1
|
Liu H, Yu R, Zhang M, Zheng X, Zhong L, Yang W, Luo Y, Huang Z, Zheng J, Zhong H, Wei X, Zheng W, Yu Y, Wang Q. Fibrinogen degradation products exacerbate alpha-synuclein aggregation by inhibiting autophagy via downregulation of Beclin1 in multiple system atrophy. Neurotherapeutics 2025; 22:e00538. [PMID: 39904669 PMCID: PMC12014411 DOI: 10.1016/j.neurot.2025.e00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/24/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
Multiple system atrophy (MSA) is a rapidly progressive neurodegenerative disease arising from accumulation of the α-synuclein and aberrant protein clearance in oligodendrocytes. The mechanisms of autophagy involved in the progression of MSA remain poorly understood. It is reported that MSA patients have blood-brain barrier impairments, which may increase the entry of fibrinogen into the brain. However, the roles of fibrinogen and its degradation products (FDPs) on autophagy and α-synuclein accumulation in MSA remain unknown. Here, we established the MSA animal model by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) and 3-nitropropionic acid (3-NP), and cellular models by adding fibrillar α-syn into oligodendrocytes to investigate the mechanisms of FDPs on autophagy and accumulation of α-synuclein in oligodendrocytes. We found that FDPs inhibit the entry of α-synuclein into lysosomes for degradation, increasing aggregation of α-synuclein in oligodendrocytes (OLN-93). Our findings indicated that in OLN-93, FDPs inhibited the expressions of Beclin1 and Bif-1, which could promote the fusion of autophagosomes with lysosomes. Furthermore, the expression of α-synuclein was elevated in FDPs-injected mice, accompanied by an increase in the protein level of p62. We detected elevated expression of FDPs in the striatum of MSA mice. Finally, FDPs inhibited the expression of Beclin1 and Bif-1, which led to aberrant autophagic degradation and increased aggregation of α-synuclein and phospho-α-synuclein in MSA mice. Our study illustrates that FDPs can cause aggregation of α-synuclein in MSA by inhibiting Beclin1-mediated autophagy, which may exacerbate disease progression. These results provide a new therapeutic approach for MSA, that targets the inhibitory effect of FDPs on oligodendrocyte autophagy.
Collapse
Affiliation(s)
- Huanzhu Liu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Ruoyang Yu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Muwei Zhang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Xiaoyan Zheng
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Lizi Zhong
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Wanlin Yang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Zifeng Huang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Jialing Zheng
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Hui Zhong
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Xiaobo Wei
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Wenhua Zheng
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao, China
| | - Yinghua Yu
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China.
| |
Collapse
|
2
|
George NP, Kwon M, Jang YE, Kim SG, Hwang JS, Lee SS, Lee G. Integrative Analysis of Metabolome and Proteome in the Cerebrospinal Fluid of Patients with Multiple System Atrophy. Cells 2025; 14:265. [PMID: 39996738 PMCID: PMC11853536 DOI: 10.3390/cells14040265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative synucleinopathy. Differentiating MSA from other synucleinopathies, especially in the early stages, is challenging because of its overlapping symptoms with other forms of Parkinsonism. Thus, there is a pressing need to clarify the underlying biological mechanisms and identify specific biomarkers for MSA. The metabolic profile of cerebrospinal fluid (CSF) is known to be altered in MSA. To further investigate the biological mechanisms behind the metabolic changes, we created a network of altered CSF metabolites in patients with MSA and analysed these changes using bioinformatic software. Acknowledging the limitations of metabolomics, we incorporated proteomic data to improve the overall comprehensiveness of the study. Our in silico predictions showed elevated ROS, cytoplasmic inclusions, white matter demyelination, ataxia, and neurodegeneration, with ATP concentration, neurotransmitter release, and oligodendrocyte count predicted to be suppressed in MSA CSF samples. Machine learning and dimension reduction are important multi-omics approaches as they handle large amounts of data, identify patterns, and make predictions while reducing variance without information loss and generating easily visualised plots that help identify clusters, patterns, or outliers. Thus, integrated multiomics and machine learning approaches are essential for elucidating neurodegenerative mechanisms and identifying potential diagnostic biomarkers of MSA.
Collapse
Affiliation(s)
- Nimisha Pradeep George
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (N.P.G.); (M.K.); (Y.E.J.); (S.G.K.); (J.S.H.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Minjun Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (N.P.G.); (M.K.); (Y.E.J.); (S.G.K.); (J.S.H.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yong Eun Jang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (N.P.G.); (M.K.); (Y.E.J.); (S.G.K.); (J.S.H.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seok Gi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (N.P.G.); (M.K.); (Y.E.J.); (S.G.K.); (J.S.H.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (N.P.G.); (M.K.); (Y.E.J.); (S.G.K.); (J.S.H.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sang Seop Lee
- Department of Pharmacology, Inje University College of Medicine, Busan 50834, Republic of Korea;
| | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (N.P.G.); (M.K.); (Y.E.J.); (S.G.K.); (J.S.H.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Li W, Ding Y, Zhao Z, Zhang X, Guan A, Tang L, Hao R, Liu X, Chen S, Wang H. Orthostatic hypotension is involved in cognitive impairment in patients with multiple system atrophy: a multi-center cohort study in China. J Neurol 2025; 272:186. [PMID: 39932588 DOI: 10.1007/s00415-025-12936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 01/19/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Orthostatic hypotension (OH) is a common symptom of multiple system atrophy (MSA), however, its role in cognitive impairment and the mechanism in these patients remains unclear. This study aims to assess the role of OH on cognitive impairment in MSA patients, as well as to explore the potential association of cerebral autoregulation (CA) and white matter hyperintensities (WMHs) on cognitive impairment. METHODS This observational study was conducted in three general hospitals in China from January 2018 to October 2023, with patients at one center followed up for 6 months after enrollment. The primary outcomes included cognitive function assessed using the Mini-Mental State Examination (MMSE) and Montreal cognitive assessment (MoCA). Secondary outcomes included the results of the Head-up tilt test, scores for CA and the extent of WMHs. RESULTS The 132 MSA patients included 72 men (54.54%) with a mean age of 61.16 (7.80) years. Among them, 80 patients (60.61%) had orthostatic hypotension, and 48 patients (36.36%) had cognitive impairment. OH plays an important role in cognitive impairment in MSA patients (OR = 0.328,95% CI 0.135-0.797, P = 0.014). Cognitive impairment was associated with impaired CA (OR = 0.088,95% CI 0.012-0.657, P = 0.018) and severe WMHs (OR = 0.030,95% CI 0.002-0.423, P = 0.009), particularly in the presence of OH. CONCLUSION OH is associated with cognitive impairment in MSA patients, and cognitive decline is linked to impaired CA and increased WMHs. Future studies are needed to explore the mechanisms underlying cognitive impairment in MSA patients.
Collapse
Affiliation(s)
- Wanlin Li
- Department of Neurology, the First Hospital of Hebei Medical University, Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Yan Ding
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Zhenbo Zhao
- Department of Neurology, the First Hospital of Hebei Medical University, Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Xiaoyu Zhang
- Department of Neurology, the First Hospital of Hebei Medical University, Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Ai Guan
- Department of Neurology, the First Hospital of Hebei Medical University, Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Liufeng Tang
- Department of Neurology, the First Hospital of Hebei Medical University, Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Ruoyang Hao
- Department of Neurology, the First Hospital of Hebei Medical University, Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Xiaoyun Liu
- Department of Neurology, the First Hospital of Hebei Medical University, Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China.
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hualong Wang
- Department of Neurology, the First Hospital of Hebei Medical University, Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China.
