1
|
Rahdar M, Davoudi S, Dehghan S, Javan M, Hosseinmardi N, Behzadi G, Janahmadi M. Reversal of electrophysiological and behavioral deficits mediated by 5-HT7 receptor upregulation following LP-211 treatment in an autistic-like rat model induced by prenatal valproic acid exposure. Neuropharmacology 2024; 257:110057. [PMID: 38964596 DOI: 10.1016/j.neuropharm.2024.110057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by alterations and imbalances in multiple brain neurochemical systems, particularly the serotonergic neurotransmission. This includes changes in serotonin (5-HT) levels, aberrations in 5-HT transporter activity, and decreased synthesis and expression of 5-HT receptors (5-HT7Rs). The exact role of the brain 5-HT system in the development of ASD remains unclear, with conflicting evidence on its involvement. Recently, we have reported research has shown a significant decrease in serotonergic neurons originating from the raphe nuclei and projecting to the CA1 region of the dorsal hippocampus in autistic-like rats. Additionally, we have shown that chronic activation of 5-HT7Rs reverses the effects of autism induction on synaptic plasticity. However, the functional significance of 5-HT7Rs at the cellular level is still not fully understood. This study presents new evidence indicating an upregulation of 5-HT7R in the CA1 subregion of the hippocampus following the induction of autism. The present account also demonstrates that activation of 5-HT7R with its agonist LP-211 can reverse electrophysiological abnormalities in hippocampal pyramidal neurons in a rat model of autism induced by prenatal exposure to VPA. Additionally, in vivo administration of LP-211 resulted in improvements in motor coordination, novel object recognition, and a reduction in stereotypic behaviors in autistic-like offspring. The findings suggest that dysregulated expression of 5-HT7Rs may play a role in the pathophysiology of ASD, and that agonists like LP-211 could potentially be explored as a pharmacological treatment for autism spectrum disorder.
Collapse
Affiliation(s)
- Mona Rahdar
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Davoudi
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center and Dep. of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Jiménez-Padilla Y, Chan Y, Aletta MS, Lachance MA, Simon AF. The effect of microbiome on social spacing in Drosophila melanogaster depends on genetic background and sex. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001270. [PMID: 39381640 PMCID: PMC11461029 DOI: 10.17912/micropub.biology.001270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
The gut microbiome modulates many essential functions including metabolism, immunity, and behaviour. Specifically, within behaviour, social behaviours such as sociability, aggregation, mating preference, avoidance, oviposition, and aggression are known to be regulated in part by this host-microbiome relationship. Here, we show the microbiome's role in the determination of social spacing in a sex- and genotype-specific manner. Future work can be done on characterizing the microbiome in each of these fly strains to identify the species of microbes present as well as their abundance.
Collapse
Affiliation(s)
| | - Yen Chan
- Biology Department, University of Western Ontario, London, Ontario, Canada
| | - M. Sol Aletta
- Biology Department, University of Western Ontario, London, Ontario, Canada
| | | | - Anne F Simon
- Biology Department, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
3
|
Bonanno SL, Sanfilippo P, Eamani A, Sampson MM, Kandagedon B, Li K, Burns GD, Makar ME, Zipursky SL, Krantz DE. Constitutive and Conditional Epitope Tagging of Endogenous G-Protein-Coupled Receptors in Drosophila. J Neurosci 2024; 44:e2377232024. [PMID: 38937100 PMCID: PMC11326870 DOI: 10.1523/jneurosci.2377-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/30/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
To visualize the cellular and subcellular localization of neuromodulatory G-protein-coupled receptors in Drosophila, we implement a molecular strategy recently used to add epitope tags to ionotropic receptors at their endogenous loci. Leveraging evolutionary conservation to identify sites more likely to permit insertion of a tag, we generated constitutive and conditional tagged alleles for Drosophila 5-HT1A, 5-HT2A, 5-HT2B, Oct β 1R, Oct β 2R, two isoforms of OAMB, and mGluR The conditional alleles allow for the restricted expression of tagged receptor in specific cell types, an option not available for any previous reagents to label these proteins. We show expression patterns for these receptors in female brains and that 5-HT1A and 5-HT2B localize to the mushroom bodies (MBs) and central complex, respectively, as predicted by their roles in sleep. By contrast, the unexpected enrichment of Octβ1R in the central complex and of 5-HT1A and 5-HT2A to nerve terminals in lobular columnar cells in the visual system suggest new hypotheses about their functions at these sites. Using an additional tagged allele of the serotonin transporter, a marker of serotonergic tracts, we demonstrate diverse spatial relationships between postsynaptic 5-HT receptors and presynaptic 5-HT neurons, consistent with the importance of both synaptic and volume transmission. Finally, we use the conditional allele of 5-HT1A to show that it localizes to distinct sites within the MBs as both a postsynaptic receptor in Kenyon cells and a presynaptic autoreceptor.
