1
|
Wang Q, Shen P, Zhu J, Zhu W, Xu J. EFFECT OF ARTESUNATE TREATMENT ON INTESTINAL INJURY AFTER CARDIOPULMONARY RESUSCITATION IN SWINE. Shock 2025; 63:466-473. [PMID: 39158530 DOI: 10.1097/shk.0000000000002445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
ABSTRACT Introduction: Intestinal injury is often caused by systemic ischemia-reperfusion injury early after cardiac arrest (CA) and resuscitation. Artesunate (Art) has been confirmed to protect vital organs against diverse of regional I/R injury. This study aimed to investigate the effect of Art on intestinal injury after CA and cardiopulmonary resuscitation (CPR) in swine. Methods: Twenty-two swine were randomly divided into three groups: sham (n = 6), CA/CPR (n = 8), and CA/CPR + Art (n = 8). The CA/CPR swine model was established by inducing 9 min of untreated ventricular fibrillation (VF) followed by 6 min of CPR. Five minutes after resuscitation, 4.8 mg/kg of Art was intravenously administered for 2 h in the CA/CPR + Art group. Intestinal fatty acid-binding protein and diamine oxidase concentrations were compared among the three groups before CA and at 1, 2, 4, and 24 h after resuscitation. At 24 h after resuscitation, intestinal zonula occluden-1 (ZO-1), occludin, apoptosis, caspase-3/gasdermin E (GSDME)-mediated pyroptosis proteins concentrations, and proinflammatory cytokine concentrations were examined to evaluate intestinal injury. Results: During CPR, spontaneous circulation was achieved in seven and six swine in the CA/CPR and CA/CPR + Art groups, respectively. Serum intestinal fatty acid-binding protein and diamine oxidase concentrations were significantly higher and intestinal tissue ZO-1 and occludin concentrations were significantly lower in the CA/CPR and CA/CPR + Art groups than in the sham group. However, Art treatment resulted in markedly improved levels of intestinal injury biomarkers compared with those in the CA/CPR group. Additionally, intestinal apoptosis and concentrations of caspase-3/GSDME-mediated pyroptosis proteins and proinflammatory cytokines were significantly higher in the CA/CPR and CA/CPR + Art groups than in the sham group. However, these variables were significantly lower in the CA/CPR + Art group than in the CA/CPR group. Conclusions: Art treatment effectively alleviates postresuscitation intestinal injury, possibly by inhibiting the caspase-3/GSDME-mediated pyroptosis pathway in a swine CA and CPR model.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Intensive Care Unit, The First Hospital of Jiaxing, Jiaxing, China
| | - Peng Shen
- Department of Intensive Care Unit, The First Hospital of Jiaxing, Jiaxing, China
| | - Jiangang Zhu
- Department of Intensive Care Unit, The First Hospital of Jiaxing, Jiaxing, China
| | - Weidong Zhu
- Department of Emergency Medicine, Traditional Chinese Medical Hospital of Zhuji, Shaoxing, China
| | | |
Collapse
|
2
|
Wang Y, Zhang X, Wang W, Zhang Y, Fleishman JS, Wang H. cGAS-STING targeting offers therapy choice in lung diseases. Biol Direct 2025; 20:20. [PMID: 39920718 PMCID: PMC11806777 DOI: 10.1186/s13062-025-00611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
Cyclic GMP/AMP (cGAMP) synthase (cGAS), along with the endoplasmic reticulum (ER)-associated stimulator of interferon genes (STING), are crucial elements of the type 1 interferon response. cGAS senses microbial DNA and self-DNA, labeling cGAS-STING as a crucial mechanism in autoimmunity, sterile inflammatory responses, and cellular senescence. However, chronic and aberrant activation of the cGAS-STING axis results in inflammatory and autoimmune diseases. cGAS-STING has emerged as a vital mechanism driving inflammation-related diseases, including lung diseases. Insights into the biology of the cGAS-STING pathway have enabled the discovery of small-molecule agents which have the potential to inhibit the cGAS-STING axis in lung diseases. In this review, we first outline the principal components of the cGAS-STING signaling cascade. Then, we discuss recent research that highlights general mechanisms by which cGAS-STING contributes to lung diseases. Then, we focus on summarizing a list of bioactive small-molecule compounds which inhibit the cGAS-STING pathway, reviewing their potential mechanisms.These review highlights a novel groundbreaking therapeutic possibilities through targeting cGAS-STING in lung diseases.