- Department of Neurology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei, China.
| |
Collapse
|
4
|
Maass F, Canaslan S, van Riesen C, Hermann P, Schmitz M, Schulte C, Brockmann K, Synofzik M, Bähr M, Zerr I. Myelin basic protein and TREM2 quantification in the CSF of patients with Multiple System Atrophy and other Parkinsonian conditions. J Neurol 2024; 272:52. [PMID: 39666067 PMCID: PMC11638341 DOI: 10.1007/s00415-024-12747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND It is well known that myelin disruption and neuroinflammation are early and distinct pathological hallmarks in multiple system atrophy (MSA) as well as in idiopathic Parkinson's disease and in other atypical Parkinsonian syndromes. The objective of this study was to assess the value of non-neuronal biomarker candidates that reflect myelin disruption and neuroinflammation. METHODS Myelin basic protein (MBP) and the soluble form of TREM2 were quantified in a comprehensive movement disorder cohort from two different neurological centers, comprising a total of 171 CSF samples. Commercially available ELISA systems were employed for quantification. RESULTS The results of the MBP analysis revealed a significant increase in cerebrospinal fluid (CSF) MBP levels in all atypical Parkinsonian conditions compared to PD. This differentiation was more pronounced in the MSA-c subtype compared to MSA-p. Receiver operating characteristic (ROC) analysis revealed a significant discrimination between PD and MSA (p = 0.032, AUC = 0.70), PD and DLB (p = 0.006, AUC = 0.79) and PD and tauopathies (p = 0.006, AUC = 0.74). The results of the TREM2 analysis demonstrated no significant differences between the PD and atypical Parkinsonian groups if not adjusted for confounders. After adjusting for age, sex, and disease duration, the PD group exhibited significantly higher TREM2 levels compared to the DLB group (p = 0.002). CONCLUSIONS In conclusion, MBP, but not TREM2, is elevated in the CSF of not only MSA but in all atypical Parkinsonian conditions compared to idiopathic Parkinson's disease. This highlights the value of the evaluation of myelin/oligodendrocyte-associated markers in neurodegenerative movement disorders.
Collapse
Affiliation(s)
- Fabian Maass
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| | - Sezgi Canaslan
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Christoph van Riesen
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Peter Hermann
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Claudia Schulte
- Hertie Institute for Clinical Brain Research and Center of Neurology, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Kathrin Brockmann
- Hertie Institute for Clinical Brain Research and Center of Neurology, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Matthis Synofzik
- Hertie Institute for Clinical Brain Research and Center of Neurology, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
5
|
Gabdulkhaev R, Shimizu H, Kanazawa M, Kuroha Y, Hasegawa A, Idezuka J, Tainaka K, Onodera O, Kakita A. Blood-brain barrier dysfunction in multiple system atrophy: A human postmortem study. Neuropathology 2024. [PMID: 39665496 DOI: 10.1111/neup.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by an accumulation of phosphorylated α-synuclein (p-αsyn) in oligodendrocytes in the form of glial cytoplasmic inclusions (GCIs). In MSA, not only mature oligodendrocytes but also oligodendrocyte precursor cells (OPCs) are affected. The latter play an important role in remyelination by differentiating into mature oligodendrocytes, as well as maintaining the blood-brain barrier (BBB) by promoting the expression of tight junction proteins. We have hypothesized that in MSA, the BBB is impaired as a result of aberrant interactions between affected OPCs and the cerebral vasculature. To verify this hypothesis, we conducted a neuropathological examination of postmortem brains from MSA patients and control subjects, focusing on the primary motor area, one of the main regions affected in MSA. Using double immunofluorescence, we quantified the expression of tight junction protein claudin-5 in capillary endothelial cells and found that it was significantly lower in MSA than in controls in both the gray matter and white matter. Furthermore, a significantly higher amount of fibrinogen was extravasated into the brain parenchyma in MSA patients than in controls. In addition, leakage of IgG was detected almost specifically in MSA brain parenchyma, as visualized in three dimensions by combining techniques of chemical tissue clearing and light sheet microscopy. Finally, we confirmed accumulation of p-αsyn-positive GCIs along the cerebral vasculature within OPCs. These results suggest that BBB dysfunction and associated fibrinogen extravasation are constant findings in MSA, presumably triggered by the deposition of p-αsyn in perivascular OPCs.
Collapse
Affiliation(s)
- Ramil Gabdulkhaev
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yasuko Kuroha
- Department of Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Japan
| | - Arika Hasegawa
- Department of Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Japan
| | - Jiro Idezuka
- Department of Neurology, Ojiya Sakura Hospital, Niigata, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Center for Bioresources, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
6
|
Böing C, Di Fabrizio M, Burger D, Bol JGJM, Huisman E, Rozemuller AJM, van de Berg WDJ, Stahlberg H, Lewis AJ. Distinct ultrastructural phenotypes of glial and neuronal alpha-synuclein inclusions in multiple system atrophy. Brain 2024; 147:3727-3741. [PMID: 38696728 PMCID: PMC11531854 DOI: 10.1093/brain/awae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 03/17/2024] [Accepted: 04/09/2024] [Indexed: 05/04/2024] Open
Abstract
Multiple system atrophy is characterized pathologically by the accumulation of alpha-synuclein (aSyn) into glial cytoplasmic inclusions (GCIs). The mechanism underlying the formation of GCIs is not well understood. In this study, correlative light and electron microscopy was employed to investigate aSyn pathology in the substantia nigra and putamen of post-mortem multiple system atrophy brain donors. Three distinct types of aSyn immuno-positive inclusions were identified in oligodendrocytes, neurons and dark cells presumed to be dark microglia. Oligodendrocytes contained fibrillar GCIs that were consistently enriched with lysosomes and peroxisomes, supporting the involvement of the autophagy pathway in aSyn aggregation in multiple system atrophy. Neuronal cytoplasmic inclusions exhibited ultrastructural heterogeneity resembling both fibrillar and membranous inclusions, linking multiple systems atrophy and Parkinson's disease. The novel aSyn pathology identified in the dark cells, displayed GCI-like fibrils or non-GCI-like ultrastructures suggesting various stages of aSyn accumulation in these cells. The observation of GCI-like fibrils within dark cells suggests these cells may be an important contributor to the origin or spread of pathological aSyn in multiple system atrophy. Our results suggest a complex interplay between multiple cell types that may underlie the formation of aSyn pathology in multiple system atrophy brain and highlight the need for further investigation into cell-specific disease pathologies in multiple system atrophy.
Collapse
Affiliation(s)
- Carolin Böing
- C-CINA, Biozentrum, University of Basel, Basel 4058, Switzerland
| | - Marta Di Fabrizio
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Federale Lausanne, Lausanne, Vaud 1015, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - Domenic Burger
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Federale Lausanne, Lausanne, Vaud 1015, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - John G J M Bol
- Department of Anatomy and Neurosciences, section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Evelien Huisman
- Department of Anatomy and Neurosciences, section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience program Neurodegeneration, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience program Neurodegeneration, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Federale Lausanne, Lausanne, Vaud 1015, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - Amanda J Lewis
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Federale Lausanne, Lausanne, Vaud 1015, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| |
Collapse
|
7
|
Kelser BM, Teichner EM, Subtirelu RC, Hoss KN. A review of proposed mechanisms for neurodegenerative disease. Front Aging Neurosci 2024; 16:1370580. [PMID: 39439710 PMCID: PMC11493710 DOI: 10.3389/fnagi.2024.1370580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis (ALS) affect millions and present significant challenges in healthcare and treatment costs. The debate in the field pivots around two hypotheses: synaptic spread and selective vulnerability. Pioneers like Virginia Lee and John Trojanowski have been instrumental in identifying key proteins (tau, alpha-synuclein, TDP-43) central to these diseases. The synaptic spread hypothesis suggests a cell-to-cell propagation of pathogenic proteins across neuronal synapses, influencing disease progression, with studies highlighting the role of proteins like alpha-synuclein and amyloid-beta in this process. In contrast, the selective vulnerability hypothesis proposes inherent susceptibility of certain neurons to degeneration due to factors like metabolic stress, leading to protein aggregation. Recent advancements in neuroimaging, especially PET/MRI hybrid imaging, offer new insights into these mechanisms. While both hypotheses offer substantial evidence, their relative contributions to neurodegenerative processes remain to be fully elucidated. This uncertainty underscores the necessity for continued research, with a focus on these hypotheses, to develop effective treatments for these devastating diseases.