Collapse
Affiliation(s)
- Shivan L Bonanno
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Piero Sanfilippo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095
- Howard Hughes Medical Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | - Aditya Eamani
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Maureen M Sampson
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Binu Kandagedon
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Kenneth Li
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Giselle D Burns
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Marylyn E Makar
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - S Lawrence Zipursky
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095
- Howard Hughes Medical Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | - David E Krantz
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| |
Collapse
|
4
|
Yost RT, Scott AM, Kurbaj JM, Walshe-Roussel B, Dukas R, Simon AF. Recovery from social isolation requires dopamine in males, but not the autism-related gene nlg3 in either sex. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240604. [PMID: 39086833 PMCID: PMC11288677 DOI: 10.1098/rsos.240604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 08/02/2024]
Abstract
Social isolation causes profound changes in social behaviour in a variety of species. However, the genetic and molecular mechanisms modulating behavioural responses to social isolation and social recovery remain to be elucidated. Here, we quantified the behavioural response of vinegar flies to social isolation using two distinct protocols (social space preference and sociability, the spontaneous tendencies to form groups). We found that social isolation increased social space and reduced sociability. These effects of social isolation were reversible and could be reduced after 3 days of group housing. Flies with a loss of function of neuroligin3 (orthologue of autism-related neuroligin genes) with known increased social space in a socially enriched environment were still able to recover from social isolation. We also show that dopamine (DA) is needed for a response to social isolation and recovery in males but not in females. Furthermore, only in males, DA levels are reduced after isolation and are not recovered after group housing. Finally, in socially enriched flies mutant for neuroligin3, DA levels are reduced in males, but not in females. We propose a model to explain how DA and neuroligin3 are involved in the behavioural response to social isolation and its recovery in a dynamic and sex-specific manner.
Collapse
Affiliation(s)
- Ryley T. Yost
- Department of Biology, Western University, London, Ontario, Canada
| | | | - Judy M. Kurbaj
- Department of Biology, Western University, London, Ontario, Canada
| | | | - Reuven Dukas
- Department of Psychology, Neuroscience and Behaviour, Animal Behaviour Group, McMaster University, Hamilton, Ontario, Canada
| | - Anne F. Simon
- Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
5
|
Santos Musachio EA, da Silva Andrade S, Meichtry LB, Fernandes EJ, de Almeida PP, Janner DE, Dahleh MMM, Guerra GP, Prigol M. Exposure to Bisphenol F and Bisphenol S during development induces autism-like endophenotypes in adult Drosophila melanogaster. Neurotoxicol Teratol 2024; 103:107348. [PMID: 38554851 DOI: 10.1016/j.ntt.2024.107348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Bisphenol F (BPF) and Bisphenol S (BPS) are being widely used by the industry with the claim of "safer substances", even with the scarcity of toxicological studies. Given the etiological gap of autism spectrum disorder (ASD), the environment may be a causal factor, so we investigated whether exposure to BPF and BPS during the developmental period can induce ASD-like modeling in adult flies. Drosophila melanogaster flies were exposed during development (embryonic and larval period) to concentrations of 0.25, 0.5, and 1 mM of BPF and BPS, separately inserted into the food. When they transformed into pupae were transferred to a standard diet, ensuring that the flies (adult stage) did not have contact with bisphenols. Thus, after hatching, consolidated behavioral tests were carried out for studies with ASD-type models in flies. It was observed that 1 mM BPF and BPS caused hyperactivity (evidenced by open-field test, negative geotaxis, increased aggressiveness and reproduction of repetitive behaviors). The flies belonging to the 1 mM groups of BPF and BPS also showed reduced cognitive capacity, elucidated by the learning behavior through aversive stimulus. Within the population dynamics that flies exposed to 1 mM BPF and 0.5 and 1 mM BPS showed a change in social interaction, remaining more distant from each other. Exposure to 1 mM BPF, 0.5 and 1 mM BPS increased brain size and reduced Shank immunoreactivity of adult flies. These findings complement each other and show that exposure to BPF and BPS during the development period can elucidate a model with endophenotypes similar to ASD in adult flies. Furthermore, when analyzing comparatively, BPS demonstrated a greater potential for damage when compared to BPF. Therefore, in general these data sets contradict the idea that these substances can be used freely.
