1
|
Aziz N, Wal P, Sinha R, Shirode PR, Chakraborthy G, Sharma MC, Kumar P. A Comprehensive Review on the Significance of Cysteine in Various Metabolic Disorders; Particularly CVD, Diabetes, Renal Dysfunction, and Ischemic Stroke. Curr Protein Pept Sci 2024; 25:682-707. [PMID: 38766817 DOI: 10.2174/0113892037287215240424090908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 05/22/2024]
Abstract
Metabolic disorders have long been a challenge for medical professionals and are a leading cause of mortality in adults. Diabetes, cardiovascular disorders (CVD), renal dysfunction, and ischemic stroke are the most prevalent ailments contributing to a high mortality rate worldwide. Reactive oxygen species are one of the leading factors that act as a fundamental root cause of metabolic syndrome. All of these disorders have their respective treatments, which, to some degree, sabotage the pathological worsening of the disease and an inevitable death. However, they pose a perilous health hazard to humankind. Cysteine, a functional amino acid shows promise for the prevention and treatment of metabolic disorders, such as CVD, Diabetes mellitus, renal dysfunction, and ischemic stroke. In this review, we explored whether cysteine can eradicate reactive oxygen species and subsequently prevent and treat these diseases.
Collapse
Affiliation(s)
- Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur-209305, UP, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur-209305, UP, India
| | - Rishika Sinha
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur-209305, UP, India
| | | | | | | | - Pankaj Kumar
- Department of Pharmacology, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh 6 University, NH-7, Barnala Road, Bathinda 151001, India
| |
Collapse
|
2
|
Hwang SB, Park JH, Park JY, Kang SS, Chung HS, Lee H, Kim JY, Tchah H. Anti-inflammatory and anti-apoptotic effects of N-acetylcysteine in diabetic rat corneal epithelium. Int J Ophthalmol 2021; 14:1805-1812. [PMID: 34926192 DOI: 10.18240/ijo.2021.12.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To characterize the anti-inflammatory and anti-apoptotic effects of N-acetylcysteine (NAC) in streptozotocin (STZ)-induced diabetic rat corneal epithelium and human corneal epithelial cells (HCECs) exposed to a high-glucose environment. METHODS HCECs were incubated in 0, 5, 50 mmol/L glucose medium, or 50 mmol/L glucose medium with NAC for 24h. Diabetes was induced in rats by intraperitoneal injection of 65 mg/kg STZ and some of these rats were topically administered NAC to corneas with 3 mice per group. We characterized receptor for advanced glycation end-products (RAGE) expression using immunofluorescence, and interleukin (IL)-1β and cleaved caspase-3 (CCAP-3) expression using immunohistochemistry. Circulating tumor necrosis factor (TNF)-α concentration was measured by ELISA and cleaved poly-ADP ribose polymerase (PARP) concentration was quantified by Western blotting. Apoptotic cells were detected using TUNEL assay and annexin V and propidium iodide staining. RESULTS Diabetic rats had higher expression of RAGE (2.46±0.13 fold), IL-1β, and CCAP-3 in apoptotic cells of their corneas than control rats. The expression of RAGE (1.83±0.11 fold), IL-1β, and CCAP-3, and the number of apoptotic cells, were reduced by topical NAC treatment. HCECs incubated in 50 mmol/L glucose medium showed high concentrations of TNF-α (310±2.00 pg/mL) and cleaved PARP (7.43±0.56 fold), and more extensive apoptosis than cells in 50 mmol/L glucose medium. However, the addition of NAC reduced the concentrations of TNF-α (153.67±2.31 pg/mL) and cleaved PARP (5.55±0.31 fold) and the number of apoptotic cells. CONCLUSION NAC inhibits inflammation and apoptosis in the corneas of diabetic rats and HCECs maintained in a high-glucose environment.