Collapse
Affiliation(s)
- Benjamin M. Kelser
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Eric M. Teichner
- Sidney Kimmel Medical College (SKMC), Philadelphia, PA, United States
| | - Robert C. Subtirelu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kevin N. Hoss
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
8
|
Ivanov MV, Kopeykina AS, Gorshkov MV. Reanalysis of DIA Data Demonstrates the Capabilities of MS/MS-Free Proteomics to Reveal New Biological Insights in Disease-Related Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1775-1785. [PMID: 38938158 DOI: 10.1021/jasms.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Data-independent acquisition (DIA) at the shortened data acquisition time is becoming a method of choice for quantitative proteomic applications requiring high throughput analysis of large cohorts of samples. With the advent of the combination of high resolution mass spectrometry with an asymmetric track lossless analyzer, these DIA capabilities were further extended with the recent demonstration of quantitative analyses at the speed of up to hundreds of samples per day. In particular, the proteomic data for the brain samples related to multiple system atrophy disease were acquired using 7 and 28 min chromatography gradients (Guzman et al., Nat. Biotech. 2024). In this work, we applied the recently introduced DirectMS1 method to reanalysis of these data using only MS1 spectra. Both DirectMS1 and DIA results were matched against long gradient DDA analysis from the earlier study of the same sample cohort. While the quantitation efficiency of DirectMS1 was comparable with DIA on the same data sets, we found an additional five proteins of biological significance relevant to the analyzed tissue samples. Among the findings, DirectMS1 was able to detect decreased caspase activity for Vimentin protein in the multiple system atrophy samples missed by the MS/MS-based quantitation methods. Our study suggests that DirectMS1 can be an efficient MS1-only addition to the analysis of DIA data in high-throughput quantitative proteomic studies.
Collapse
Affiliation(s)
- Mark V Ivanov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna S Kopeykina
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Mikhail V Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
9
|
Kim A, Yoshida K, Kovacs GG, Forrest SL. Computer-Based Evaluation of α-Synuclein Pathology in Multiple System Atrophy as a Novel Tool to Recognize Disease Subtypes. Mod Pathol 2024; 37:100533. [PMID: 38852813 DOI: 10.1016/j.modpat.2024.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/11/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disorder with variable disease course and distinct constellations of clinical (cerebellar [MSA-C] or parkinsonism [MSA-P]) and pathological phenotypes, suggestive of distinct α-synuclein (αSyn) strains. Neuropathologically, MSA is characterized by the accumulation of αSyn in oligodendrocytic glial cytoplasmic inclusions (GCI). Using a novel computer-based method, this study quantified the size of GCIs, density of all αSyn pathology, density of only the GCIs, and number of GCIs in MSA cases (n = 20). The putamen and cerebellar white matter were immunostained with the disease-associated 5G4 anti-αSyn antibody. Following digital scanning and image processing, total 5G4-immunoreactive pathology (ie, neuronal, neuritic, and glial) and GCIs were optically dissected for inclusion size and density measurement and then evaluated applying a novel computer-based method using ImageJ. GCI size varied between cases and brain regions (P < .0001), and heterogeneity in the density of all αSyn pathology including the density and number of GCIs were observed between regions and across cases, where MSA-C cases had a significantly higher density of all αSyn pathology in the cerebellar white matter (P = .049). Some region-specific morphologic variables inversely correlated with the age of onset and death, suggestive of an underlying aging-related cellular mechanism. Unsupervised K-means cluster analysis classified MSA cases into 3 distinct groups based on region-specific morphologic variables. In conclusion, we developed a novel computer-based method that is easily accessible, providing a first step to developing artificial intelligence-based evaluation strategies for large scale comparative studies. Our observations on the variability of morphologic variables between brain regions and cases highlight (1) the importance of computer-based approaches to detect features not considered in the routine diagnostic practice, and (2) novel aspects for the identification of previously unrecognized MSA subtypes that do not necessarily reflect the current clinical classification of MSA-C or MSA-P.
Collapse
Affiliation(s)
- Ain Kim
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
| | - Koji Yoshida
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada; Department of Legal Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama, Japan
| | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Soto C. α-Synuclein seed amplification technology for Parkinson's disease and related synucleinopathies. Trends Biotechnol 2024; 42:829-841. [PMID: 38395703 PMCID: PMC11223967 DOI: 10.1016/j.tibtech.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Synucleinopathies are a group of neurodegenerative diseases (NDs) associated with cerebral accumulation of α-synuclein (αSyn) misfolded aggregates. At this time, there is no effective treatment to stop or slow down disease progression, which in part is due to the lack of an early and objective biochemical diagnosis. In the past 5 years, the seed amplification technology has emerged for highly sensitive identification of these diseases, even at the preclinical stage of the illness. Much research has been done in multiple laboratories to validate the efficacy and reproducibility of this assay. This article provides a comprehensive review of this technology, including its conceptual basis and its multiple applications for disease diagnosis, as well for understanding of the disease biology and therapeutic development.
Collapse
Affiliation(s)
- Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX77030, USA.
| |
Collapse
|
11
|
Wakabayashi K, Miki Y, Tanji K, Mori F. Neuropathology of Multiple System Atrophy, a Glioneuronal Degenerative Disease. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2-12. [PMID: 35474048 DOI: 10.1007/s12311-022-01407-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 12/16/2022]
Abstract
Multiple system atrophy (MSA) is a fatal disease characterized pathologically by the widespread occurrence of aggregated α-synuclein in the oligodendrocytes referred to as glial cytoplasmic inclusions (GCIs). α-Synuclein aggregates are also found in the oligodendroglial nuclei and neuronal cytoplasm and nuclei. It is uncertain whether the primary source of α-synuclein in GCIs is originated from neurons or oligodendrocytes. Accumulating evidence suggests that there are two degenerative processes in this disease. One possibility is that numerous GCIs are associated with the impairment of oligo-myelin-axon-neuron complex, and the other is that neuronal inclusion pathology is also a primary event from the early stage. Both oligodendrocytes and neurons may be primarily affected in MSA, and the damage of one cell type contributes to the degeneration of the other. Vesicle-mediated transport plays a key role in the nuclear translocation of α-synuclein as well as in the formation of glial and neuronal α-synuclein inclusions. Recent studies have shown that impairment of autophagy can occur along with or as a result of α-synuclein accumulation in the brain of MSA and Lewy body disease. Activated autophagy may be implicated in the therapeutic approach for α-synucleinopathies.
Collapse
Affiliation(s)
- Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.
| | - Yasuo Miki
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| |
Collapse
|
12
|
Bartosch AMW, Youth EHH, Hansen S, Wu Y, Buchanan HM, Kaufman ME, Xiao H, Koo SY, Ashok A, Sivakumar S, Soni RK, Dumitrescu LC, Lam TG, Ropri AS, Lee AJ, Klein HU, Vardarajan BN, Bennett DA, Young-Pearse TL, De Jager PL, Hohman TJ, Sproul AA, Teich AF. ZCCHC17 Modulates Neuronal RNA Splicing and Supports Cognitive Resilience in Alzheimer's Disease. J Neurosci 2024; 44:e2324222023. [PMID: 38050142 PMCID: PMC10860597 DOI: 10.1523/jneurosci.2324-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 09/22/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023] Open
Abstract
ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis using data from human autopsy tissue (consisting of males and females) and female human cell lines. Co-immunoprecipitation (co-IP) of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA-splicing proteins. ZCCHC17 knockdown results in widespread RNA-splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4-dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find a significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that the maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.
Collapse
Affiliation(s)
- Anne Marie W Bartosch
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Elliot H H Youth
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Shania Hansen
- Department of Neurology, Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Yiyang Wu
- Department of Neurology, Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Heather M Buchanan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Maria E Kaufman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Harrison Xiao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - So Yeon Koo
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Archana Ashok
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Sharanya Sivakumar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, New York 10032
| | - Logan C Dumitrescu
- Department of Neurology, Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Tiffany G Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Ali S Ropri
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Annie J Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
- Department of Neurology, Center for Translational & Computational Neuroimmunology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York 10032
| | - Hans-Ulrich Klein
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
- Department of Neurology, Center for Translational & Computational Neuroimmunology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York 10032
| | - Badri N Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York 10032
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612
| | - Tracy L Young-Pearse
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138
| | - Philip L De Jager
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
- Department of Neurology, Center for Translational & Computational Neuroimmunology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York 10032
| | - Timothy J Hohman
- Department of Neurology, Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Andrew A Sproul
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Andrew F Teich
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York 10032
| |
Collapse
|
13
|
Fodder K, de Silva R, Warner TT, Bettencourt C. The contribution of DNA methylation to the (dys)function of oligodendroglia in neurodegeneration. Acta Neuropathol Commun 2023; 11:106. [PMID: 37386505 PMCID: PMC10311741 DOI: 10.1186/s40478-023-01607-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Neurodegenerative diseases encompass a heterogeneous group of conditions characterised by the progressive degeneration of the structure and function of the central or peripheral nervous systems. The pathogenic mechanisms underlying these diseases are not fully understood. However, a central feature consists of regional aggregation of proteins in the brain, such as the accumulation of β-amyloid plaques in Alzheimer's disease (AD), inclusions of hyperphosphorylated microtubule-binding tau in AD and other tauopathies, or inclusions containing α-synuclein in Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Various pathogenic mechanisms are thought to contribute to disease, and an increasing number of studies implicate dysfunction of oligodendrocytes (the myelin producing cells of the central nervous system) and myelin loss. Aberrant DNA methylation, the most widely studied epigenetic modification, has been associated with many neurodegenerative diseases, including AD, PD, DLB and MSA, and recent findings highlight aberrant DNA methylation in oligodendrocyte/myelin-related genes. Here we briefly review the evidence showing that changes to oligodendrocytes and myelin are key in neurodegeneration, and explore the relevance of DNA methylation in oligodendrocyte (dys)function. As DNA methylation is reversible, elucidating its involvement in pathogenic mechanisms of neurodegenerative diseases and in dysfunction of specific cell-types such as oligodendrocytes may bring opportunities for therapeutic interventions for these diseases.