Collapse
Affiliation(s)
- Yu Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Xuan Zhang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Weixue Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Yi Zhang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China.
| |
Collapse
|
3
|
ZHANG L, LI H, XU S, WEN H, YU C. Apigenin attenuates ischemia-reperfusion-induced pulmonary ferroptosis and fibrosis by activating the Nrf2/HO-1/GPX4 axis in mice. Turk J Biol 2024; 49:138-147. [PMID: 40365099 PMCID: PMC12068678 DOI: 10.55730/1300-0152.2732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/25/2025] [Accepted: 10/18/2024] [Indexed: 05/15/2025] Open
Abstract
Background/aim Acute lung injury (ALI) is a major cause of morbidity and mortality after lung ischemia-reperfusion injury (LIRI). In recent years, pulmonary ferroptosis and its associated fibrosis have been recognized as important causes of LIRI. The purpose of this study is to investigate apigenin (APG) as a potential therapeutic target for treating LIRI-induced pulmonary ferroptosis and fibrosis. Materials and methods A rat model of LIRI was established and the rats were randomly divided into three groups, a sham group, a LIRI group, and an APG group. The pathological changes of the lung tissue were evaluated using hematoxylin-eosin staining and Masson's trichrome staining. Alterations in lung function were assessed using the pulmonary permeability index, myeloperoxidase, and wet-to-dry weight ratio. The pulmonary ferroptosis levels were evaluated by testing Fe2+, the ratio of reduced glutathione to oxidized glutathione disulfide, and malondialdehyde. Western blotting was performed to investigate the effect of APG on the expression of ferroptosis and fibrosis biomarkers in the lung tissues. Results The results show that APG pretreatment relieves LIRI-induced pulmonary pathological damage and functional abnormalities in rats. In addition, APG administration can significantly improve LIRI-induced pulmonary ferroptosis and fibrosis levels. However, using Nrf2 inhibitors to block the Nrf2/HO-1/GPX4 pathway significantly reversed these therapeutic effects. Conclusion These findings suggest that APG protects against LIRI-induced ferroptosis and fibrosis of lung tissues via the activation of the Nrf2/HO-1/GPX4 axis.
Collapse
Affiliation(s)
- Liang ZHANG
- Department of Respiratory and Critical Care Medicine, Yantaishan Hospital, Yantai, Shandong,
China
| | - Haojie LI
- Department of Respiratory and Critical Care Medicine, Yantai Municipal Laiyang Central Hospital, Yantai, Shandong,
China
| | - Shichen XU
- Department of Endocrinology, Haiyang People’s Hospital, Yantai, Shangdong,
China
| | - Hao WEN
- Second Clinical Medical College, Binzhou Medical University, Yantai, Shandong,
China
| | - Chaoxiao YU
- Department of Respiratory and Critical Care Medicine, Yantaishan Hospital, Yantai, Shandong,
China
| |
Collapse
|
4
|
Lv S, Zhao X, Ma C, Zhao D, Sun T, Fu W, Wei Y, Li W. Advancements in the study of acute lung injury resulting from intestinal ischemia/reperfusion. Front Med (Lausanne) 2024; 11:1399744. [PMID: 38933104 PMCID: PMC11199783 DOI: 10.3389/fmed.2024.1399744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Intestinal ischemia/reperfusion is a prevalent pathological process that can result in intestinal dysfunction, bacterial translocation, energy metabolism disturbances, and subsequent harm to distal tissues and organs via the circulatory system. Acute lung injury frequently arises as a complication of intestinal ischemia/reperfusion, exhibiting early onset and a grim prognosis. Without appropriate preventative measures and efficacious interventions, this condition may progress to acute respiratory distress syndrome and elevate mortality rates. Nonetheless, the precise mechanisms and efficacious treatments remain elusive. This paper synthesizes recent research models and pertinent injury evaluation criteria within the realm of acute lung injury induced by intestinal ischemia/reperfusion. The objective is to investigate the roles of pathophysiological mechanisms like oxidative stress, inflammatory response, apoptosis, ferroptosis, and pyroptosis; and to assess the strengths and limitations of current therapeutic approaches for acute lung injury stemming from intestinal ischemia/reperfusion. The goal is to elucidate potential targets for enhancing recovery rates, identify suitable treatment modalities, and offer insights for translating fundamental research into clinical applications.