Collapse
Affiliation(s)
- Sae-Byeok Hwang
- Research Institute of Miso Eye Clinic, Gyeonggi-do 13640, Republic of Korea.,Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Jin Hyoung Park
- Research Institute of Miso Eye Clinic, Gyeonggi-do 13640, Republic of Korea.,Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea.,Miso Eye Clinic, Gyeonggi-do 13640, Republic of Korea
| | - Ji-Yun Park
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Soon-Suk Kang
- Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea.,Research Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ho Seok Chung
- Department of Ophthalmology, Dankook University Hospital, Dankook University College of Medicine, Cheonan 31116, Republic of Korea
| | - Hun Lee
- Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea.,Department of Ophthalmology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jae Yong Kim
- Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea.,Department of Ophthalmology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hungwon Tchah
- Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea.,Department of Ophthalmology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
3
|
Drug-Induced Liver Injury: Clinical Evidence of N-Acetyl Cysteine Protective Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3320325. [PMID: 34912495 PMCID: PMC8668310 DOI: 10.1155/2021/3320325] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022]
Abstract
Oxidative stress is a key pathological feature implicated in both acute and chronic liver diseases, including drug-induced liver injury (DILI). The latter describes hepatic injury arising as a direct toxic effect of administered drugs or their metabolites. Although still underreported, DILI remains a significant cause of liver failure, especially in developed nations. Currently, it is understood that mitochondrial-generated oxidative stress and abnormalities in phase I/II metabolism, leading to glutathione (GSH) suppression, drive the onset of DILI. N-Acetyl cysteine (NAC) has attracted a lot of interest as a therapeutic agent against DILI because of its strong antioxidant properties, especially in relation to enhancing endogenous GSH content to counteract oxidative stress. Thus, in addition to updating information on the pathophysiological mechanisms implicated in oxidative-induced hepatic injury, the current review critically discusses clinical evidence on the protective effects of NAC against DILI, including the reduction of patient mortality. Besides injury caused by paracetamol, NAC can also improve liver function in relation to other forms of liver injury such as those induced by excessive alcohol intake. The implicated therapeutic mechanisms of NAC extend from enhancing hepatic GSH levels to reducing biomarkers of paracetamol toxicity such as keratin-18 and circulating caspase-cleaved cytokeratin-18. However, there is still lack of evidence confirming the benefits of using NAC in combination with other therapies in patients with DILI.
Collapse
|
4
|
Wu X, Huang L, Liu J. Relationship between oxidative stress and nuclear factor-erythroid-2-related factor 2 signaling in diabetic cardiomyopathy (Review). Exp Ther Med 2021; 22:678. [PMID: 33986843 PMCID: PMC8111863 DOI: 10.3892/etm.2021.10110] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is the leading cause of death worldwide, and oxidative stress was discovered to serve an important role in the pathophysiology of the condition. An imbalance between free radicals and antioxidant defenses is known to be associated with cellular dysfunction, leading to the development of various types of cardiac disease. Nuclear factor-erythroid-2-related factor 2 (NRF2) is a transcription factor that controls the basal and inducible expression levels of various antioxidant genes and other cytoprotective phase II detoxifying enzymes, which are ubiquitously expressed in the cardiac system. Kelch-like ECH-associated protein 1 (Keap1) serves as the main intracellular regulator of NRF2. Emerging evidence has revealed that NRF2 is a critical regulator of cardiac homeostasis via the suppression of oxidative stress. The activation of NRF2 was discovered to enhance specific endogenous antioxidant defense factors, one of which is antioxidant response element (ARE), which was subsequently illustrated to detoxify and counteract oxidative stress-associated DCM. The NRF2 signaling pathway is closely associated with the development of various types of cardiac disease, including ischemic heart disease, heart failure, myocardial infarction, atrial fibrillation and myocarditis. Therefore, it is hypothesized that drugs targeting this pathway may be developed to inhibit the activation of NRF2 signaling, thereby preventing the occurrence of DCM and effectively treating the disease.