Collapse
Affiliation(s)
- Katherine Fodder
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Rohan de Silva
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas T Warner
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
14
|
Tassinari V, La Rosa P, Guida E, Colopi A, Caratelli S, De Paolis F, Gallo A, Cenciarelli C, Sconocchia G, Dolci S, Cesarini V. Contribution of A-to-I RNA editing, M6A RNA Methylation, and Alternative Splicing to physiological brain aging and neurodegenerative diseases. Mech Ageing Dev 2023; 212:111807. [PMID: 37023929 DOI: 10.1016/j.mad.2023.111807] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Aging is a physiological and progressive phenomenon in all organisms' life cycle, characterized by the accumulation of degenerative processes triggered by several alterations within molecular pathways. These changes compromise cell fate, resulting in the loss of functions in tissues throughout the body, including the brain. Physiological brain aging has been linked to structural and functional alterations, as well as to an increased risk of neurodegenerative diseases. Post-transcriptional RNA modifications modulate mRNA coding properties, stability, translatability, expanding the coding capacity of the genome, and are involved in all cellular processes. Among mRNA post-transcriptional modifications, the A-to-I RNA editing, m6A RNA Methylation and Alternative Splicing play a critical role in all the phases of a neuronal cell life cycle and alterations in their mechanisms of action significantly contribute to aging and neurodegeneration. Here we review our current understanding of the contribution of A-to-I RNA editing, m6A RNA Methylation, and Alternative Splicing to physiological brain aging process and neurodegenerative diseases.
Collapse
Affiliation(s)
- Valentina Tassinari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy; European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Eugenia Guida
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Ambra Colopi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Sara Caratelli
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Francesca De Paolis
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Angela Gallo
- RNA Editing Lab., Oncohaematology Department, Cellular and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Cenciarelli
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Giuseppe Sconocchia
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Valeriana Cesarini
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy.
| |
Collapse
|
15
|
Bartosch AMW, Youth EHH, Hansen S, Kaufman ME, Xiao H, Koo SY, Ashok A, Sivakumar S, Soni RK, Dumitrescu LC, Lam TG, Ropri AS, Lee AJ, Klein HU, Vardarajan BN, Bennett DA, Young-Pearse TL, De Jager PL, Hohman TJ, Sproul AA, Teich AF. ZCCHC17 modulates neuronal RNA splicing and supports cognitive resilience in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533654. [PMID: 36993746 PMCID: PMC10055234 DOI: 10.1101/2023.03.21.533654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's Disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis. Co-immunoprecipitation of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA splicing proteins. ZCCHC17 knockdown results in widespread RNA splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4 dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.
Collapse
Affiliation(s)
- Anne Marie W. Bartosch
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Elliot H. H. Youth
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Shania Hansen
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Maria E. Kaufman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Harrison Xiao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - So Yeon Koo
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Archana Ashok
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Sharanya Sivakumar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Rajesh K. Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, NY 10032
| | - Logan C. Dumitrescu
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Tiffany G. Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Ali S. Ropri
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Annie J. Lee
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032
| | - Hans-Ulrich Klein
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032
| | - Badri N. Vardarajan
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612
| | - Tracy L. Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Philip L. De Jager
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032
| | - Timothy J. Hohman
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Andrew A. Sproul
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Andrew F. Teich
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032
| |
Collapse
|
16
|
Role of Oligodendrocyte Lineage Cells in Multiple System Atrophy. Cells 2023; 12:cells12050739. [PMID: 36899876 PMCID: PMC10001068 DOI: 10.3390/cells12050739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Multiple system atrophy (MSA) is a debilitating movement disorder with unknown etiology. Patients present characteristic parkinsonism and/or cerebellar dysfunction in the clinical phase, resulting from progressive deterioration in the nigrostriatal and olivopontocerebellar regions. MSA patients have a prodromal phase subsequent to the insidious onset of neuropathology. Therefore, understanding the early pathological events is important in determining the pathogenesis, which will assist with developing disease-modifying therapy. Although the definite diagnosis of MSA relies on the positive post-mortem finding of oligodendroglial inclusions composed of α-synuclein, only recently has MSA been verified as an oligodendrogliopathy with secondary neuronal degeneration. We review up-to-date knowledge of human oligodendrocyte lineage cells and their association with α-synuclein, and discuss the postulated mechanisms of how oligodendrogliopathy develops, oligodendrocyte progenitor cells as the potential origins of the toxic seeds of α-synuclein, and the possible networks through which oligodendrogliopathy induces neuronal loss. Our insights will shed new light on the research directions for future MSA studies.
Collapse
|
17
|
Du J, Cui S, Huang P, Gao C, Zhang P, Liu J, Li H, Huang M, Shen X, Liu Z, Chen Z, Tan Y, Chen S. Predicting the Prognosis of Multiple System Atrophy Using Cluster and Principal Component Analysis. JOURNAL OF PARKINSON'S DISEASE 2023; 13:937-946. [PMID: 37522217 PMCID: PMC10578219 DOI: 10.3233/jpd-225127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Multiple system atrophy (MSA) is an intractable neurodegenerative disorder with poorly understanding of prognostic factors. OBJECTIVE The purpose of this retrospective longitudinal study was to explore the main predictors of survival of MSA patients with new clinical subtypes based on cluster analysis. METHODS A total of 153 Chinese MSA patients were recruited in our study. The basic demographic data and motor and nonmotor symptoms were assessed. Cluster and principal component analysis (PCA) were used to eliminate collinearity and search for new clinical subtypes. The multivariable Cox regression was used to find factors associated with survival in MSA patients. RESULTS The median survival time from symptom onset to death (estimated using data from all patients by Kaplan-Meier analysis) was 6.3 (95% CI = 6.1-6.7) years. The survival model showed that a shorter survival time was associated with motor principal component (PC)1 (HR = 1.71, 95% CI: 1.26-2.30, p < 0.001) and nonmotor PC3 (HR = 1.68, 95% CI: 1.31-2.10, p < 0.001) through PCA. Four clusters were identified: Cluster 1 (mild), Cluster 2 (mood disorder-dominant), Cluster 3 (axial symptoms and cognitive impairment-dominant), and Cluster 4 (autonomic failure-dominant). Multivariate Cox regression indicated that Cluster 3 (HR = 4.15, 95% CI: 1.73-9.90, p = 0.001) and Cluster 4 (HR = 4.18, 95% CI: 1.73-10.1, p = 0.002) were independently associated with shorter survival time. CONCLUSION More serious motor symptoms, axial symptoms such as falls and dysphagia, orthostatic hypotension, and cognitive impairment were associated with poor survival in MSA via PCA and cluster analysis.
