1
|
Jalilian H, Heydari S, Javanshir E, Jamebozorgi K, Mir N, Eshraghi A, Fehresti S. Hospitalization costs and out-of-pocket (OOP) payment in lung cancer patients in Iran: Health Sector Evolution Plan (HSEP) has reduced OOP payments and improved financial protection. PLoS One 2024; 19:e0297934. [PMID: 39700126 DOI: 10.1371/journal.pone.0297934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/15/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVE In Iran, Health Sector Evolution Plan, the most significant reform in the healthcare system in recent decades, has been launched since 2014 with the objective of achieving universal health coverage, decreasing out-of-pocket health expenditures and improving access to health services in hospitals and clinics affiliated to the Ministry of Health and Medical Education (MOHME). This study aimed to estimate the hospitalization costs of lung cancer and the impact of HSEP on hospitalization costs of lung cancer and patients' contribution in Iran between 2010 and 2017. METHODS This was a prevalence-based cost of illness study with a bottom-up costing approach. The sample size included 1778 lung cancer patients hospitalized in the Imam Reza hospital in Tabriz, Iran, between May 5, 2010, to May 5, 2014, and four years after the implementation of Health Sector Evolution Plan: from May 5, 2014, to May 5, 2017. The analysis was conducted from a societal perspective. Data were extracted from the electronic medical records of patients and were analyzed using SPSS V22.0, STATA V13.0 and Microsoft Excel 2016. The Interrupted Time-Series design was applied to estimate the impact of the implementation of HSEP on hospitalization costs and patient contribution rate for reimbursement of costs. RESULTS The mean hospitalization costs of lung cancer before and after the implementation of Health Sector Evolution Plan was estimated at 2860 ± 4575 and 5300 ± 8880 PPP (Current International $), respectively. Moreover, the amount of out-of-pocket payments reduced from 705 PPP (Current International$) (22.16%) before the implementation of Health Sector Evolution Plan to 480 PPP (Current International $) (10.5%) after its implementation. the hospitalization costs went up moderately before the HSEP (increased from 2320 $ in 2010 to 3025 $ in 2013). After the HSEP, it continued to rise, but with a more significant increase until 2016. Then, in 2016, it reached a peak (6395 $) before dropping in 2017 (5005 $). Regarding patient contribution, before the HSEP, the percentage of patient contributions increased from 19.45 in 2010 to 24.28 in 2013. With HSEP's implementation, this fell dramatically to 14.47 and continued to decline, reaching 7.99% in 2016. In 2017, patient contribution increased again and reached 9.58%. CONCLUSION Overall, hospitalization costs experienced an upward trend over the course of study, but this trend considerably intensified further after the HSEP. The patient contribution demonstrated an upward trend before HSEP, followed by a significant decline post-HESP, and the percentage of out-of-pocket payments reduced after implementation of HSEP. Therefor this plan has been successful in achieving the goal of financial protection of patients.
Collapse
Affiliation(s)
- Habib Jalilian
- Department of Health Services Management, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Iranian Center of Excellence in Health Management, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Heydari
- Iranian Center of Excellence in Health Management, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Javanshir
- Cardiovascular Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nazanin Mir
- Iranian Center of Excellence in Health Management, Tabriz University of Medical Sciences, Tabriz, Iran
- Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Eshraghi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeedeh Fehresti
- Department of Health Economics and Management, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Zhang T, Zhang S, Zhang C, Liu H, Liu M, Zhang GH, Duan G, Chen S, Ren J. The moderation effect of GSTM1/GSTT1 gene polymorphisms on the association of sperm mitochondrial DNA copy number and sperm mobility. Sci Rep 2024; 14:24790. [PMID: 39433861 PMCID: PMC11493958 DOI: 10.1038/s41598-024-74968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
Oxidative stress (OS) is believed to be a significant factor in the decline of semen quality, with mitochondrial DNA copy number (mtDNAcn) serving as a sensitive biomarker for both semen quality and mitochondrial dysfunction resulting from oxidative stress. While glutathione S-transferases (GSTs) are commonly known as 'antioxidant' enzymes, there is ongoing debate regarding the relationship between GST genotypes and semen quality. In a study involving 568 male volunteers from the outpatient department of Puyang Reproductive Medicine Center, sperm mtDNAcn, semen quality, and GSTM1/GSTT1 genotypes were analyzed to investigate the potential link between GSTM1/GSTT1 gene variations and semen quality, as well as the impact of GSTs gene variations on the connection between sperm mtDNAcn and semen quality. Adjusting for variables such as age, BMI, smoking, and alcohol consumption, it was found that mtDNAcn was significantly correlated with decreased sperm concentration and total sperm count (b = - 0.109, - 0.128, respectively; P = 0.002, 0.001, respectively). GSTM1 was associated with progressive motility (OR 0.390, 95% CI 0.218, 0.697), Straight line velocity (VSL) (OR = 0.606, 95% CI 0.385, 0.953), and Straightness (STR) (OR 0.604, 95% CI 0.367, 0.994), while GSTT1 was linked to progressive motility (OR 0.554, 95% CI 0.324, 0.944) and Beat crossover frequency (OR 0.624, 95% CI 0.397, 0.982). The GSTT1 was found to moderate the relationship between mtDNAcn and sperm motility parameters linearity (LIN), STR, and Wobble (WOB), with additive interaction effects observed between GSTT1 and mtDNAcn on LIN, STR, and WOB (P for interaction = 0.008, 0.034, 0.010, respectively). Overall, this study suggests that GSTT1 and GSTM1 gene variations may play a role in sperm motility, with GSTT1 potentially influencing the impact of oxidative stress on sperm motility.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shengnan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen Zhang
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Huan Liu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Mingming Liu
- Department of Cardiology, PLA Northern Theater Command General Hospital, Shenyang, 110000, China
| | - Guang-Hui Zhang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Guangcai Duan
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingchao Ren
- School of Public Health, Chongqing Medical University, Chongqing, 400038, China.