Collapse
Affiliation(s)
- Xia Wu
- Department of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Leitao Huang
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210031, P.R. China
| | - Jichun Liu
- Department of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
5
|
Owumi SE, Akomolafe AP, Imosemi IO, Odunola OA, Oyelere AK. N-acetyl cysteine co-treatment abates perfluorooctanoic acid-induced reproductive toxicity in male rats. Andrologia 2021; 53:e14037. [PMID: 33724529 DOI: 10.1111/and.14037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Perfluorooctanoic acid is a synthetic perfluoroalkyl-persistent in the environment and toxic to humans. N-acetylcysteine is a pro-drug of both amino acid l-cysteine and glutathione-a non-enzymatic antioxidant. N-acetylcysteine serves as an antidote for paracetamol poisoning and alleviates cellular oxidative and inflammatory stressors. We investigated N-acetylcysteine role against reproductive toxicity in male Wistar rats (weight: 140-220 g; 10 weeks old) posed by perfluorooctanoic acid exposure. Randomised rat cohorts were dosed both with perfluorooctanoic acid (5 mg/kg; p.o) or co-dosed with N-acetylcysteine (25 and 50 mg/kg p.o) for 28 days. Sperm physiognomies, biomarkers of testicular function and reproductive hormones, oxidative stress and inflammation were evaluated. Co-treatment with N-acetylcysteine significantly (p < .05) reversed perfluorooctanoic acid-mediated decreases in reproductive enzyme activities, and adverse effect on testosterone, luteinising and follicle-stimulating hormone concentrations. N-acetylcysteine treatment alone, improved sperm motility, count and viability, and reduced total sperm abnormalities. Co-treatment with N-acetylcysteine mitigated perfluorooctanoic acid-induced alterations in sperm function parameters. N-acetylcysteine abated (p < .05) perfluorooctanoic acid-induced oxidative stress in experimental rats testes and epididymis, and generally improved antioxidant enzyme activities and cellular thiol levels. Furthermore, N-acetylcysteine suppressed inflammatory responses and remedied perfluorooctanoic acid-mediated histological injuries in rat. Cooperatively, N-acetylcysteine enhanced reproductive function in perfluorooctanoic acid dosed rats, by lessening oxidative and nitrative stressors and mitigated inflammatory responses in the examined organ.
Collapse
Affiliation(s)
- Solomon E Owumi
- Change-Lab, CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Ayomide P Akomolafe
- Change-Lab, CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Innocent O Imosemi
- Neuroanatomy Research Laboratories, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Oyeronke A Odunola
- Change-Lab, CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Adegboyega K Oyelere
- School of Biochemistry and Chemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
6
|
Notartomaso S, Scarselli P, Mascio G, Liberatore F, Mazzon E, Mammana S, Gugliandolo A, Cruccu G, Bruno V, Nicoletti F, Battaglia G. N-Acetylcysteine causes analgesia in a mouse model of painful diabetic neuropathy. Mol Pain 2021; 16:1744806920904292. [PMID: 32009537 PMCID: PMC6997966 DOI: 10.1177/1744806920904292] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
N-Acetylcysteine, one of the most prescribed antioxidant drugs, enhances pain
threshold in rodents and humans by activating mGlu2 metabotropic glutamate
receptors. Here, we assessed the analgesic activity of N-acetylcysteine in the
streptozotocin model of painful diabetic neuropathy and examined the effect of
N-acetylcysteine on proteins that are involved in mechanisms of nociceptive
sensitization. Mice with blood glucose levels ≥250 mg/dl in response to a single
intraperitoneal (i.p.) injection of streptozotocin (200 mg/kg) were used for the
assessment of mechanical pain thresholds. Systemic treatment with
N-acetylcysteine (100 mg/kg, i.p., either single injection or daily injections
for seven days) caused analgesia in diabetic mice. N-acetylcysteine-induced
analgesia was abrogated by the Sxc− inhibitors, sulfasalazine (8 mg/kg, i.p.), erastin (30 mg/kg,
i.p.), and sorafenib (10 mg/kg, i.p.), or by the mGlu2/3 receptor antagonist,
LY341495 (1 mg/kg, i.p.). Repeated administrations of N-acetylcysteine in
diabetic mice reduced ERK1/2 phosphorylation in the dorsal region of the lumbar
spinal cord. The analgesic activity of N-acetylcysteine was occluded by the MEK
inhibitor, PD0325901 (25 mg/kg, i.p.), the TRPV1 channel blocker, capsazepine
(40 mg/kg, i.p.), or by a cocktail of NMDA and mGlu5 metabotropic glutamate
receptor antagonists (memantine, 25 mg/kg, plus MTEP, 5 mg/kg,
both i.p.). These findings offer the first demonstration that N-acetylcysteine
relieves pain associated with diabetic neuropathy and holds promise for the use
of N-acetylcysteine as an add-on drug in diabetic patients.