Collapse
Affiliation(s)
- Juanjuan Du
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shishuang Cui
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, China
| | - Pei Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Gao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingchen Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxia Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Shen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zixian Liu
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilu Chen
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Nasri A, Gharbi A, Sghaier I, Mrabet S, Souissi A, Gargouri A, Djebara MB, Kacem I, Gouider R. Determinants of cognitive impairment in multiple system atrophy: Clinical and genetic study. PLoS One 2022; 17:e0277798. [PMID: 36508411 PMCID: PMC9744291 DOI: 10.1371/journal.pone.0277798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/03/2022] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Classically, cognitive impairment (CI) was not considered as a paramount feature of multiple system atrophy(MSA) in both parkinsonian(MSA-P) and cerebellar(MSA-C) motor-subtypes. Yet, growing evidence indicates currently the commonness of such deficits among MSA patients in different populations. Our aim was to evaluate the cognitive profile of MSA Tunisian patients and to analyze the underlying clinical and genetic determinants. METHODS In a retrospective cross-sectional study, clinically-diagnosed MSA patients were included. All subjects underwent clinical and neuropsychological assessments to characterize their cognitive profile. The associations with their APOE genotype status were analyzed. Determinant of CI were specified. RESULTS We included 71 MSA patients. Female gender(sex-ratio = 0.65) and MSA-P subtype(73%) were predominant. Mean age of disease onset was 59.1years. CI was found in 85.7% of patients(dementia in 12.7% and Mild cognitive impairment(MCI) in 73% of patients mainly of multiple-domain amnestic type(37.3%)). Mean MMSE score was lower among MSA-P compared to MSA-C(23.52 vs. 26.47;p = 0.027). Higher postural instability gait disorder(PIGD) and MDS-UPDRS-III scores were noted in demented MSA patients(p = 0.019;p = 0.015 respectively). The main altered cognitive domain was attention(64.8%). Executive functions and mood disorders were more affected in MSA-P(p = 0.029,p = 0.035 respectively). Clinical and neurophysiological study of dysautonomia revealed no differences across cognitive subtypes. APOE genotyping was performed in 51 MSA patients with available blood samples. Those carrying APOEε4 had 1.32 fold higher risk to develop CI, with lower MMSE score(p = 0.0001). Attention and language were significantly altered by adjusting the p value to APOEɛ4 carriers(p = 0.046 and p = 0.044 respectively). Executive dysfunction was more pronounced among MSA-PAPOEε4 carriers(p = 0.010). CONCLUSION In this study, the main determinants of CI in Tunisian MSA patients were MSA-P motor-subtype, mainly of PIGD-phenotype, disease duration and APOEε4 carrying status, defining a more altered cognitive phenotype. This effect mainly concerned executive, attention and language functions, all found to be more impaired in APOEε4 carriers with variable degrees across MSA motor-subtypes.
Collapse
Affiliation(s)
- Amina Nasri
- Neurology Department, LR18SP03, Razi Universitary Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi Universitary Hospital, Tunis, Tunisia
| | - Alya Gharbi
- Neurology Department, LR18SP03, Razi Universitary Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi Universitary Hospital, Tunis, Tunisia
| | - Ikram Sghaier
- Neurology Department, LR18SP03, Razi Universitary Hospital, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi Universitary Hospital, Tunis, Tunisia
| | - Saloua Mrabet
- Neurology Department, LR18SP03, Razi Universitary Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi Universitary Hospital, Tunis, Tunisia
| | - Amira Souissi
- Neurology Department, LR18SP03, Razi Universitary Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi Universitary Hospital, Tunis, Tunisia
| | - Amina Gargouri
- Neurology Department, LR18SP03, Razi Universitary Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi Universitary Hospital, Tunis, Tunisia
| | - Mouna Ben Djebara
- Neurology Department, LR18SP03, Razi Universitary Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi Universitary Hospital, Tunis, Tunisia
| | - Imen Kacem
- Neurology Department, LR18SP03, Razi Universitary Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi Universitary Hospital, Tunis, Tunisia
| | - Riadh Gouider
- Neurology Department, LR18SP03, Razi Universitary Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi Universitary Hospital, Tunis, Tunisia
- * E-mail:
| |
Collapse
|
19
|
Kinoshita C, Kubota N, Aoyama K. Glutathione Depletion and MicroRNA Dysregulation in Multiple System Atrophy: A Review. Int J Mol Sci 2022; 23:15076. [PMID: 36499400 PMCID: PMC9740333 DOI: 10.3390/ijms232315076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by parkinsonism, cerebellar impairment, and autonomic failure. Although the causes of MSA onset and progression remain uncertain, its pathogenesis may involve oxidative stress via the generation of excess reactive oxygen species and/or destruction of the antioxidant system. One of the most powerful antioxidants is glutathione, which plays essential roles as an antioxidant enzyme cofactor, cysteine-storage molecule, major redox buffer, and neuromodulator, in addition to being a key antioxidant in the central nervous system. Glutathione levels are known to be reduced in neurodegenerative diseases. In addition, genes regulating redox states have been shown to be post-transcriptionally modified by microRNA (miRNA), one of the most important types of non-coding RNA. miRNAs have been reported to be dysregulated in several diseases, including MSA. In this review, we focused on the relation between glutathione deficiency, miRNA dysregulation and oxidative stress and their close relation with MSA pathology.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Noriko Kubota
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
- Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| |
Collapse
|
20
|
Fabbri M, Foubert-Samier A, Pavy-le Traon A, Rascol O, Meissner WG. Atrofia multisistemica. Neurologia 2022. [DOI: 10.1016/s1634-7072(22)47094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
21
|
Reddy K, Dieriks BV. Multiple system atrophy: α-Synuclein strains at the neuron-oligodendrocyte crossroad. Mol Neurodegener 2022; 17:77. [DOI: 10.1186/s13024-022-00579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/31/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractThe aberrant accumulation of α-Synuclein within oligodendrocytes is an enigmatic, pathological feature specific to Multiple system atrophy (MSA). Since the characterization of the disease in 1969, decades of research have focused on unravelling the pathogenic processes that lead to the formation of oligodendroglial cytoplasmic inclusions. The discovery of aggregated α-Synuclein (α-Syn) being the primary constituent of glial cytoplasmic inclusions has spurred several lines of research investigating the relationship between the pathogenic accumulation of the protein and oligodendrocytes. Recent developments have identified the ability of α-Syn to form conformationally distinct “strains” with varying behavioral characteristics and toxicities. Such “strains” are potentially disease-specific, providing insight into the enigmatic nature of MSA. This review discusses the evidence for MSA-specific α-Syn strains, highlighting the current methods for detecting and characterizing MSA patient-derived α-Syn. Given the differing behaviors of α-Syn strains, we explore the seeding and spreading capabilities of MSA-specific strains, postulating their influence on the aggressive nature of the disease. These ideas culminate into one key question: What causes MSA–specific strain formation? To answer this, we discuss the interplay between oligodendrocytes, neurons and α-Syn, exploring the ability of each cell type to contribute to the aggregate formation while postulating the effect of additional variables such as protein interactions, host characteristics and environmental factors. Thus, we propose the idea that MSA strain formation results from the intricate interrelation between neurons and oligodendrocytes, with deficits in each cell type required to initiate α-Syn aggregation and MSA pathogenesis.