| |
Collapse
|
3
|
Hemlata, Singh J, Bhardwaj A, Kumar A, Singh G, Priya K, Giri SK. Comparative frequency distribution of glutathione S-transferase mu (GSTM1) and theta (GSTT1) allelic forms in Himachal Pradesh population. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00298-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Glutathione S-transferases (GSTs) are a class of important Phase II detoxification enzymes that catalyze the conjugation of glutathione and xenobiotic compounds (environmental carcinogens, pollutants and drugs) to protect against oxidative stress. GSTT1 and GSTM1 genetic polymorphisms have been extensively studied, and null genotypes or homozygous deletions have been reported in various populations. Previous studies have suggested that those who are homozygous null at the GSTM1 or GSTT1 loci are more susceptible and have a higher risk of cancers linked to environmental pollutants and drug-induced toxicity. Our study focused on GSTM1 and GSTT1 null allele frequency in the Doon population of Himachal Pradesh (India) with a comparison across other Inter and Intra-Indian ethnic groups to predict variation in the possible susceptible status.
Material and methods
Genomic DNA samples were extracted from 297 healthy unrelated individuals by a ReliaPrep™ Blood gDNA Miniprep kit (Promega, USA), and genotyped for allelic variation in GSTM1 and GSTT1 genotypes by multiplex polymerase chain reaction. Fisher's exact test was applied using SPSS.20 to analyze the genotypic distribution of GSTM1 and GSTT1 null alleles in male and female of Doon region (Solan) Himachal Pradesh.
Results
In our study, the frequency distribution of the homozygous null genotypes of GSTM1, GSTT1 individually as well as combined was found as 33.3%, 32% and 9%, respectively. Upon gender-wise comparison, a non-significant distribution (p > 0.05) for null genotypes of GSTM1 (32.8% and 35.4%, OR-0.77, 95% CI 0.42–1.41), GSTT1 (33.2% and 27.7%, OR-1.12, 95% CI 0.63–2.0) individually and combined GSTM1 and GSTT1 (10.8% and 3.7%, OR-0.31, 95% CI 0.07–1.42) were observed in studied population.
Conclusions
In our studied population, the frequency of GSTM1 null genotypes was found deviated from Inter- and Intra-Indian ethnic groups. However, the frequency of homozygous null type of GSTT1 was not significantly different, when compared to previous Indian studies, comparison with global ethnic groups showed deviation. Thus, our study has highlighted possible susceptibility risk to various xenobiotics in the Doon population of Himachal Pradesh, India.
Collapse
|
4
|
Minina V, Timofeeva A, Torgunakova A, Soboleva O, Bakanova M, Savchenko Y, Voronina E, Glushkov A, Prosekov A, Fucic A. Polymorphisms in DNA Repair and Xenobiotic Biotransformation Enzyme Genes and Lung Cancer Risk in Coal Mine Workers. Life (Basel) 2022; 12:life12020255. [PMID: 35207542 PMCID: PMC8874498 DOI: 10.3390/life12020255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Currently coal mining employs over 7 million miners globally. This occupational setting is associated with exposure to dust particles, heavy metals, polycyclic aromatic hydrocarbons and radioactive radon, significantly increasing the risk of lung cancer (LC). The susceptibility for LC is modified by genetic variations in xenobiotic detoxification and DNA repair capacity. The aim of this study was to investigate the association between GSTM1 (deletion), APEX1 (rs1130409), XPD (rs13181) and NBS1 (rs1805794) gene polymorphisms and LC risk in patients who worked in coal mines. Methods: The study included 639 residents of the coal region of Western Siberia (Kemerovo region, Russia): 395 underground miners and 244 healthy men who do not work in industrial enterprises. Genotyping was performed using real-time and allele-specific PCR. Results: The results show that polymorphisms of APEX1 (recessive model: ORadj = 1.87; CI 95%: 1.01–3.48) and XPD (log additive model: ORadj = 2.25; CI 95%: 1.59–3.19) genes were associated with increased LC risk. GSTM1 large deletion l was linked with decreased risk of LC formation (ORadj = 0.59, CI 95%: 0.36–0.98). The multifactor dimensionality reduction method for 3-loci model of gene–gene interactions showed that the GSTM1 (large deletion)—APEX1 (rs1130409)—XPD (rs13181) model was related with a risk of LC development. Conclusions: The results of this study highlight an association between gene polymorphism combinations and LC risks in coal mine workers.