Collapse
Affiliation(s)
| | - Pamela Scarselli
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Giada Mascio
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | | | | | - Santa Mammana
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | | | - Giorgio Cruccu
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Valeria Bruno
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Ferdinando Nicoletti
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giuseppe Battaglia
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| |
Collapse
|
7
|
Dludla PV, Nkambule BB, Mazibuko-Mbeje SE, Nyambuya TM, Silvestri S, Orlando P, Mxinwa V, Louw J, Tiano L. The impact of dimethyl sulfoxide on oxidative stress and cytotoxicity in various experimental models. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Dludla PV, Nkambule BB, Mazibuko-Mbeje SE, Nyambuya TM, Marcheggiani F, Cirilli I, Ziqubu K, Shabalala SC, Johnson R, Louw J, Damiani E, Tiano L. N-Acetyl Cysteine Targets Hepatic Lipid Accumulation to Curb Oxidative Stress and Inflammation in NAFLD: A Comprehensive Analysis of the Literature. Antioxidants (Basel) 2020; 9:E1283. [PMID: 33339155 PMCID: PMC7765616 DOI: 10.3390/antiox9121283] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Impaired adipose tissue function and insulin resistance remain instrumental in promoting hepatic lipid accumulation in conditions of metabolic syndrome. In fact, enhanced lipid accumulation together with oxidative stress and an abnormal inflammatory response underpin the development and severity of non-alcoholic fatty liver disease (NAFLD). There are currently no specific protective drugs against NAFLD, and effective interventions involving regular exercise and healthy diets have proved difficult to achieve and maintain. Alternatively, due to its antioxidant and anti-inflammatory properties, there has been growing interest in understanding the therapeutic effects of N-acetyl cysteine (NAC) against metabolic complications, including NAFLD. Here, reviewed evidence suggests that NAC blocks hepatic lipid accumulation in preclinical models of NAFLD. This is in part through the effective regulation of a fatty acid scavenger molecule (CD36) and transcriptional factors such as sterol regulatory element-binding protein (SREBP)-1c/-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Importantly, NAC appears effective in improving liver function by reducing pro-inflammatory markers such as interleukin (IL)-6 IL-1β, tumour necrosis factor alpha (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). This was primarily through the attenuation of lipid peroxidation and enhancements in intracellular response antioxidants, particularly glutathione. Very few clinical studies support the beneficial effects of NAC against NAFLD-related complications, thus well-organized randomized clinical trials are still necessary to confirm its therapeutic potential.
Collapse
Affiliation(s)
- Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (B.B.N.); (T.M.N.)
| | - Sithandiwe E. Mazibuko-Mbeje
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2745, South Africa; (S.E.M.-M.); (K.Z.)
| | - Tawanda M. Nyambuya
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (B.B.N.); (T.M.N.)
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Khanyisani Ziqubu
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2745, South Africa; (S.E.M.-M.); (K.Z.)
| | - Samukelisiwe C. Shabalala
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| |
Collapse
|
9
|
Tun S, Spainhower CJ, Cottrill CL, Lakhani HV, Pillai SS, Dilip A, Chaudhry H, Shapiro JI, Sodhi K. Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities. Front Pharmacol 2020; 11:1234. [PMID: 32903449 PMCID: PMC7438597 DOI: 10.3389/fphar.2020.01234] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been a worldwide epidemic for decades. Despite the abundant increase in knowledge regarding the etiology and pathogenesis of obesity, the prevalence continues to rise with estimates predicting considerably higher numbers by the year 2030. Obesity is characterized by an abnormal lipid accumulation, however, the physiological consequences of obesity are far more concerning. The development of the obesity phenotype constitutes dramatic alterations in adipocytes, along with several other cellular mechanisms which causes substantial increase in systemic oxidative stress mediated by reactive oxygen species (ROS). These alterations promote a chronic state of inflammation in the body caused by the redox imbalance. Together, the systemic oxidative stress and chronic inflammation plays a vital role in maintaining the obese state and exacerbating onset of cardiovascular complications, Type II diabetes mellitus, dyslipidemia, non-alcoholic steatohepatitis, and other conditions where obesity has been linked as a significant risk factor. Because of the apparent role of oxidative stress in the pathogenesis of obesity, there has been a growing interest in attenuating the pro-oxidant state in obesity. Hence, this review aims to highlight the therapeutic role of antioxidants, agents that negate pro-oxidant state of cells, in ameliorating obesity and associated comorbidities. More specifically, this review will explore how various antioxidants target unique and diverse pathways to exhibit an antioxidant defense mechanism.