Collapse
Affiliation(s)
- Shihua Lv
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xudong Zhao
- Department of Hepatopancreatobiliary, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Can Ma
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dengming Zhao
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tian Sun
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenchao Fu
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuting Wei
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenzhi Li
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Gu Y, Lv L, Jin J, Hua X, Xu Q, Wu R, Zhu S, Liu X, Lv T, Song Y, Zhang F. STING mediates LPS-induced acute lung injury by regulating ferroptosis. Exp Cell Res 2024; 438:114039. [PMID: 38641125 DOI: 10.1016/j.yexcr.2024.114039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
The pathogenesis of acute lung injury is not fully understood. Stimulator of interferon genes (STING) and ferroptosis have been implicated in various pathological and physiological processes, including acute lung injury (ALI). However, the relationship between STING and ferroptosis in lipopolysaccharide (LPS)-induced ALI is unclear. We found that LPS stimulation activated STING and ferroptosis. Furthermore, STING knockout and ferroptosis inhibitor alleviated lung inflammation and epithelial cell damage. Also, STING knockout reduced inflammation injury and ferroptosis. Notably, the ferroptosis inducer reversed the alleviation of inflammation caused by STING knockout. These results show that STING participates in the inflammation injury of ALI by regulating ferroptosis. Results also showed that p-STAT3 levels increased after STING knockout, suggesting that STING negatively regulates STAT3 activation. Besides, STAT3 inhibitor aggravated ferroptosis after STING knockout, indicating that STING regulates ferroptosis through STAT3 signaling. In conclusion, STING mediates LPS-induced ALI by regulating ferroptosis, indicating that STING and ferroptosis may be new targets for ALI treatment.
Collapse
Affiliation(s)
- Yanli Gu
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liting Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiajia Jin
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Hua
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Southeast University Medical College, Nanjing, Jiangsu, China
| | - Qiuli Xu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Southeast University Medical College, Nanjing, Jiangsu, China
| | - RanPu Wu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Southeast University Medical College, Nanjing, Jiangsu, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xin Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| | - Fang Zhang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Gong J, Gao X, Ge S, Li H, Wang R, Zhao L. The Role of cGAS-STING Signalling in Metabolic Diseases: from Signalling Networks to Targeted Intervention. Int J Biol Sci 2024; 20:152-174. [PMID: 38164186 PMCID: PMC10750282 DOI: 10.7150/ijbs.84890] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/17/2023] [Indexed: 01/03/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) is a crucial innate defence mechanism against viral infection in the innate immune system, as it principally induces the production of type I interferons. Immune responses and metabolic control are inextricably linked, and chronic low-grade inflammation promotes the development of metabolic diseases. The cGAS-STING pathway activated by double-stranded DNA (dsDNA), cyclic dinucleotides (CDNs), endoplasmic reticulum stress (ER stress), mitochondrial stress, and energy imbalance in metabolic cells and immune cells triggers proinflammatory responses and metabolic disorders. Abnormal overactivation of the pathway is closely associated with metabolic diseases such as obesity, nonalcoholic fatty liver disease (NAFLD), insulin resistance and cardiovascular diseases (CVDs). The interaction of cGAS-STING with other pathways, such as the nuclear factor-kappa B (NF-κB), Jun N-terminal kinase (JNK), AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), autophagy, pyroptosis and insulin signalling pathways, is considered an important mechanism by which cGAS-STING regulates inflammation and metabolism. This review focuses on the link between immune responses related to the cGAS-STING pathway and metabolic diseases and cGAS-STING interaction with other pathways for mediating signal input and affecting output. Moreover, potential inhibitors of the cGAS-STING pathway and therapeutic prospects against metabolic diseases are discussed. This review provides a comprehensive perspective on the involvement of STING in immune-related metabolic diseases.