Collapse
Affiliation(s)
- Varvara Minina
- The Federal Research Center of Coal and Coal Chemistry of Siberian Branch, Federal State Budget Scientifc Institution, Russian Academy of Sciences, Department of Human Ecology, 650065 Kemerovo, Russia; (V.M.); (A.T.); (O.S.); (M.B.); (Y.S.); (A.G.)
- Department of Genetics and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia; (A.T.); (A.P.)
| | - Anna Timofeeva
- Department of Genetics and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia; (A.T.); (A.P.)
| | - Anastasya Torgunakova
- The Federal Research Center of Coal and Coal Chemistry of Siberian Branch, Federal State Budget Scientifc Institution, Russian Academy of Sciences, Department of Human Ecology, 650065 Kemerovo, Russia; (V.M.); (A.T.); (O.S.); (M.B.); (Y.S.); (A.G.)
- Department of Genetics and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia; (A.T.); (A.P.)
| | - Olga Soboleva
- The Federal Research Center of Coal and Coal Chemistry of Siberian Branch, Federal State Budget Scientifc Institution, Russian Academy of Sciences, Department of Human Ecology, 650065 Kemerovo, Russia; (V.M.); (A.T.); (O.S.); (M.B.); (Y.S.); (A.G.)
| | - Marina Bakanova
- The Federal Research Center of Coal and Coal Chemistry of Siberian Branch, Federal State Budget Scientifc Institution, Russian Academy of Sciences, Department of Human Ecology, 650065 Kemerovo, Russia; (V.M.); (A.T.); (O.S.); (M.B.); (Y.S.); (A.G.)
| | - Yana Savchenko
- The Federal Research Center of Coal and Coal Chemistry of Siberian Branch, Federal State Budget Scientifc Institution, Russian Academy of Sciences, Department of Human Ecology, 650065 Kemerovo, Russia; (V.M.); (A.T.); (O.S.); (M.B.); (Y.S.); (A.G.)
- Department of Genetics and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia; (A.T.); (A.P.)
| | - Elena Voronina
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, Pharmacogenomics Laboratoriey, Lavrentiev Ave 8, 630090 Novosibirsk, Russia;
| | - Andrey Glushkov
- The Federal Research Center of Coal and Coal Chemistry of Siberian Branch, Federal State Budget Scientifc Institution, Russian Academy of Sciences, Department of Human Ecology, 650065 Kemerovo, Russia; (V.M.); (A.T.); (O.S.); (M.B.); (Y.S.); (A.G.)
| | - Alexander Prosekov
- Department of Genetics and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia; (A.T.); (A.P.)
| | - Aleksandra Fucic
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
5
|
Tang KF, He J, Mu Y, Liu M, Che BW, Zhang WJ, Chen KH. Glutathione S-transferase genetic polymorphisms and fluoride-induced reproductive toxicity in men with idiopathic infertility. Asian J Androl 2022; 25:404-409. [PMID: 36254890 DOI: 10.4103/aja202271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Male infertility caused by idiopathic oligoasthenospermia (OAT) is known as idiopathic male infertility. Glutathione S-transferase (GST) and fluoride may play important roles in idiopathic male infertility, but their effects are still unknown. Our study examined the relationship between GST polymorphisms and fluoride-induced toxicity in idiopathic male infertility and determined the underlying mechanism. Sperm, blood, and urine samples were collected from 560 males. Fluoride levels were measured by a highly selective electrode method, and GST genotypes were identified using polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP). Semen parameters, DNA fragmentation index (DFI), mitochondrial membrane potential (MMP), and oxidative stress (OS) biomarkers were statistically assessed at the P < 0.05 level. Compared with healthy fertile group, semen parameters, fluoride levels, OS biomarkers, sex hormone levels, and MMP and DFI levels were lower in the idiopathic male infertility group. For glutathione S-transferase M1 (GSTM1[-]) and glutathione S-transferase T1 (GSTT1[-]) or glutathione S-transferase P1 (GSTP1) mutant genotypes, levels of semen fluoride, OS, MMP, and DFI were considerably higher, and the mean levels of sperm parameters and testosterone were statistically significant in GSTM1(+), GSTT1(+), and GSTP1 wild-type genotypes. Both semen and blood fluoride levels were associated with oxidative stress in idiopathic male infertility patients. Elevated fluoride in semen with the genotypes listed above was linked to reproductive quality in idiopathic male infertility patients. In conclusion, GST polymorphisms and fluorine may have an indicative relationship between reproductive quality and sex hormone levels, and OS participates in the development of idiopathic male infertility.