Collapse
Affiliation(s)
- Steven Tun
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Caleb James Spainhower
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Cameron Lee Cottrill
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Sneha S Pillai
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Anum Dilip
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hibba Chaudhry
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Joseph I Shapiro
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Komal Sodhi
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| |
Collapse
|
10
|
Climent M, Viggiani G, Chen YW, Coulis G, Castaldi A. MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases. Int J Mol Sci 2020; 21:ijms21124370. [PMID: 32575472 PMCID: PMC7352701 DOI: 10.3390/ijms21124370] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) affect many cellular functions and the proper redox balance between ROS and antioxidants contributes substantially to the physiological welfare of the cell. During pathological conditions, an altered redox equilibrium leads to increased production of ROS that in turn may cause oxidative damage. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level contributing to all major cellular processes, including oxidative stress and cell death. Several miRNAs are expressed in response to ROS to mediate oxidative stress. Conversely, oxidative stress may lead to the upregulation of miRNAs that control mechanisms to buffer the damage induced by ROS. This review focuses on the complex crosstalk between miRNAs and ROS in diseases of the cardiac (i.e., cardiac hypertrophy, heart failure, myocardial infarction, ischemia/reperfusion injury, diabetic cardiomyopathy) and pulmonary (i.e., idiopathic pulmonary fibrosis, acute lung injury/acute respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, lung cancer) compartments. Of note, miR-34a, miR-144, miR-421, miR-129, miR-181c, miR-16, miR-31, miR-155, miR-21, and miR-1/206 were found to play a role during oxidative stress in both heart and lung pathologies. This review comprehensively summarizes current knowledge in the field.
Collapse
Affiliation(s)
- Montserrat Climent
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20089 Rozzano, MI, Italy;
| | - Giacomo Viggiani
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, MI, Italy;
| | - Ya-Wen Chen
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gerald Coulis
- Department of Physiology and Biophysics, and Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA;
| | - Alessandra Castaldi
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Correspondence:
| |
Collapse
|
11
|
Ziqubu K, Dludla PV, Joubert E, Muller CJF, Louw J, Tiano L, Nkambule BB, Kappo AP, Mazibuko-Mbeje SE. Isoorientin: A dietary flavone with the potential to ameliorate diverse metabolic complications. Pharmacol Res 2020; 158:104867. [PMID: 32407953 DOI: 10.1016/j.phrs.2020.104867] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/11/2022]
Abstract
Isoorientin is a natural C-glucosyl flavone that is generating a lot of interest due to its multiple pharmacological activities. Increasing experimental data have shown that the robust antioxidant and anti-inflammatory properties of isoorientin remain important in ameliorating a number of metabolic complications. In fact, plants rich in isoorientin have demonstrated strong ameliorative properties against complications such as hyperglycemia, hyperlipidemia, and insulin resistance. However, while such evidence is accumulating, it has not been reviewed to better inform on the therapeutic potential of this flavone in improving human health. This review examines and extrapolates available literature on the potential beneficial or detrimental effects associated with the use of isoorientin in mitigating metabolic diseases, with a specific focus on diabetes, obesity, and insulin resistance, including associated complications. The discussion includes effective doses in various experimental settings and proposed molecular mechanisms by which isoorientin may exert its therapeutic effects. In addition, the protective effects of extracts of a number of isoorientin-rich plants against metabolic complications will be highlighted.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa; Department of Food Science, Stellenbosch University, Stellenbosch 7599, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Abidemi P Kappo
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; Department of Biochemistry, University of Johannesburg, Kingsway Campus, Auckland Park 2006, South Africa
| | - Sithandiwe E Mazibuko-Mbeje
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng Campus, Private Bag X 2046, Mmabatho 2735, South Africa.