Graphical Abstract
Collapse
|
22
|
Mavroeidi P, Arvanitaki F, Vetsi M, Becker S, Vlachakis D, Jensen PH, Stefanis L, Xilouri M. Autophagy mediates the clearance of oligodendroglial SNCA/alpha-synuclein and TPPP/p25A in multiple system atrophy models. Autophagy 2022; 18:2104-2133. [PMID: 35000546 PMCID: PMC9466620 DOI: 10.1080/15548627.2021.2016256] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Accumulation of the neuronal protein SNCA/alpha-synuclein and of the oligodendroglial phosphoprotein TPPP/p25A within the glial cytoplasmic inclusions (GCIs) represents the key histophathological hallmark of multiple system atrophy (MSA). Even though the levels/distribution of both oligodendroglial SNCA and TPPP/p25A proteins are critical for disease pathogenesis, the proteolytic mechanisms involved in their turnover in health and disease remain poorly understood. Herein, by pharmacological and molecular modulation of the autophagy-lysosome pathway (ALP) and the proteasome we demonstrate that the endogenous oligodendroglial SNCA and TPPP/p25A are degraded mainly by the ALP in murine primary oligodendrocytes and oligodendroglial cell lines under basal conditions. We also identify a KFERQ-like motif in the TPPP/p25A sequence that enables its effective degradation via chaperone-mediated autophagy (CMA) in an in vitro system of rat brain lysosomes. Furthermore, in a MSA-like setting established by addition of human recombinant SNCA pre-formed fibrils (PFFs) as seeds of pathological SNCA, we thoroughly characterize the contribution of CMA and macroautophagy in particular, in the removal of the exogenously added and the seeded oligodendroglial SNCA pathological assemblies. We also show that PFF treatment impairs autophagic flux and that TPPP/p25A exerts an inhibitory effect on macroautophagy, while at the same time CMA is upregulated to remove the pathological SNCA species formed within oligodendrocytes. Finally, augmentation of CMA or macroautophagy accelerates the removal of the engendered pathological SNCA conformations further suggesting that autophagy targeting may represent a successful approach for the clearance of pathological SNCA and/or TPPP/p25A in the context of MSA.Abbreviations: 3MA: 3-methyladenine; ACTB: actin, beta; ALP: autophagy-lysosome pathway; ATG5: autophagy related 5; AR7: atypical retinoid 7; CMA: chaperone-mediated autophagy; CMV: cytomegalovirus; CTSD: cathepsin D; DAPI: 4',6-diamidino-2-phenylindole; DMEM: Dulbecco's modified Eagle's medium; Epox: epoxomicin; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCIs: glial cytoplasmic inclusions; GFP: green fluorescent protein; HMW: high molecular weight; h: hours; HSPA8/HSC70: heat shock protein 8; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; mcherry: monomeric cherry; MFI: mean fluorescence intensity; mRFP: monomeric red fluorescent protein; MSA: multiple system atrophy; OLN: oligodendrocytes; OPCs: oligodendroglial progenitor cells; PBS: phosphate-buffered saline; PC12: pheochromocytoma cell line; PD: Parkinson disease; PFFs: pre-formed fibrils; PIs: protease inhibitors; PSMB5: proteasome (prosome, macropain) subunit, beta type 5; Rap: rapamycin; RFP: red fluorescent protein; Scr: scrambled; SDS: sodium dodecyl sulfate; SE: standard error; siRNAs: small interfering RNAs; SNCA: synuclein, alpha; SQSTM1: sequestosome 1; TPPP: tubulin polymerization promoting protein; TUBA: tubulin, alpha; UPS: ubiquitin-proteasome system; WT: wild type.
Collapse
Affiliation(s)
- Panagiota Mavroeidi
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Fedra Arvanitaki
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Vetsi
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dimitrios Vlachakis
- Genetics and Computational Biology Group, Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Poul Henning Jensen
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Leonidas Stefanis
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece,1st Department of Neurology, Medical School, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece,CONTACT Maria Xilouri Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (Brfaa), 4 Soranou Efesiou Street, Athens11527, Greece
| |
Collapse
|
23
|
Kühnel L, Raket LL, Åström DO, Berger A, Hansen IH, Krismer F, Wenning GK, Seppi K, Poewe W, Molinuevo J. Disease Progression in Multiple System Atrophy-Novel Modeling Framework and Predictive Factors. Mov Disord 2022; 37:1719-1727. [PMID: 35668573 PMCID: PMC9540561 DOI: 10.1002/mds.29077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) is a rare and aggressive neurodegenerative disease that typically leads to death 6 to 10 years after symptom onset. The rapid evolution renders it crucial to understand the general disease progression and factors affecting the disease course. OBJECTIVES The aims of this study were to develop a novel disease-progression model to estimate a population-level MSA progression trajectory and predict patient-specific continuous disease stages describing the degree of progress into the disease. METHODS The disease-progression model estimated a population-level progression trajectory of subscales of the Unified MSA Rating Scale and the Unified Parkinson's Disease Rating Scale using patients in the European MSA natural history study. The predicted disease continuum was validated via multiple analyses based on reported anchor points, and the effect of MSA subtype on the rate of disease progression was evaluated. RESULTS The predicted disease continuum spanned approximately 6 years, with an estimated average duration of 51 months for a patient with global disability score 0 to reach the highest level of 4. The predicted continuous disease stages were shown to be correlated with time of symptom onset and predictive of survival time. MSA motor subtype was found to significantly affect disease progression, with MSA-parkinsonian (MSA-P) type patients having an accelerated rate of progression. CONCLUSIONS The proposed modeling framework introduces a new method of analyzing and interpreting the progression of MSA. It can provide new insights and opportunities for investigating covariate effects on the rate of progression and provide well-founded predictions of patient-level future progressions. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Line Kühnel
- H. Lundbeck A/SCopenhagenDenmark
- Department of Mathematical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Lars Lau Raket
- H. Lundbeck A/SCopenhagenDenmark
- Clinical Memory Research Unit, Department of Clinical SciencesLund UniversityLundSweden
| | | | | | | | - Florian Krismer
- Department of NeurologyMedical University InnsbruckInnsbruckAustria
| | | | - Klaus Seppi
- Department of NeurologyMedical University InnsbruckInnsbruckAustria
| | - Werner Poewe
- Department of NeurologyMedical University InnsbruckInnsbruckAustria
| | | | | |
Collapse
|
24
|
Clinical correlations of cerebrospinal fluid biomarkers including neuron-glia 2 and neurofilament light chain in patients with multiple system atrophy. Parkinsonism Relat Disord 2022; 102:30-35. [DOI: 10.1016/j.parkreldis.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022]
|
25
|
Upadhyay A, Sundaria N, Dhiman R, Prajapati VK, Prasad A, Mishra A. Complex Inclusion Bodies and Defective Proteome Hubs in Neurodegenerative Disease: New Clues, New Challenges. Neuroscientist 2022; 28:271-282. [PMID: 33530848 DOI: 10.1177/1073858421989582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A healthy physiological environment of cells represents the dynamic homeostasis of crowded molecules. A subset of cellular proteome forms protein quality control (PQC) machinery to maintain an uninterrupted synthesis of new polypeptides and targeted elimination of old or defective proteins. The process of PQC may get overwhelmed under specific genetic mutations, environmental stress conditions, and aging-associated perturbances. Many of these conditions may lead to the generation of various types of aberrant protein species that may or may not accumulate as large cellular inclusions. These proteinaceous formations, referred to as inclusion bodies (IBs), could be membrane-bound or membrane-less, cytoplasmic, or nuclear. Most importantly, they could either be toxic or protective. Under acute stress conditions, the formation of aggregates may cause proteostasis failure, leading to large-scale changes in the cellular proteome compositions. However, the large insoluble IBs may act as reservoirs for many soluble proteins with high aggregation propensities, which can overwhelm the cellular chaperoning capacity and protein degradation machinery. The kinetic equilibrium between folding and unfolding, misfolding, and refolding; aggregation and degradation is perturbed in one or many neurodegenerative disorders (NDDs) associated with dementia, cognitive impairments, movement, and behavioural losses. However, a detailed interplay of IBs into the manifestation of the NDDs is unknown, and a very primitive knowledge of structural compositions of amyloid inclusions is present. The present article presents a brief evolutionary background of IBs; their functional relevance for prokaryotes, plants, and animals; and associated involvement in neuronal proteostasis.