Collapse
|
6
|
Zhou H, Li J, Chen Z, Chen Y, Ye S. Nitric oxide in occurrence, progress and therapy of lung Cancer: a systemic review and meta-analysis. BMC Cancer 2021; 21:678. [PMID: 34103000 PMCID: PMC8188673 DOI: 10.1186/s12885-021-08430-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background Nitric oxide (NO) plays an important role in lung cancer. However, the results of previous studies about NO in the occurrence, progress and therapy were not consistent. Therefore, we conducted a meta-analysis to evaluate the relationship between NO and lung cancer. Method We carried out comprehensive search in the databases, and collected related studies. The data of fraction of exhaled nitric oxide (FeNO) or blood NO in different populations (lung cancer patients and control subjects) and different time points (before therapy and after therapy) were extracted by two investigators. A random effect model was applied to analyze the differences of FeNO and blood NO in different populations and different time points. To further compare NO level of each subgroup with different pathological types and different stages, a network meta-analysis (NMA) was performed. Results Fifty studies including 2551 cases and 1691 controls were adopted in this meta-analysis. The FeNO (SMD 3.01, 95% CI 1.89–4.13, p < 0.00001) and blood NO (SMD 1.34, 95% CI 0.84–1.85, p < 0.00001) level in lung cancer patients was much higher than that in control subjects. NMA model indicated blood NO level in each cancer type except SCLC was higher than that in control patients. There was no significant difference of blood NO level among four kinds of lung cancer patients. Blood NO level in LCC patients (SUCRA = 83.5%) was the highest. Blood NO level in advanced stage but not early stage was higher than that in control subjects. Patients in advanced stage (SUCRA = 95.5%) had the highest blood NO level. No significant difference of FeNO (SMD -0.04, 95% CI -0.46-0.38, p > 0.05) and blood NO level (SMD -0.36, 95% CI -1.08-0.36, p > 0.05) was observed between pretreatment and posttreatment in all patients. However, FeNO level elevated (SMD 0.28, 95% CI 0.04–0.51, p = 0.02) and blood NO level decreased in NSCLC patients (SMD -0.95, 95% CI -1.89-0.00, p = 0.05) after therapy. Conclusion FeNO and blood NO level would contribute to diagnosis of lung cancer and evaluation of therapy effect, especially for NSCLC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08430-2.
Collapse
Affiliation(s)
- Hongbin Zhou
- Department of Respiratory Medicine, Department of Nutrition, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, China
| | - Jiuke Li
- Department of Ophthalmology, Hangzhou Aier Eye Hospital, Zhejiang, Hangzhou, China
| | - Zhewen Chen
- Department of Nutrition, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, Hangzhou, China
| | - Ying Chen
- Department of Nutrition, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, Hangzhou, China
| | - Sa Ye
- Department of Respiratory Medicine, Department of Nutrition, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, China. .,Department of Nutrition, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, Hangzhou, China.
| |
Collapse
|
7
|
Zhang H, Wang S, Duan X, Feng X, Wang T, Wang P, Ding M, Wang W, Zhou X, Yao W, Yang Y. The interaction effects of coke oven emissions exposure and metabolic enzyme Gene variants on total antioxidant capacity of workers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 70:103197. [PMID: 31173965 DOI: 10.1016/j.etap.2019.103197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the association between coke oven emissions (COEs) exposure and total antioxidant capacity (T-AOC), and to explore whether genetic variations in metabolic enzyme genes GSTT1, GSTM1, GSTP1, and CYP2E1 can affect these associations in coke oven workers. METHODS 536 coke oven workers and 238 healthy controls were recruited. T-AOC of plasma was determined with kit. Five polymorphic loci of GSTT1 (+/-), GSTM1 (+/-), GSTP1 rs1695, CYP2E1 rs6413432 and CYP2E1 rs3813867 were detected by polymerase chain reaction and restriction fragment length polymorphism. RESULTS This study shows that the T-AOC in exposure group (12.02 ± 4.72) was significantly lower than that in control group (15.32 ± 7.19) (P < 0.01), and the COEs exposure could decrease the T-AOC of coke oven workers significantly [β(95% CI) = -2.663 (-4.538,-0.787), P < 0.001]. The T-AOC of female was lower than that of male in exposed and control groups (P < 0.001). The T-AOC was higher in GSTM1 (-) individuals than in GSTM1 (+) individuals in the control group (P = 0.037). The T-AOC with the AG genotype in GSTP1 rs1695 polymorphism was higher than that of the GG genotype in the control group (P = 0.043). The generalized linear model results showed that the risk factors for the decrease of T-AOC include GSTT1 (+) (b = -0.999, P = 0.009), female (b = -2.875, P < 0.01), COEs-exposed (b = -2.712, P = 0.004), GSTM1 (+) (b = -1.814, P = 0.008), and interactions of GSTM1 (+) and COEs-exposed (b = 1.872, P=0.024). CONCLUSIONS The risk factors for the decrease of T-AOC include GSTT1 (+), female, COEs-exposed, GSTM1 (+), and interactions of GSTM1 (+) and COEs-exposed.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Sihua Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoran Duan
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaolei Feng
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tuanwei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Pengpeng Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mingcui Ding
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China
| | - Xiaoshan Zhou
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wu Yao
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
8
|
Adibhesami G, Shahsavari GR, Amiri A, Emami Razavi AN, Shamaei M, Birjandi M. Glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) Polymorphisms and Lung Cancer Risk among a Select Group of Iranian People. Asian Pac J Cancer Prev 2018; 19:2921-2927. [PMID: 30362324 PMCID: PMC6291040 DOI: 10.22034/apjcp.2018.19.10.2921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Objective(s): Lung cancer, caused primarily by smoking, is one of the leading determinants of mortality throughout
the world. Here we investigated the effects of polymorphisms in two enzymes, i.e., GSTT1 and GSTM1, related to
the antioxidant defense line against carcinogens associated with lung cancer among a select group of Iranian people.