Collapse
Affiliation(s)
- Jiahui Gong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xilong Gao
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Shaoyang Ge
- Hebei Engineering Research Center of Animal Product, Sanhe 065200, China
| | - Hongliang Li
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011517, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Research Center for Probiotics, China Agricultural University, Sanhe 065200, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
7
|
Ma X, Xin D, She R, Liu D, Ge J, Mei Z. Novel insight into cGAS-STING pathway in ischemic stroke: from pre- to post-disease. Front Immunol 2023; 14:1275408. [PMID: 37915571 PMCID: PMC10616885 DOI: 10.3389/fimmu.2023.1275408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic stroke, a primary cause of disability and the second leading cause of mortality, has emerged as an urgent public health issue. Growing evidence suggests that the Cyclic GMP-AMP synthase (cGAS)- Stimulator of interferon genes (STING) pathway, a component of innate immunity, is closely associated with microglia activation, neuroinflammation, and regulated cell death in ischemic stroke. However, the mechanisms underlying this pathway remain inadequately understood. This article comprehensively reviews the existing literature on the cGAS-STING pathway and its multifaceted relationship with ischemic stroke. Initially, it examines how various risk factors and pre-disease mechanisms such as metabolic dysfunction and senescence (e.g., hypertension, hyperglycemia, hyperlipidemia) affect the cGAS-STING pathway in relation to ischemic stroke. Subsequently, we explore in depth the potential pathophysiological relationship between this pathway and oxidative stress, endoplasmic reticulum stress, neuroinflammation as well as regulated cell death including ferroptosis and PANoptosis following cerebral ischemia injury. Finally, it suggests that intervention targeting the cGAS-STING pathway may serve as promising therapeutic strategies for addressing neuroinflammation associated with ischemic stroke. Taken together, this review concludes that targeting the microglia cGAS-STING pathway may shed light on the exploration of new therapeutic strategies against ischemic stroke.
Collapse
Affiliation(s)
- Xiaoqi Ma
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dan Xin
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruining She
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Danhong Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
8
|
Peng Y, Li Y, Yang Y, Shi T, Liu R, Luan Y, Yin C. The Role and Potential Regulatory Mechanism of STING Modulated Macrophage Apoptosis and Differentiation in Severe Acute Pancreatitis-Associated Lung Injury. J Interferon Cytokine Res 2023; 43:455-468. [PMID: 37819622 DOI: 10.1089/jir.2023.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
This study aims to investigate the role of STING in promoting macrophage apoptosis and regulating macrophage polarization in severe acute pancreatitis (SAP)-associated lung injury in vitro and in vivo. A murine model was established by intraperitoneal injection of caerulein and lipopolysaccharide (LPS). Meanwhile, ANA-1 cells were stimulated with LPS to induce apoptosis in vitro. More primary alveolar macrophages underwent apoptosis and M1 macrophage polarization in the SAP group compared with the control group, which was reversed by inhibiting STING. When ANA-1 cells were induced into M2-type macrophages, the reduction of M1 macrophage markers was accompanied by a decrease of LPS-induced apoptosis. Finally, the inhibitory effect of C-176 on STING ameliorates lung injury and inflammation by adjusting macrophage polarization and rescuing apoptosis. Therefore, inhibiting STING could be a new therapeutic strategy for treating acute pancreatitis-associated lung injury.
Collapse
Affiliation(s)
- Yiqiu Peng
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yingying Li
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yuxi Yang
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Tingjuan Shi
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ruixia Liu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yingyi Luan
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chenghong Yin
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
9
|
Chen Z, Liu Y, Lin Z, Huang W. cGAS-STING pathway in ischemia-reperfusion injury: a potential target to improve transplantation outcomes. Front Immunol 2023; 14:1231057. [PMID: 37809088 PMCID: PMC10552181 DOI: 10.3389/fimmu.2023.1231057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Transplantation is an important life-saving therapeutic choice for patients with organ or tissue failure once all other treatment options are exhausted. However, most allografts become damaged over an extended period, and post-transplantation survival is limited. Ischemia reperfusion injury (IRI) tends to be associated with a poor prognosis; resultant severe primary graft dysfunction is the main cause of transplant failure. Targeting the cGAS-STING pathway has recently been shown to be an effective approach for improving transplantation outcomes, when activated or inhibited cGAS-STING pathway, IRI can be alleviated by regulating inflammatory response and programmed cell death. Thus, continuing efforts to develop selective agonists and antagonists may bring great hopes to post-transplant patient. In this mini-review, we reviewed the role of the cGAS-STING pathway in transplantation, and summarized the crosstalk between this pathway and inflammatory response and programmed cell death during IRI, aiming to provide novel insights into the development of therapies to improve patient outcome after transplantation.
