of systemic adverse events. Nebulized colistin is a safe adjunct for managing LRTI.
Collapse
Affiliation(s)
- Komal Nadeem
- Department of Pharmacy, 24050Clara Maass Medical Center, Belleville, NJ, USA
| | - Karan Raja
- Department of Pharmacy, 24050Clara Maass Medical Center, Belleville, NJ, USA
| | - Mark Attalla
- Department of Pharmacy, 24050Clara Maass Medical Center, Belleville, NJ, USA
| | - Mitesh Patel
- Department of Pharmacy, 24050Clara Maass Medical Center, Belleville, NJ, USA
| | - Mona Philips
- Department of Pharmacy, 24050Clara Maass Medical Center, Belleville, NJ, USA
| |
Collapse
|
48
|
Benítez-Cano A, de Antonio-Cuscó M, Luque S, Sorlí L, Carazo J, Ramos I, Bermejo S, Campillo N, Horcajada JP, Samsó E, Grau S. Systemic pharmacokinetics and safety of high doses of nebulized colistimethate sodium in critically ill patients with hospital-acquired and ventilator-associated pneumonia. J Antimicrob Chemother 2020; 74:3268-3273. [PMID: 31495877 DOI: 10.1093/jac/dkz356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To assess the pharmacokinetics of formed colistin in plasma and the safety of two different high doses of colistimethate sodium administered via nebulization in critically ill surgical patients with hospital-acquired pneumonia (HAP) or ventilator-associated pneumonia (VAP). PATIENTS AND METHODS Formed colistin plasma concentrations were measured in critically ill surgical patients with pneumonia treated with two different doses of nebulized colistimethate sodium (3 MIU/8 h versus 5 MIU/8 h). Adverse events possibly related to nebulized colistimethate sodium were recorded. RESULTS Twenty-seven patients (15 in the 3 MIU/8 h group and 12 in the 5 MIU/8 h group) were included. Colistin plasma concentrations were unquantifiable (<0.1 mg/L) in eight (53.3%) patients in the 3 MIU/8 h group and in seven patients (58.3%) in the 5 MIU/8 h group. Median (IQR) quantifiable colistin plasma concentrations before nebulization and at 1, 4 and 8 h were 0.17 (0.12-0.33), 0.20 (0.11-0.24), 0.17 (0.12-0.23) and 0.17 (0.11-0.32) mg/L, respectively, in the 3 MIU/8 h group and 0.20 (0.11-0.35), 0.24 (0.12-0.44), 0.24 (0.10-0.49) and 0.23 (0.11-0.44) mg/L, respectively, in the 5 MIU/8 h group, with no differences between the two groups at any time. Renal impairment during nebulized treatment was observed in three patients in each group, but was unlikely to be related to colistimethate sodium treatment. Nebulized colistimethate sodium therapy was well tolerated and no bronchospasms or neurotoxicity events were observed. CONCLUSIONS In this limited observational case series of critically ill patients with HAP or VAP treated with high doses of nebulized colistimethate sodium, systemic exposure was minimal and the treatment was well tolerated.
Collapse
Affiliation(s)
- Adela Benítez-Cano
- Department of Anaesthesiology and Surgical Intensive Care, Hospital del Mar, IMIM (Hospital del Mar Research Institute), Paseo Marítimo 25-29, Barcelona, Spain
| | - Marta de Antonio-Cuscó
- Department of Pharmacy, Hospital del Mar, IMIM (Hospital del Mar Research Institute), Paseo Marítimo 25-29, Barcelona, Spain
| | - Sonia Luque
- Department of Pharmacy, Hospital del Mar, IMIM (Hospital del Mar Research Institute), Universitat Autònoma de Barcelona, Paseo Marítimo 25-29, Barcelona, Spain
| | - Luisa Sorlí
- Department of Infectious Diseases, Hospital del Mar, IMIM (Hospital del Mar Research Institute), Universitat Autònoma de Barcelona, Paseo Marítimo 25-29, Barcelona, Spain
| | - Jesús Carazo
- Department of Anaesthesiology and Surgical Intensive Care, Hospital del Mar, IMIM (Hospital del Mar Research Institute), Paseo Marítimo 25-29, Barcelona, Spain
| | - Isabel Ramos
- Department of Anaesthesiology and Surgical Intensive Care, Hospital del Mar, IMIM (Hospital del Mar Research Institute), Paseo Marítimo 25-29, Barcelona, Spain
| | - Silvia Bermejo
- Department of Anaesthesiology and Surgical Intensive Care, Hospital del Mar, IMIM (Hospital del Mar Research Institute), Paseo Marítimo 25-29, Barcelona, Spain
| | - Nuria Campillo
- Department of Pharmacy, Hospital del Mar, IMIM (Hospital del Mar Research Institute), Paseo Marítimo 25-29, Barcelona, Spain
| | - Juan P Horcajada
- Department of Infectious Diseases, Hospital del Mar, IMIM (Hospital del Mar Research Institute), Universitat Autònoma de Barcelona, Paseo Marítimo 25-29, Barcelona, Spain
| | - Enric Samsó
- Department of Anaesthesiology and Surgical Intensive Care, Hospital del Mar, IMIM (Hospital del Mar Research Institute), Universitat Pompeu Fabra, Paseo Marítimo 25-29, Barcelona, Spain
| | - Santiago Grau