Materials and Methods: One hundred and twenty lung cancer patients from two referral centers in Tehran, Iran, were
recruited for comparison with 120 healthy controls. Genomic DNA was extracted from the FFPE tumor tissues of
the select cases and peripheral blood buffy coats of healthy controls. The polymorphisms of GSTT1 and GSTM1 were
investigated by multiplex polymerase chain reaction. Results: With the 240 samples studied, no specific relationship
with lung cancer was discerned for the GSTM1 (P=0.35; OR=1/33; 95% CI=0.79-2.25) polymorphism, but the GSTT1
(P=0.005; OR=2.4; CI=1.32-4.35) gene polymorphism revealed a notable association on logistic regression, taking
into account age and sex factors. Furthermore, the GSTT1 genotype distribution in patients with LSCC was different
from that of healthy cases (P=0.006; OR=3.11; CI=1.38-7.04). The risk of developing lung cancer with the T0M1
genotype was 3.46 times higher than with T1M1 genotype (P=0.002; OR=3.46; CI=1.61-7.46). Moreover, the risk of
developing LSCC cancer in people with T0M1 genotypes was significantly elevated (P=0.004; OR=4.5; CI=1.62-12.52).
Conclusion: Unlike GSTM1, the GSTT1 genotype distribution is associated with the incidence of lung cancer in Iranian
people. Different types of lung cancer appear to show various correlations with GST polymorphisms in this regard.
Collapse
Affiliation(s)
- Glavizh Adibhesami
- Department of Biochemistry and Genetics, Lorestan University of Medical Sciences, Khorramabad, Iran. ,
| | - Gholam Reza Shahsavari
- Department of Biochemistry and Genetics, Lorestan University of Medical Sciences, Khorramabad, Iran. ,
| | - Ali Amiri
- Pulmonary Department, Lorestan University of Medical Science, Khorramabad, Iran
| | - Amir Nader Emami Razavi
- Iran National Tumor Bank, Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Shamaei
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Birjandi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
9
|
Yu P, Kusuma JD, Suarez MAR, Pamela Koong Shiao SY. Lung cancer susceptibility from GSTM1 deletion and air pollution with smoking status: a meta-prediction of worldwide populations. Oncotarget 2018; 9:31120-31132. [PMID: 30123431 PMCID: PMC6089566 DOI: 10.18632/oncotarget.25693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/13/2018] [Indexed: 01/25/2023] Open
Abstract
Glutathione S transferase mu 1 (GSTM1) gene has been associated with lung cancer (LC) risk, for GSTM1 enzyme playing a vital role in detoxification pathway and protective against toxic insults. The major objective of this study was to investigate GSTM1 deletion pattern and its association with LC in the world’s population by using meta-prediction techniques. The secondary objective was to examine the effects of air pollution, smoking status, and other factors for gene-environment interactions with GSTM1 deletion and LC risk. We completed a comprehensive search to yield a total of 170 studies (40,296 cases and 48,346 controls) published from 1999 to 2017 for meta-analyses. The results revealed that GSTM1 deletion type was associated with increased risk of LC, while GSTM1 present type provided protective effect for all populations combined worldwide. Subgroup analysis on the rank order of risks from highest to lowest, among racial–ethnic groups, were Chinese, South East Asian, other North Asian, European, and finally American. Additional predictive analyses presented that air pollution played a significant role with increased risks of GSTM1 deletion and LC susceptibility, and the risks increased for smokers with higher levels of air pollution. Based on the findings of meta-predictive analysis, increased air pollution levels and smoking status presented additive effects to the LC risk susceptibilities and GSTM1 gene polymorphisms, for gene-environment interactions. Future studies are needed to examine gene-environment interactions for GSTM1 interacting with environmental factors and dietary interventions to mitigate the toxic effects, for LC prevention.
Collapse
Affiliation(s)
- Pojui Yu
- Department of Nursing, Fu Jen Catholic University Hospital, New Taipei City, Taiwan (R.O.C.).,School of Nursing, College of Medicine, National Taiwan University, Taipei, Taiwan (R.O.C.)
| | - Joyce D Kusuma
- Heritage Victor Valley Medical Group, Augusta University, Augusta, GA, USA
| | - Maria Aurora R Suarez
- Critical Care and Telemetry, Citrus Valley Health Partners, Augusta University, Augusta, GA, USA
| | | |
Collapse
|
10
|
Cheng W, Duncan KE, Ghio AJ, Ward-Caviness C, Karoly ED, Diaz-Sanchez D, Conolly RB, Devlin RB. Changes in Metabolites Present in Lung-Lining Fluid Following Exposure of Humans to Ozone. Toxicol Sci 2018; 163:430-439. [PMID: 29471466 PMCID: PMC6348881 DOI: 10.1093/toxsci/kfy043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Controlled human exposure to the oxidant air pollutant ozone causes decrements in lung function and increased inflammation as evidenced by neutrophil influx into the lung and increased levels of proinflammatory cytokines in the airways. Here we describe a targeted metabolomics evaluation of human bronchoalveolar lavage fluid (BALF) following controlled in vivo exposure to ozone to gain greater insight into its pulmonary effects. In a 2-arm cross-over study, each healthy adult human volunteer was randomly exposed to filtered air (FA) and to 0.3 ppm ozone for 2 h while undergoing intermittent exercise with a minimum of 4 weeks between exposures. Bronchoscopy was performed and BALF obtained at 1 (n = 9) or 24 (n = 23) h postexposure. Metabolites were detected using ultrahigh performance liquid chromatography-tandem mass spectroscopy. At 1-h postexposure, a total of 28 metabolites were differentially expressed (DE) (p < .05) following ozone exposure compared with FA-exposure. These changes were associated with increased glycolysis and antioxidant responses, suggesting rapid increased energy utilization as part of the cellular response to oxidative stress. At 24-h postexposure, 41 metabolites were DE. Many of the changes were in amino acids and linked with enhanced proteolysis. Changes associated with increased lipid membrane turnover were also observed. These later-stage changes were consistent with ongoing repair of airway tissues. There were 1.37 times as many metabolites were differentially expressed at 24 h compared with 1-h postexposure. The changes at 1 h reflect responses to oxidative stress while the changes at 24 h indicate a broader set of responses consistent with tissue repair. These results illustrate the ability of metabolomic analysis to identify mechanistic features of ozone toxicity and aspects of the subsequent tissue response.