Collapse
Affiliation(s)
- Elize A Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil
| | - Stefani da Silva Andrade
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil
| | - Luana Barreto Meichtry
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil
| | - Eliana Jardim Fernandes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil
| | - Pamela Piardi de Almeida
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil
| | - Dieniffer Espinosa Janner
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil; Department of Food Science and Technology, Federal University of Pampa, Itaqui, RS, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil; Department of Nutrition, Federal University of Pampa, Itaqui, RS, Brazil.
| |
Collapse
|
6
|
Dos Santos AB, Dos Anjos JS, Dos Santos GGP, Mariano MVT, Leandro LP, Farina M, Franco JL, Gomes KK, Posser T. Developmental iron exposure induces locomotor alterations in Drosophila: Exploring potential association with oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109861. [PMID: 38373512 DOI: 10.1016/j.cbpc.2024.109861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Prenatal iron (Fe) exposure has been associated with learning and cognitive impairments, which may be linked to oxidative stress resulting from elevated Fe levels and harm to the vulnerable brain. Drosophila melanogaster has contributed to our understanding of molecular mechanisms involved in neurological conditions. This study aims to explore Fe toxicity during D. melanogaster development, assessing oxidative stress and investigating behaviors in flies that are related to neurological conditions in humans. To achieve this goal, flies were exposed to Fe during the developmental period, and biochemical and behavioral analyses were conducted. The results indicated that 20 mM Fe decreased fly hatching by 50 %. At 15 mM, Fe exposure increased lipid peroxidation, and GSH levels decreased starting from 5 mM of Fe. Superoxide Dismutase activity was enhanced at 15 mM, while Glutathione S-Transferase activity was inhibited from 5 mM. Although chronic Fe exposure did not alter acetylcholinesterase (AChE) activity, flies exhibited reduced locomotion, increased grooming, and antisocial behavior from 5 mM of Fe. This research highlights potential Fe toxicity risks during development and underscores the utility of D. melanogaster in unraveling neurological disorders, emphasizing its relevance for future research.
Collapse
Affiliation(s)
- Ana Beatriz Dos Santos
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology, CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, RS, Brazil
| | - Jaciana Sousa Dos Anjos
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology, CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, RS, Brazil
| | - Giany Gabriely Padão Dos Santos
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology, CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, RS, Brazil
| | - Maria Vitória Takemura Mariano
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology, CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, RS, Brazil
| | - Luana Paganotto Leandro
- Department of Chemistry, Post Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria, RS, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis 88040-900, Santa Catarina, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology, CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, RS, Brazil; Department of Chemistry, Post Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria, RS, Brazil
| | - Karen Kich Gomes
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology, CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, RS, Brazil.
| | - Thais Posser
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology, CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, RS, Brazil.
| |
Collapse
|
7
|
Rodnyy AY, Kondaurova EM, Tsybko AS, Popova NK, Kudlay DA, Naumenko VS. The brain serotonin system in autism. Rev Neurosci 2024; 35:1-20. [PMID: 37415576 DOI: 10.1515/revneuro-2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023]
Abstract
Autism spectrum disorders (ASDs) are among the most common neurodevelopmental diseases. These disorders are characterized by lack of social interaction, by repetitive behavior, and often anxiety and learning disabilities. The brain serotonin (5-HT) system is known to be crucially implicated in a wide range of physiological functions and in the control of different kinds of normal and pathological behavior. A growing number of studies indicate the involvement of the brain 5-HT system in the mechanisms underlying both ASD development and ASD-related behavioral disorders. There are some review papers describing the role of separate key players of the 5-HT system in an ASD and/or autistic-like behavior. In this review, we summarize existing data on the participation of all members of the brain 5-HT system, namely, 5-HT transporter, tryptophan hydroxylase 2, MAOA, and 5-HT receptors, in autism in human and various animal models. Additionally, we describe the most recent studies involving modern techniques for in vivo regulation of gene expression that are aimed at identifying exact roles of 5-HT receptors, MAOA, and 5-HT transporter in the mechanisms underlying autistic-like behavior. Altogether, results of multiple research articles show that the brain 5-HT system intimately partakes in the control of some types of ASD-related behavior, and that specific changes in a function of a certain 5-HT receptor, transporter, and/or enzyme may normalize this aberrant behavior. These data give hope that some of clinically used 5-HT-related drugs have potential for ASD treatment.