- Department of Pharmacy, Hospital del Mar, IMIM (Hospital del Mar Research Institute), Universitat Autònoma de Barcelona, Paseo Marítimo 25-29, Barcelona, Spain
| |
Collapse
|
49
|
McCarthy SD, González HE, Higgins BD. Future Trends in Nebulized Therapies for Pulmonary Disease. J Pers Med 2020; 10:E37. [PMID: 32397615 PMCID: PMC7354528 DOI: 10.3390/jpm10020037] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Aerosol therapy is a key modality for drug delivery to the lungs of respiratory disease patients. Aerosol therapy improves therapeutic effects by directly targeting diseased lung regions for rapid onset of action, requiring smaller doses than oral or intravenous delivery and minimizing systemic side effects. In order to optimize treatment of critically ill patients, the efficacy of aerosol therapy depends on lung morphology, breathing patterns, aerosol droplet characteristics, disease, mechanical ventilation, pharmacokinetics, and the pharmacodynamics of cell-drug interactions. While aerosol characteristics are influenced by drug formulations and device mechanisms, most other factors are reliant on individual patient variables. This has led to increased efforts towards more personalized therapeutic approaches to optimize pulmonary drug delivery and improve selection of effective drug types for individual patients. Vibrating mesh nebulizers (VMN) are the dominant device in clinical trials involving mechanical ventilation and emerging drugs. In this review, we consider the use of VMN during mechanical ventilation in intensive care units. We aim to link VMN fundamentals to applications in mechanically ventilated patients and look to the future use of VMN in emerging personalized therapeutic drugs.
Collapse
Affiliation(s)
- Sean D. McCarthy
- Anaesthesia, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland; (S.D.M.); (H.E.G.)
- Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Héctor E. González
- Anaesthesia, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland; (S.D.M.); (H.E.G.)
- Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Brendan D. Higgins
- Physiology, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
50
|
Bakthavatchalam YD, Shankar A, Muthuirulandi Sethuvel DP, Asokan K, Kanthan K, Veeraraghavan B. Synergistic activity of fosfomycin-meropenem and fosfomycin-colistin against carbapenem resistant Klebsiella pneumoniae: an in vitro evidence. Future Sci OA 2020; 6:FSO461. [PMID: 32257374 PMCID: PMC7117555 DOI: 10.2144/fsoa-2019-0074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim: To evaluate the antibacterial activity of fosfomycin–meropenem and fosfomycin–colistin combinations against carbapenem-resistant Klebsiella pneumoniae (CR-Kp). Methods: A total of 50 CR-Kp isolates recovered from blood cultures were included in this study. All the CR-Kp isolates were screened for the presence of carbapenem resistant genes blaIMP. blaVIM. blaNDM. blaOXA-48 like, blaKPC. blaGES.#x00A0;and blaSPM. Combination testing of fosfomycin–meropenem and fosfomycin–colistin were performed using time-kill assay. Results: Fosfomycin–meropenem combination showed synergy in 20% of the tested CR-Kp isolates. While, fosfomycin–colistin exhibited synergy against 16% of the isolates. A total of 68% (n = 34) of CR-Kp isolates were characterised as OXA-48-like producers and 22% (n = 11) as NDM producers. Synergistic activity of these combinations was observed against OXA-48, NDM and NDM + OXA-48 co-producers. Conclusion: Considerable synergistic antibacterial activity of fosfomycin–meropenem and fosfomycin–colistin was not observed against CR-Kp isolates. Therefore, these combinations may not be promising for infections associated with CR-Kp. Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) infections are difficult to treat and are associated with a high mortality rate. This study aimed to evaluate the synergistic activity of fosfomycin–meropenem and fosfomycin–colistin combinations against CR-Kp. Synergistic activity of these combinations was observed against OXA-48, NDM and NDM + OXA-48 co-producers. However, synergism was not found to be significant. Therefore, these combinations may not be promising for infections associated with CR-Kp.
Collapse
Affiliation(s)
| | - Abirami Shankar
- Department of Clinical Microbiology, Christian Medical College, Vellore 632004, India
| | | | - Kalaiarasi Asokan
- Department of Clinical Microbiology, Christian Medical College, Vellore 632004, India
| | - Kalaiarasi Kanthan
- Department of Clinical Microbiology, Christian Medical College, Vellore 632004, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore 632004, India
| |
Collapse
|