Collapse
Affiliation(s)
- WanYun Cheng
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | - Kelly E Duncan
- School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599
| | - Andrew J Ghio
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | - Cavin Ward-Caviness
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | | | - David Diaz-Sanchez
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | - Rory B Conolly
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | - Robert B Devlin
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| |
Collapse
|
11
|
Gao Y, Gao F, Hu TT, Li G, Sui YX. Combined effects of glutathione S-transferase M1 and T1 polymorphisms on risk of lung cancer: Evidence from a meta-analysis. Oncotarget 2018; 8:28135-28143. [PMID: 28427236 PMCID: PMC5438637 DOI: 10.18632/oncotarget.15943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/23/2017] [Indexed: 12/29/2022] Open
Abstract
Many studies have reported an association between the glutathione S-transferase M1 null and T1 null polymorphisms and lung cancer risk. However, the combined effects of GSTM1 null and GSTT1 null polymorphisms have not been reported previously. We, therefore, performed a meta-analysis to investigate the combined effects. 40 publications with 44 case–control studies were selected in the meta-analysis, including 13,706 cases and 13,093 controls. Significant association was observed between the combined effects of GSTM1 and GSTT1 polymorphisms and lung cancer risk when all the eligible studies were pooled into the meta-analysis. When we performed subgroup analysis, significantly increased lung cancer risk was observed in Caucasians (− − vs. + +: OR = 1.23, 95% CI: 1.07 to 1.41), Asians (− − vs.− +: OR = 1.24, 95% CI: 1.10 to 1.41; recessive model: OR = 1.45, 95% CI: 1.19 to 1.77; dominant model: OR = 1.53, 95% CI: 1.24 to 1.90), Indians (− − vs. + +: OR = 2.53, 95% CI: 1.61 to 3.98; recessive model: OR = 1.69, 95% CI: 1.07 to 2.67; dominant model: OR = 2.11, 95% CI: 1.36 to 3.28), hospital-based studies, and population-based studies. In summary, this meta-analysis indicates that the combined effects of the GSTM1 and GSTT1 polymorphisms are associated with increased lung cancer risk in Asians, Caucasians, and Indians.
Collapse
Affiliation(s)
- Ying Gao
- Department of Radiotherapy Oncology, First Affiliated Hospital of Medical College of Xi'an, Jiao Tong University, Xi'an, Shanxi, China
| | - Fei Gao
- Department of Neurology, First Affiliated Hospital of Xi'an Medical University, Xi'an, Shanxi, China
| | - Ting-Ting Hu
- Department of Medical, First Affiliated Hospital of Medical College of Xi'an, Jiao Tong University, Xi'an, Shanxi, China
| | - Gang Li
- Second Department of Thoracic Surgery, First Affiliated Hospital of Medical College of Xi'an, Jiao Tong University, Xi'an, Shanxi, China
| | - Yan-Xia Sui
- Department of Pathology, First Affiliated Hospital of Medical College of Xi'an, Jiao Tong University, Xi'an, Shanxi, China
| |
Collapse
|
12
|
Palma-Cano LE, Córdova EJ, Orozco L, Martínez-Hernández A, Cid M, Leal-Berumen I, Licón-Trillo A, Lechuga-Valles R, González-Ponce M, González-Rodríguez E, Moreno-Brito V. GSTT1 and GSTM1 null variants in Mestizo and Amerindian populations from northwestern Mexico and a literature review. Genet Mol Biol 2017; 40:727-735. [PMID: 29111561 PMCID: PMC5738617 DOI: 10.1590/1678-4685-gmb-2016-0142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/05/2017] [Indexed: 12/21/2022] Open
Abstract
The GSTT1 and GSTM1 genes are key molecules in
cellular detoxification. Null variants in these genes are associated with
increase susceptibility to developing different types of cancers. The aim of
this study was to determine the prevalence of GSTT1 and
GSTM1 null genotypes in Mestizo and Amerindian individuals
from the Northwestern region of Mexico, and to compare them with those reported
worldwide. GSTT1 and GSTM1 null variants were
genotyped by multiplex PCR in 211 Mestizos and 211 Amerindian individuals.