Collapse
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Naveen Sundaria
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| |
Collapse
|
26
|
Jellinger KA. Heterogeneity of Multiple System Atrophy: An Update. Biomedicines 2022; 10:599. [PMID: 35327402 PMCID: PMC8945102 DOI: 10.3390/biomedicines10030599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple system atrophy (MSA) is a fatal, rapidly progressing neurodegenerative disease of uncertain etiology, clinically characterized by various combinations of Levodopa unresponsive parkinsonism, cerebellar, autonomic and motor dysfunctions. The morphological hallmark of this α-synucleinopathy is the deposition of aberrant α-synuclein in both glia, mainly oligodendroglia (glial cytoplasmic inclusions /GCIs/) and neurons, associated with glioneuronal degeneration of the striatonigral, olivopontocerebellar and many other neuronal systems. Typical phenotypes are MSA with predominant parkinsonism (MSA-P) and a cerebellar variant (MSA-C) with olivocerebellar atrophy. However, MSA can present with a wider range of clinical and pathological features than previously thought. In addition to rare combined or "mixed" MSA, there is a broad spectrum of atypical MSA variants, such as those with a different age at onset and disease duration, "minimal change" or prodromal forms, MSA variants with Lewy body disease or severe hippocampal pathology, rare forms with an unusual tau pathology or spinal myoclonus, an increasing number of MSA cases with cognitive impairment/dementia, rare familial forms, and questionable conjugal MSA. These variants that do not fit into the current classification of MSA are a major challenge for the diagnosis of this unique proteinopathy. Although the clinical diagnostic accuracy and differential diagnosis of MSA have improved by using combined biomarkers, its distinction from clinically similar extrapyramidal disorders with other pathologies and etiologies may be difficult. These aspects should be taken into consideration when revising the current diagnostic criteria. This appears important given that disease-modifying treatment strategies for this hitherto incurable disorder are under investigation.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
27
|
Ferritinophagy and α-Synuclein: Pharmacological Targeting of Autophagy to Restore Iron Regulation in Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23042378. [PMID: 35216492 PMCID: PMC8878351 DOI: 10.3390/ijms23042378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
A major hallmark of Parkinson’s disease (PD) is the fatal destruction of dopaminergic neurons within the substantia nigra pars compacta. This event is preceded by the formation of Lewy bodies, which are cytoplasmic inclusions composed of α-synuclein protein aggregates. A triad contribution of α-synuclein aggregation, iron accumulation, and mitochondrial dysfunction plague nigral neurons, yet the events underlying iron accumulation are poorly understood. Elevated intracellular iron concentrations up-regulate ferritin expression, an iron storage protein that provides cytoprotection against redox stress. The lysosomal degradation pathway, autophagy, can release iron from ferritin stores to facilitate its trafficking in a process termed ferritinophagy. Aggregated α-synuclein inhibits SNARE protein complexes and destabilizes microtubules to halt vesicular trafficking systems, including that of autophagy effectively. The scope of this review is to describe the physiological and pathological relationship between iron regulation and α-synuclein, providing a detailed understanding of iron metabolism within nigral neurons. The underlying mechanisms of autophagy and ferritinophagy are explored in the context of PD, identifying potential therapeutic targets for future investigation.
Collapse
|
28
|
Passive Immunization in Alpha-Synuclein Preclinical Animal Models. Biomolecules 2022; 12:biom12020168. [PMID: 35204668 PMCID: PMC8961624 DOI: 10.3390/biom12020168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 12/20/2022] Open
Abstract
Alpha-synucleinopathies include Parkinson’s disease, dementia with Lewy bodies, pure autonomic failure and multiple system atrophy. These are all progressive neurodegenerative diseases that are characterized by pathological misfolding and accumulation of the protein alpha-synuclein (αsyn) in neurons, axons or glial cells in the brain, but also in other organs. The abnormal accumulation and propagation of pathogenic αsyn across the autonomic connectome is associated with progressive loss of neurons in the brain and peripheral organs, resulting in motor and non-motor symptoms. To date, no cure is available for synucleinopathies, and therapy is limited to symptomatic treatment of motor and non-motor symptoms upon diagnosis. Recent advances using passive immunization that target different αsyn structures show great potential to block disease progression in rodent studies of synucleinopathies. However, passive immunotherapy in clinical trials has been proven safe but less effective than in preclinical conditions. Here we review current achievements of passive immunotherapy in animal models of synucleinopathies. Furthermore, we propose new research strategies to increase translational outcome in patient studies, (1) by using antibodies against immature conformations of pathogenic αsyn (monomers, post-translationally modified monomers, oligomers and protofibrils) and (2) by focusing treatment on body-first synucleinopathies where damage in the brain is still limited and effective immunization could potentially stop disease progression by blocking the spread of pathogenic αsyn from peripheral organs to the brain.
Collapse
|
29
|
Laferrière F, Claverol S, Bezard E, De Giorgi F, Ichas F. Similar neuronal imprint and no cross-seeded fibrils in α-synuclein aggregates from MSA and Parkinson's disease. NPJ Parkinsons Dis 2022; 8:10. [PMID: 35027576 PMCID: PMC8758785 DOI: 10.1038/s41531-021-00264-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/06/2021] [Indexed: 02/08/2023] Open
Abstract
Aggregated alpha-synuclein (α-syn) is a principal constituent of Lewy bodies (LBs) and glial cytoplasmic inclusions (GCIs) observed respectively inside neurons in Parkinson’s disease (PD) and oligodendrocytes in multiple system atrophy (MSA). Yet, the cellular origin, the pathophysiological role, and the mechanism of formation of these inclusions bodies (IBs) remain to be elucidated. It has recently been proposed that α-syn IBs eventually cause the demise of the host cell by virtue of the cumulative sequestration of partner proteins and organelles. In particular, the hypothesis of a local cross-seeding of other fibrillization-prone proteins like tau or TDP-43 has also been put forward. We submitted sarkosyl-insoluble extracts of post-mortem brain tissue from PD, MSA and control subjects to a comparative proteomic analysis to address these points. Our studies indicate that: (i) α-syn is by far the most enriched protein in PD and MSA extracts compared to controls; (ii) PD and MSA extracts share a striking overlap of their sarkosyl-insoluble proteomes, consisting of a vast majority of mitochondrial and neuronal synaptic proteins, and (iii) other fibrillization-prone protein candidates possibly cross-seeded by α-syn are neither found in PD nor MSA extracts. Thus, our results (i) support the idea that pre-assembled building blocks originating in neurons serve to the formation of GCIs in MSA, (ii) show no sign of amyloid cross-seeding in either synucleinopathy, and (iii) point to the sequestration of mitochondria and of neuronal synaptic components in both LBs and GCIs.
Collapse
Affiliation(s)
- Florent Laferrière
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France. .,Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| | | | - Erwan Bezard
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Francesca De Giorgi
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U-1084, Université de Poitiers, Poitiers, France
| | - François Ichas
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France. .,Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France. .,INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U-1084, Université de Poitiers, Poitiers, France.
| |
Collapse
|
30
|
Koga S, Sekiya H, Kondru N, Ross OA, Dickson DW. Neuropathology and molecular diagnosis of Synucleinopathies. Mol Neurodegener 2021; 16:83. [PMID: 34922583 PMCID: PMC8684287 DOI: 10.1186/s13024-021-00501-z] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Synucleinopathies are clinically and pathologically heterogeneous disorders characterized by pathologic aggregates of α-synuclein in neurons and glia, in the form of Lewy bodies, Lewy neurites, neuronal cytoplasmic inclusions, and glial cytoplasmic inclusions. Synucleinopathies can be divided into two major disease entities: Lewy body disease and multiple system atrophy (MSA). Common clinical presentations of Lewy body disease are Parkinson's disease (PD), PD with dementia, and dementia with Lewy bodies (DLB), while MSA has two major clinical subtypes, MSA with predominant cerebellar ataxia and MSA with predominant parkinsonism. There are currently no disease-modifying therapies for the synucleinopathies, but information obtained from molecular genetics and models that explore mechanisms of α-synuclein conversion to pathologic oligomers and insoluble fibrils offer hope for eventual therapies. It remains unclear how α-synuclein can be associated with distinct cellular pathologies (e.g., Lewy bodies and glial cytoplasmic inclusions) and what factors determine neuroanatomical and cell type vulnerability. Accumulating evidence from in vitro and in vivo experiments suggests that α-synuclein species derived from Lewy body disease and MSA are distinct "strains" having different seeding properties. Recent advancements in in vitro seeding assays, such as real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA), not only demonstrate distinct seeding activity in the synucleinopathies, but also offer exciting opportunities for molecular diagnosis using readily accessible peripheral tissue samples. Cryogenic electron microscopy (cryo-EM) structural studies of α-synuclein derived from recombinant or brain-derived filaments provide new insight into mechanisms of seeding in synucleinopathies. In this review, we describe clinical, genetic and neuropathologic features of synucleinopathies, including a discussion of the evolution of classification and staging of Lewy body disease. We also provide a brief discussion on proposed mechanisms of Lewy body formation, as well as evidence supporting the existence of distinct α-synuclein strains in Lewy body disease and MSA.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, FL 32224 Jacksonville, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, FL 32224 Jacksonville, USA
| | - Naveen Kondru
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, FL 32224 Jacksonville, USA
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, FL 32224 Jacksonville, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, FL 32224 Jacksonville, USA
| |
Collapse
|
31
|
Balta D, Zunke F. The role of lysosomes in alpha-synucleinopathies: a focus on glial cells. Neural Regen Res 2021; 17:1486-1488. [PMID: 34916427 PMCID: PMC8771110 DOI: 10.4103/1673-5374.330608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Denise Balta
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
32
|
Malfertheiner K, Stefanova N, Heras-Garvin A. The Concept of α-Synuclein Strains and How Different Conformations May Explain Distinct Neurodegenerative Disorders. Front Neurol 2021; 12:737195. [PMID: 34675870 PMCID: PMC8523670 DOI: 10.3389/fneur.2021.737195] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
In the past few years, an increasing amount of studies primarily based on experimental models have investigated the existence of distinct α-synuclein strains and their different pathological effects. This novel concept could shed light on the heterogeneous nature of α-synucleinopathies, a group of disorders that includes Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, which share as their key-molecular hallmark the abnormal aggregation of α-synuclein, a process that seems pivotal in disease pathogenesis according to experimental observations. However, the etiology of α-synucleinopathies and the initial events leading to the formation of α-synuclein aggregates remains elusive. Hence, the hypothesis that structurally distinct fibrillary assemblies of α-synuclein could have a causative role in the different disease phenotypes and explain, at least to some extent, their specific neurodegenerative, disease progression, and clinical presentation patterns is very appealing. Moreover, the presence of different α-synuclein strains might represent a potential biomarker for the diagnosis of these neurodegenerative disorders. In this regard, the recent use of super resolution techniques and protein aggregation assays has offered the possibility, on the one hand, to elucidate the conformation of α-synuclein pathogenic strains and, on the other hand, to cyclically amplify to detectable levels low amounts of α-synuclein strains in blood, cerebrospinal fluid and peripheral tissue from patients. Thus, the inclusion of these techniques could facilitate the differentiation between α-synucleinopathies, even at early stages, which is crucial for successful therapeutic intervention. This mini-review summarizes the current knowledge on α-synuclein strains and discusses its possible applications and potential benefits.