| |
Collapse
|
12
|
Isopulegol Mitigates Hyperglycemia Mediated Oxidative and Endoplasmic Reticulum Stress in HFD/STZ Induced Diabetic Rats. Arch Med Res 2020; 51:204-214. [PMID: 32111490 DOI: 10.1016/j.arcmed.2020.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 01/20/2020] [Accepted: 02/10/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Oxidative and endoplasmic reticulum stresses contribute to the pathogenesis of β-cell dysfunction in diabetes mellitus. This study investigates the effect of isopulegol on the above stresses in HFD/STZ induced diabetic rats. METHODS Animals in group I and II were placed in normal pellet diet and group II was treated with isopulegol at 200 mg/kg b.w. Animals in groups III-V were placed in HFD for 4 weeks and made diabetic with single intraperitoneal injection of STZ (35 mg/kg b.w) in 0.1 M citrate buffer (pH 4.5). Group III served as diabetic control while animals in group IV and V were treated with isopulegol (100 mg/kg b.w) and metformin (25 mg/kg b.w) respectively for 28 d. RESULTS The activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione sulphur transferase (GST), glutathione reductase (GR) and the levels of vitamin-E, vitamin-C, reduced glutathione (GSH) were significantly (p <0.05) decreased in plasma and tissues of diabetic rats. Thiobarbituric acid reactive acid substances (TBARS) and lipid hydroperoxides (LHP), indices of lipid peroxidation were also significantly (p <0.05) increased in diabetic rats. In pancreatic tissue ER stress markers PERK, elf2α, ATF4 and in hepatic tissue oxidative stress marker UCP-2 expression was significantly (p <1.0) increased in diabetic rats. Administration of isopulegol significantly improved antioxidant status and decreased oxidative and ER stress markers in diabetic treated rats. Histopathological studies on liver and kidney supported the above findings. The results are comparable with the standard drug metformin. CONCLUSIONS Isopulegol a naturally occurring monoterpene alcohol attenuated oxidative and ER stress in HFD/STZ induced diabetic rats.
Collapse
|
13
|
Dludla PV, Mazibuko-Mbeje SE, Nyambuya TM, Mxinwa V, Tiano L, Marcheggiani F, Cirilli I, Louw J, Nkambule BB. The beneficial effects of N-acetyl cysteine (NAC) against obesity associated complications: A systematic review of pre-clinical studies. Pharmacol Res 2019; 146:104332. [DOI: 10.1016/j.phrs.2019.104332] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022]
|
14
|
Niraula P, Kim MS. N-Acetylcysteine extends lifespan of Drosophila via modulating ROS scavenger gene expression. Biogerontology 2019; 20:533-543. [DOI: 10.1007/s10522-019-09815-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
|
15
|
Šalamon Š, Kramar B, Marolt TP, Poljšak B, Milisav I. Medical and Dietary Uses of N-Acetylcysteine. Antioxidants (Basel) 2019; 8:antiox8050111. [PMID: 31035402 PMCID: PMC6562654 DOI: 10.3390/antiox8050111] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
N-acetylcysteine (NAC), a plant antioxidant naturally found in onion, is a precursor to glutathione. It has been used as a drug since the 1960s and is listed on the World Health Organization (WHO) Model List of Essential Medicines as an antidote in poisonings. There are numerous other uses or proposed uses in medicine that are still in preclinical and clinical investigations. NAC is also used in food supplements and cosmetics. Despite its abundant use, there are projections that the NAC global market will grow in the next five years; therefore, the purpose of this work is to provide a balanced view of further uses of NAC as a dietary supplement. Although NAC is considered a safe substance, the results among clinical trials are sometimes controversial or incomplete, like for many other antioxidants. More clinical trials are underway that will improve our understanding of NAC applicability.