Studies reporting on frequency of GSTT1 and
GSTM1 null variants worldwide were identified by a PubMed
search and their geographic distribution were analyzed. We found no significant
differences in the frequency of the null genotype for GSTT1 and
GSM1 genes between Mestizo and Amerindian individuals.
Worldwide frequencies of the GSTT1 and GSTM1
null genotypes ranges from 0.10 to 0.51, and from 0.11 to 0.67, respectively.
Interestingly, in most countries the frequency of the GSTT1
null genotype is common or frequent (76%), whereas the frequency of the
GSMT1 null genotype is very frequent or extremely frequent
(86%). Thus, ethnic-dependent differences in the prevalence of
GSTT1 and GSTM1 null variants may
influence the effect of environmental carcinogens in cancer risk.
Collapse
Affiliation(s)
- Luz Elena Palma-Cano
- Department of Biochemistry, Faculty of Medicine and Biomedical Science, Autonomus University of Chihuahua, Chihuahua, Chihuahua, Mexico
| | - Emilio J Córdova
- Department of Clinical Research, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Lorena Orozco
- Department of Clinical Research, National Institute of Genomic Medicine, Mexico City, Mexico
| | | | - Miguel Cid
- Department of Clinical Research, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Irene Leal-Berumen
- Department of Biochemistry, Faculty of Medicine and Biomedical Science, Autonomus University of Chihuahua, Chihuahua, Chihuahua, Mexico
| | - Angel Licón-Trillo
- Department of Biochemistry, Faculty of Medicine and Biomedical Science, Autonomus University of Chihuahua, Chihuahua, Chihuahua, Mexico
| | - Ruth Lechuga-Valles
- Department of Molecular Biology, Faculty of Zootechnics and Ecology, Autonomus University of Chihuahua, Chihuahua, Chihuahua, Mexico
| | - Mauricio González-Ponce
- Department of Biochemistry, Faculty of Medicine and Biomedical Science, Autonomus University of Chihuahua, Chihuahua, Chihuahua, Mexico
| | - Everardo González-Rodríguez
- Department of Molecular Biology, Faculty of Zootechnics and Ecology, Autonomus University of Chihuahua, Chihuahua, Chihuahua, Mexico
| | - Verónica Moreno-Brito
- Department of Biochemistry, Faculty of Medicine and Biomedical Science, Autonomus University of Chihuahua, Chihuahua, Chihuahua, Mexico
| |
Collapse
|
13
|
Minina VI, Soboleva OA, Glushkov AN, Voronina EN, Sokolova EA, Bakanova ML, Savchenko YA, Ryzhkova AV, Titov RA, Druzhinin VG, Sinitsky MY, Asanov MA. Polymorphisms of GSTM1, GSTT1, GSTP1 genes and chromosomal aberrations in lung cancer patients. J Cancer Res Clin Oncol 2017; 143:2235-2243. [PMID: 28770368 DOI: 10.1007/s00432-017-2486-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/27/2017] [Indexed: 11/30/2022]
Abstract
PURPOSE To study the potential links between genetic polymorphisms in the GSTT1, GSTM1, GSTP1 genes and the frequency of chromosomal aberrations (CAs) in lung cancer patients and healthy residents in Russian Federation. METHODS 200 cells in well-spread metaphase with 46 chromosomes were examined for 353 newly diagnosed lung cancer patients (males) who received medical treatment in the Kemerovo Regional Oncology Center (Kemerovo, Russian Federation), and 300 healthy males from Kemerovo, Russian Federation. The polymorphisms of the GSTM1 del and GSTT1 del genes were analysed by multiplex PCR. Genotyping of the polymorphic variants in the GSTP1 (A313G, T341C) gene was performed using Real-time PCR with competing TaqMan probes complementary to the polymorphic DNA sites. The data analysis was performed using software STATISTICA 8.0 (StatSoft Inc., USA). RESULTS We discovered that a GSTM1 del polymorphism increases the frequency of chromosomal damage in smoking patients with lung cancer, a general group of lung cancer patients, donors with non-small cell lung cancer and patients in the latest stages of the malignant process. The synergetic effects of occupational exposure and the malignant process can induce some modifications in the cytogenetic status in lung cancer patients harbouring the GSTM1 del polymorphism. CONCLUSIONS CAs in peripheral blood lymphocytes can be used as biomarkers of the early biological effects of exposure to genotoxic carcinogens and may predict future cancer incidence in several epidemiologic studies. Genetic changes in genes encoding phase II detoxification enzymes are linked to decreases in the metabolic detoxification of environmentally derived genotoxic carcinogens.
Collapse
Affiliation(s)
- Varvara I Minina
- Federal State Budget Scientific Institution, The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Sovetskiy Ave 18, Kemerovo, 650065, Russian Federation.