Collapse
Affiliation(s)
| | | | | | - Weizhe Huang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
10
|
Yang Y, Wang L, Peugnet-González I, Parada-Venegas D, Dijkstra G, Faber KN. cGAS-STING signaling pathway in intestinal homeostasis and diseases. Front Immunol 2023; 14:1239142. [PMID: 37781354 PMCID: PMC10538549 DOI: 10.3389/fimmu.2023.1239142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
The intestinal mucosa is constantly exposed to commensal microbes, opportunistic pathogens, toxins, luminal components and other environmental stimuli. The intestinal mucosa consists of multiple differentiated cellular and extracellular components that form a critical barrier, but is also equipped for efficient absorption of nutrients. Combination of genetic susceptibility and environmental factors are known as critical components involved in the pathogenesis of intestinal diseases. The innate immune system plays a critical role in the recognition and elimination of potential threats by detecting pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). This host defense is facilitated by pattern recognition receptors (PRRs), in which the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway has gained attention due to its role in sensing host and foreign double-stranded DNA (dsDNA) as well as cyclic dinucleotides (CDNs) produced by bacteria. Upon binding with dsDNA, cGAS converts ATP and GTP to cyclic GMP-AMP (cGAMP), which binds to STING and activates TANK binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3), inducing type I interferon (IFN) and nuclear factor kappa B (NF-κB)-mediated pro-inflammatory cytokines, which have diverse effects on innate and adaptive immune cells and intestinal epithelial cells (IECs). However, opposite perspectives exist regarding the role of the cGAS-STING pathway in different intestinal diseases. Activation of cGAS-STING signaling is associated with worse clinical outcomes in inflammation-associated diseases, while it also plays a critical role in protection against tumorigenesis and certain infections. Therefore, understanding the context-dependent mechanisms of the cGAS-STING pathway in the physiopathology of the intestinal mucosa is crucial for developing therapeutic strategies targeting the cGAS-STING pathway. This review aims to provide insight into recent findings of the protective and detrimental roles of the cGAS-STING pathway in intestinal diseases.
Collapse
Affiliation(s)
- Yuchen Yang
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Li Wang
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ivonne Peugnet-González
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Daniela Parada-Venegas
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Liu Y, Li Y, Xue L, Xiao J, Li P, Xue W, Li C, Guo H, Chen Y. The effect of the cyclic GMP-AMP synthase-stimulator of interferon genes signaling pathway on organ inflammatory injury and fibrosis. Front Pharmacol 2022; 13:1033982. [PMID: 36545321 PMCID: PMC9762484 DOI: 10.3389/fphar.2022.1033982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The cyclic GMP-AMP synthase-stimulator of interferon genes signal transduction pathway is critical in innate immunity, infection, and inflammation. In response to pathogenic microbial infections and other conditions, cyclic GMP-AMP synthase (cGAS) recognizes abnormal DNA and initiates a downstream type I interferon response. This paper reviews the pathogenic mechanisms of stimulator of interferon genes (STING) in different organs, including changes in fibrosis-related biomarkers, intending to systematically investigate the effect of the cyclic GMP-AMP synthase-stimulator of interferon genes signal transduction in inflammation and fibrosis processes. The effects of stimulator of interferon genes in related auto-inflammatory and neurodegenerative diseases are described in this article, in addition to the application of stimulator of interferon genes-related drugs in treating fibrosis.
Collapse
Affiliation(s)
- Yuliang Liu
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yihui Li
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Li Xue
- The Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Emergency Medicine and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Xiao
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Pengyong Li
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wanlin Xue
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chen Li
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Haipeng Guo
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,*Correspondence: Haipeng Guo, ; Yuguo Chen,
| | - Yuguo Chen
- The Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Emergency Medicine and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,*Correspondence: Haipeng Guo, ; Yuguo Chen,
| |
Collapse
|