Collapse
Affiliation(s)
- Špela Šalamon
- Center for human molecular genetics and pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia.
| | - Barbara Kramar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Tinkara Pirc Marolt
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Borut Poljšak
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Oxidative Stress Research, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Oxidative Stress Research, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
16
|
Dludla PV, Nkambule BB, Jack B, Mkandla Z, Mutize T, Silvestri S, Orlando P, Tiano L, Louw J, Mazibuko-Mbeje SE. Inflammation and Oxidative Stress in an Obese State and the Protective Effects of Gallic Acid. Nutrients 2018; 11:nu11010023. [PMID: 30577684 PMCID: PMC6356415 DOI: 10.3390/nu11010023] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/08/2018] [Accepted: 11/17/2018] [Indexed: 12/12/2022] Open
Abstract
Metabolic complications in an obese state can be aggravated by an abnormal inflammatory response and enhanced production of reactive oxygen species. Pro-inflammatory response is known to be associated with the formation of toxic reactive oxygen species and subsequent generation of oxidative stress. Indeed, adipocytes from obese individuals display an altered adipokine profile, with upregulated expression and secretion of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin (IL-6). Interestingly, natural compounds, including phenolic enriched foods are increasingly explored for their ameliorative effects against various metabolic diseases. Of interest is gallic acid, a trihydroxybenzoic acid that has progressively demonstrated robust anti-obesity capabilities in various experimental models. In addition to reducing excessive lipid storage in obese subjects, gallic acid has been shown to specifically target the adipose tissue to suppress lipogenesis, improve insulin signaling, and concomitantly combat raised pro-inflammatory response and oxidative stress. This review will revise mechanisms involved in the pathophysiological effects of inflammation and oxidative stress in an obese state. To better inform on its therapeutic potential and improvement of human health, available evidence reporting on the anti-obesity properties of gallic acid and its derivatives will be discussed, with emphases on its modulatory effect on molecular mechanisms involved in insulin signaling, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Phiwayinkosi V Dludla
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Babalwa Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| | - Zibusiso Mkandla
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Tinashe Mutize
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Sithandiwe E Mazibuko-Mbeje
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| |
Collapse
|
17
|
Uncoupling proteins as a therapeutic target to protect the diabetic heart. Pharmacol Res 2018; 137:11-24. [PMID: 30223086 DOI: 10.1016/j.phrs.2018.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022]
Abstract
Myocardial remodeling and dysfunction caused by accelerated oxidative damage is a widely reported phenomenon within a diabetic state. Altered myocardial substrate preference appears to be the major cause of enhanced oxidative stress-mediated cell injury within a diabetic heart. During this process, exacerbated free fatty acid flux causes an abnormal increase in mitochondrial membrane potential leading to the overproduction of free radical species and subsequent cell damage. Uncoupling proteins (UCPs) are expressed within the myocardium and can protect against free radical damage by modulating mitochondrial respiration, leading to reduced production of reactive oxygen species. Moreover, transgenic animals lacking UCPs have been shown to be more susceptible to oxidative damage and display reduced cardiac function when compared to wild type animals. This suggests that tight regulation of UCPs is necessary for normal cardiac function and in the prevention of diabetes-induced oxidative damage. This review aims to enhance our understanding of the pathophysiological mechanisms relating to the role of UCPs in a diabetic heart, and further discuss known pharmacological compounds and hormones that can protect a diabetic heart through the modulation of UCPs.
Collapse
|
18
|
Dludla PV, Dias SC, Obonye N, Johnson R, Louw J, Nkambule BB. A Systematic Review on the Protective Effect of N-Acetyl Cysteine Against Diabetes-Associated Cardiovascular Complications. Am J Cardiovasc Drugs 2018; 18:283-298. [PMID: 29623672 DOI: 10.1007/s40256-018-0275-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Heart failure is the leading cause of death in patients with diabetes. No treatment currently exists to specifically protect these patients at risk of developing cardiovascular complications. Accelerated oxidative stress-induced tissue damage due to persistent hyperglycemia is one of the major factors implicated in deteriorated cardiac function within a diabetic state. N-acetyl cysteine (NAC), through its enhanced capacity to endogenously synthesize glutathione, a potent antioxidant, has displayed abundant health-promoting properties and has a favorable safety profile. OBJECTIVE An increasing number of experimental studies have reported on the strong ameliorative properties of NAC. We systematically reviewed the data on the cardioprotective potential of this compound to provide an informative summary. METHODS Two independent reviewers systematically searched major databases, including PubMed, Cochrane Library, Google scholar, and Embase for available studies reporting on the ameliorative effects of NAC as a monotherapy or in combination with other therapies against diabetes-associated cardiovascular complications. We used the ARRIVE and JBI appraisal guidelines to assess the quality of individual studies included in the review. A meta-analysis could not be performed because the included studies were heterogeneous and data from randomized clinical trials were unavailable. RESULTS Most studies support the ameliorative potential of NAC against a number of diabetes-associated complications, including oxidative stress. We discuss future prospects, such as identification of additional molecular mechanisms implicated in diabetes-induced cardiac damage, and highlight limitations, such as insufficient studies reporting on the comparative effect of NAC with common glucose-lowering therapies. Information on the comparative analysis of NAC, in terms of dose selection, administration mode, and its effect on different cardiovascular-related markers is important for translation into clinical studies. CONCLUSIONS NAC exhibits strong potential for the protection of the diabetic heart at risk of myocardial infarction through inhibition of oxidative stress. The effect of NAC in preventing both ischemia and non-ischemic-associated cardiac damage is also of interest. Consistency in dose selection in most studies reported remains important in dose translation for clinical relevance.