- Department of Genetics, Biology Faculty, Kemerovo State University, Krasnaya St 6, Kemerovo, 650043, Russian Federation.
| | - Olga A Soboleva
- Federal State Budget Scientific Institution, The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Sovetskiy Ave 18, Kemerovo, 650065, Russian Federation
| | - Andrey N Glushkov
- Federal State Budget Scientific Institution, The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Sovetskiy Ave 18, Kemerovo, 650065, Russian Federation
| | - Elena N Voronina
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, Lavrentiev Ave 8, Novosibirsk, 630090, Russian Federation
| | - Ekaterina A Sokolova
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, Lavrentiev Ave 8, Novosibirsk, 630090, Russian Federation
- Novosibirsk State University, Pirogova St 2, Novosibirsk, 630090, Russian Federation
| | - Marina L Bakanova
- Federal State Budget Scientific Institution, The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Sovetskiy Ave 18, Kemerovo, 650065, Russian Federation
| | - Yana A Savchenko
- Federal State Budget Scientific Institution, The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Sovetskiy Ave 18, Kemerovo, 650065, Russian Federation
| | - Anastasia V Ryzhkova
- Federal State Budget Scientific Institution, The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Sovetskiy Ave 18, Kemerovo, 650065, Russian Federation
| | - Ruslan A Titov
- Federal State Budget Scientific Institution, The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Sovetskiy Ave 18, Kemerovo, 650065, Russian Federation
| | - Vladimir G Druzhinin
- Federal State Budget Scientific Institution, The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Sovetskiy Ave 18, Kemerovo, 650065, Russian Federation
- Department of Genetics, Biology Faculty, Kemerovo State University, Krasnaya St 6, Kemerovo, 650043, Russian Federation
| | - Maxim Yu Sinitsky
- Federal State Budget Scientific Institution, The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Sovetskiy Ave 18, Kemerovo, 650065, Russian Federation
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Sosnovy Blvd 6, Kemerovo, 650002, Russian Federation
| | - Maxim A Asanov
- Federal State Budget Scientific Institution, The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Sovetskiy Ave 18, Kemerovo, 650065, Russian Federation
| |
Collapse
|
14
|
Malik SS, Masood N, Baig M, Yasmin A. The association of GSTM1 and GSTT1 deletion polymorphisms with lung cancer risk: Evidence from an updated meta-analysis. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Wang Y, Yang H, Wang H. The association of GSTT1 deletion polymorphism with lung cancer risk among Chinese population: evidence based on a cumulative meta-analysis. Onco Targets Ther 2015; 8:2875-82. [PMID: 26491361 PMCID: PMC4608590 DOI: 10.2147/ott.s93745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Previous studies investigating the relationship between glutathione S-transferase T1 (GSTT1) gene deletion polymorphism and lung cancer risk among Chinese population produced inconsistent results. To obtain a precise conclusion, we performed this meta-analysis to evaluate the association between GSTT1 deletion polymorphism and lung cancer risk among Chinese population. METHODS The databases of Medline/PubMed, Embase, Web of Science, Wanfang Med Online, and Chinese National Knowledge Infrastructure were searched. The strength of the association was assessed by odds ratio (OR) with 95% confidence intervals (95% CI). RESULTS Overall, we found an increased lung cancer risk among subjects carrying GSTT1 null genotype compared with those carrying present genotype (OR =1.31, 95% CI: 1.12-1.52) on the basis of 20 studies with 3,351 cases and 4,683 controls. We also observed an increased risk of lung cancer among subjects carrying GSTT1 null genotype compared with those carrying present genotype in stratified analyses (OR =1.31, 95% CI: 1.11-1.55 for healthy subjects-based control; OR =2.29, 95% CI: 1.84-2.85 for squamous cell carcinoma and OR =1.47, 95% CI: 1.22-1.77 for adenocarcinoma, respectively). CONCLUSION This meta-analysis suggested that GSTT1 deletion polymorphism might contribute to lung cancer risk among Chinese population.
Collapse
Affiliation(s)
- Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, People's Republic of China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Haiyu Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, People's Republic of China
| |
Collapse
|
16
|
Yang H, Yang S, Liu J, Shao F, Wang H, Wang Y. The association of GSTM1 deletion polymorphism with lung cancer risk in Chinese population: evidence from an updated meta-analysis. Sci Rep 2015; 5:9392. [PMID: 25797617 PMCID: PMC4369748 DOI: 10.1038/srep09392] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/03/2015] [Indexed: 11/12/2022] Open
Abstract
Previous studies have reported the association of glutathione S-transferase M1 (GSTM1) deletion polymorphism with genetic susceptibility of lung cancer in Chinese population. However, the results remained controversial. The aim of this study was to clarify the association of GSTM1 deletion polymorphism with lung cancer risk in Chinese population. Systematic searches were performed through the search engines of Medline/Pubmed, Web of Science, EMBASE, CNKI and Wanfang Medical Online. The pooled effects were calculated by STATA 10.0 software package and Review Manager 5.0.24. Overall, we observed an association of GSTM1 deletion polymorphism with increased lung cancer risk in Chinese population (odds ratio (OR) = 1.46, 95% confidence interval (95%CI): 1.32-1.66 for null genotype vs. present genotype) based on 53 studies including 7,833 cases and 10,353 controls. We also observed an increased risk of GSTM1 null genotype for lung cancer in stratified analyses by source of control, smoking status and histological type. The findings suggest that GSTM1 deletion polymorphism may contribute to lung cancer risk in Chinese population. Further, well-designed studies with larger sample sizes are required to verify the results.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Siyu Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fuye Shao
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haiyu Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou 450016, China
| | - Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou 450016, China
| |
Collapse
|