Collapse
Affiliation(s)
- Alexander Ya Rodnyy
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Elena M Kondaurova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Anton S Tsybko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Nina K Popova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Dmitry A Kudlay
- NRC Institute of Immunology FMBA of Russia, Kashirskoe Highway 24, Moscow 115522, Russia
- Sechenov's University, 8-2 Trubetskaya Str., Moscow 119991, Russia
| | - Vladimir S Naumenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Bonanno SL, Sanfilippo P, Eamani A, Sampson MM, Binu K, Li K, Burns GD, Makar ME, Zipursky SL, Krantz DE. Constitutive and conditional epitope-tagging of endogenous G protein coupled receptors in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573472. [PMID: 38234787 PMCID: PMC10793450 DOI: 10.1101/2023.12.27.573472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
To visualize the cellular and subcellular localization of neuromodulatory G-protein coupled receptors (GPCRs) in Drosophila , we implement a molecular strategy recently used to add epitope tags to ionotropic receptors at their endogenous loci. Leveraging evolutionary conservation to identify sites more likely to permit insertion of a tag, we generated constitutive and conditional tagged alleles for Drosophila 5-HT1A, 5-HT2A, 5-HT2B, Octβ1R, Octβ2R, two isoforms of OAMB, and mGluR. The conditional alleles allow for the restricted expression of tagged receptor in specific cell types, an option not available for any previous reagents to label these proteins. We show that 5-HT1A and 5-HT2B localize to the mushroom bodies and central complex respectively, as predicted by their roles in sleep. By contrast, the unexpected enrichment of Octβ1R in the central complex and of 5-HT1A and 5-HT2A to nerve terminals in lobular columnar cells in the visual system suggest new hypotheses about their function at these sites. Using an additional tagged allele of the serotonin transporter, a marker of serotonergic tracts, we demonstrate diverse spatial relationships between postsynaptic 5-HT receptors and presynaptic 5-HT neurons, consistent with the importance of both synaptic and volume transmission. Finally, we use the conditional allele of 5-HT1A to show that it localizes to distinct sites within the mushroom bodies as both a postsynaptic receptor in Kenyon cells and a presynaptic autoreceptor. Significance Statement In Drosophila , despite remarkable advances in both connectomic and genomic studies, antibodies to many aminergic GPCRs are not available. We have overcome this obstacle using evolutionary conservation to identify loci in GPCRs amenable to epitope-tagging, and CRISPR/Cas9 genome editing to generated eight novel lines. This method also may be applied to other GPCRs and allows cell-specific expression of the tagged locus. We have used the tagged alleles we generated to address several questions that remain poorly understood. These include the relationship between pre- and post-synaptic sites that express the same receptor, and the use of relatively distant targets by pre-synaptic release sites that may employ volume transmission as well as standard synaptic signaling.
Collapse
|
9
|
Gajardo I, Guerra S, Campusano JM. Navigating Like a Fly: Drosophila melanogaster as a Model to Explore the Contribution of Serotonergic Neurotransmission to Spatial Navigation. Int J Mol Sci 2023; 24:ijms24054407. [PMID: 36901836 PMCID: PMC10002024 DOI: 10.3390/ijms24054407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Serotonin is a monoamine that acts in vertebrates and invertebrates as a modulator promoting changes in the structure and activity of brain areas relevant to animal behavior, ranging from sensory perception to learning and memory. Whether serotonin contributes in Drosophila to human-like cognitive abilities, including spatial navigation, is an issue little studied. Like in vertebrates, the serotonergic system in Drosophila is heterogeneous, meaning that distinct serotonergic neurons/circuits innervate specific fly brain regions to modulate precise behaviors. Here we review the literature that supports that serotonergic pathways modify different aspects underlying the formation of navigational memories in Drosophila.
Collapse
Affiliation(s)
- Ivana Gajardo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Neurociencia, Instituto Milenio de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Simón Guerra
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jorge M. Campusano
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: ; Tel.: +56-2-2354-2133
| |
Collapse
|