Collapse
|
19
|
Cheng Y, Zhang D, Zhu M, Wang Y, Guo S, Xu B, Hou G, Feng Y, Liu G. Liver X receptor α is targeted by microRNA-1 to inhibit cardiomyocyte apoptosis through a ROS-mediated mitochondrial pathway. Biochem Cell Biol 2017; 96:11-18. [PMID: 29024600 DOI: 10.1139/bcb-2017-0154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is defined as ventricular dysfunction occurring independently of a recognized cause such as hypertension or coronary artery disease. Liver X receptor α (LXRα), a subtype of ligand-activated transcription factors LXRs, has been considered as a potential pharmacological target in the pathogenesis of cardiovascular and metabolic diseases. However, the potential mechanism of how LXRα is regulated in cardiomyocytes is still unclear. This study investigated the effect of activating LXRα with GW3965 on cardiomyocyte apoptosis and its upstream regulator in glucose-induced H9C2 cells. Our data indicated that GW3965 up-regulated the expression of LXRα, inhibited cardiomyocyte apoptosis, and altered the apoptosis-related proteins in glucose-induced H9C2 cells. In addition, GW3965 restored the mitochondrial membrane potential level and decreased the ROS production induced by glucose. Moreover, LXRα was confirmed as a direct target of microRNA-1 (miR-1) that was involved in cardiomyocyte apoptosis of DCM, and overexpression of miR-1 abrogated the inhibiting effect of GW3965 on glucose-induced apoptosis in H9C2 cells. This study highlights an important role of LXRα in the development of DCM and brings new insights into the complex mechanisms involved in the pathogenesis of DCM.
Collapse
Affiliation(s)
- Yongxia Cheng
- a Department of Pathology, Mudanjiang Medical College, Mudanjiang, Heilongjiang Province 157011, People's Republic of China
| | - Dawei Zhang
- b Department of Anatomy, Mudanjiang Medical College, Mudanjiang, Heilongjiang Province 157011, People's Republic of China
| | - Min Zhu
- c Department of Medical Imaging, Hongqi Hospital, Mudanjiang Medical College, Mudanjiang, Heilongjiang Province 157011, People's Republic of China
| | - Ying Wang
- b Department of Anatomy, Mudanjiang Medical College, Mudanjiang, Heilongjiang Province 157011, People's Republic of China
| | - Sufen Guo
- a Department of Pathology, Mudanjiang Medical College, Mudanjiang, Heilongjiang Province 157011, People's Republic of China
| | - Biao Xu
- d Department of Cardiology, Hongqi Hospital, Mudanjiang Medical College, Mudanjiang, Heilongjiang Province 157011, People's Republic of China
| | - Guangyu Hou
- e Department of Medical Function, Mudanjiang Medical College, Mudanjiang, Heilongjiang Province 157011, People's Republic of China
| | - Yukuan Feng
- b Department of Anatomy, Mudanjiang Medical College, Mudanjiang, Heilongjiang Province 157011, People's Republic of China
| | - Guibo Liu
- b Department of Anatomy, Mudanjiang Medical College, Mudanjiang, Heilongjiang Province 157011, People's Republic of China
| |
Collapse
|