Collapse
Affiliation(s)
- Katja Malfertheiner
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonio Heras-Garvin
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
33
|
Nakagaki T, Nishida N, Satoh K. Development of α-Synuclein Real-Time Quaking-Induced Conversion as a Diagnostic Method for α-Synucleinopathies. Front Aging Neurosci 2021; 13:703984. [PMID: 34650422 PMCID: PMC8510559 DOI: 10.3389/fnagi.2021.703984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy are characterized by aggregation of abnormal α-synuclein (α-syn) and collectively referred to as α-synucleinopathy. Because these diseases have different prognoses and treatments, it is desirable to diagnose them early and accurately. However, it is difficult to accurately diagnose these diseases by clinical symptoms because symptoms such as muscle rigidity, postural dysreflexia, and dementia sometimes overlap among these diseases. The process of conformational conversion and aggregation of α-syn has been thought similar to that of abnormal prion proteins that cause prion diseases. In recent years, in vitro conversion methods, such as real-time quaking-induced conversion (RT-QuIC), have been developed. This method has succeeded in amplifying and detecting trace amounts of abnormal prion proteins in tissues and central spinal fluid of patients by inducing conversion of recombinant prion proteins via shaking. Additionally, it has been used for antemortem diagnosis of prion diseases. Recently, aggregated α-syn has also been amplified and detected in patients by applying this method and many clinical studies have examined diagnosis using tissues or cerebral spinal fluid from patients. In this review, we discuss the utility and problems of α-syn RT-QuIC for antemortem diagnosis of α-synucleinopathies.
Collapse
Affiliation(s)
- Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsuya Satoh
- Department of Health Sciences, Unit of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
34
|
Bettencourt C, Miki Y, Piras IS, de Silva R, Foti SC, Talboom JS, Revesz T, Lashley T, Balazs R, Viré E, Warner TT, Huentelman MJ, Holton JL. MOBP and HIP1 in multiple system atrophy: New α-synuclein partners in glial cytoplasmic inclusions implicated in the disease pathogenesis. Neuropathol Appl Neurobiol 2021; 47:640-652. [PMID: 33368549 PMCID: PMC8219819 DOI: 10.1111/nan.12688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023]
Abstract
AIMS Multiple system atrophy (MSA) is a fatal neurodegenerative disease. Similar to Parkinson's disease (PD), MSA is an α-synucleinopathy, and its pathological hallmark consists of glial cytoplasmic inclusions (GCIs) containing α-synuclein (SNCA) in oligodendrocytes. We previously identified consistent changes in myelin-associated oligodendrocyte basic protein (MOBP) and huntingtin interacting protein 1 (HIP1) DNA methylation status in MSA. We hypothesized that if differential DNA methylation at these loci is mechanistically relevant for MSA, it should have downstream consequences on gene regulation. METHODS We investigated the relationship between MOBP and HIP1 DNA methylation and mRNA levels in cerebellar white matter from MSA and healthy controls. Additionally, we analysed protein expression using western blotting, immunohistochemistry and proximity ligation assays. RESULTS We found decreased MOBP mRNA levels significantly correlated with increased DNA methylation in MSA. For HIP1, we found a distinct relationship between DNA methylation and gene expression levels in MSA compared to healthy controls, suggesting this locus may be subjected to epigenetic remodelling in MSA. Although soluble protein levels for MOBP and HIP1 in cerebellar white matter were not significantly different between MSA cases and controls, we found striking differences between MSA and other neurodegenerative diseases, including PD and Huntington's disease. We also found that MOBP and HIP1 are mislocalized into the GCIs in MSA, where they appear to interact with SNCA. CONCLUSIONS This study supports a role for DNA methylation in downregulation of MOBP mRNA in MSA. Most importantly, the identification of MOBP and HIP1 as new constituents of GCIs emphasizes the relevance of these two loci to the pathogenesis of MSA.
Collapse
Affiliation(s)
- Conceição Bettencourt
- Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
| | - Yasuo Miki
- Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Department of NeuropathologyInstitute of Brain ScienceHirosaki University Graduate School of MedicineHirosakiJapan
| | - Ignazio S. Piras
- Neurogenomics DivisionTranslational Genomics Research InstitutePhoenixAZUSA
| | - Rohan de Silva
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
- Reta Lila Weston InstituteUCL Queen Square Institute of NeurologyLondonUK
| | - Sandrine C. Foti
- Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - Joshua S. Talboom
- Neurogenomics DivisionTranslational Genomics Research InstitutePhoenixAZUSA
| | - Tamas Revesz
- Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Reta Lila Weston InstituteUCL Queen Square Institute of NeurologyLondonUK
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - Robert Balazs
- Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | | | - Thomas T. Warner
- Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
- Reta Lila Weston InstituteUCL Queen Square Institute of NeurologyLondonUK
| | - Matt J. Huentelman
- Neurogenomics DivisionTranslational Genomics Research InstitutePhoenixAZUSA
| | - Janice L. Holton
- Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
| |
Collapse
|
35
|
Campese N, Fanciulli A, Stefanova N, Haybaeck J, Kiechl S, Wenning GK. Neuropathology of multiple system atrophy: Kurt Jellinger`s legacy. J Neural Transm (Vienna) 2021; 128:1481-1494. [PMID: 34319460 PMCID: PMC8528766 DOI: 10.1007/s00702-021-02383-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/07/2021] [Indexed: 01/07/2023]
Abstract
Multiple System Atrophy (MSA) is a rare, fatal neurodegenerative disorder. Its etiology and exact pathogenesis still remain poorly understood and currently no disease-modifying therapy is available to halt or slow down this detrimental neurodegenerative process. Hallmarks of the disease are α-synuclein rich glial cytoplasmic inclusions (GCIs). Neuropathologically, various degrees of striatonigral degeneration (SND) and olivopontocerebellar atrophy (OPCA) can be observed. Since the original descriptions of this multifaceted disorder, several steps forward have been made to clarify its neuropathological hallmarks and key pathophysiological mechanisms. The Austrian neuropathologist Kurt Jellinger substantially contributed to the understanding of the underlying neuropathology of this disease, to its standardized assessment and to a broad systematical clinic-pathological correlation. On the occasion of his 90th birthday, we reviewed the current state of the art in the field of MSA neuropathology, highlighting Prof. Jellinger’s substantial contribution.
Collapse
Affiliation(s)
- Nicole Campese
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy.,Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Alessandra Fanciulli
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstrasse 44, 6020, Innsbruck, Austria.,Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
36
|
Ferreira N, Gram H, Sorrentino ZA, Gregersen E, Schmidt SI, Reimer L, Betzer C, Perez-Gozalbo C, Beltoja M, Nagaraj M, Wang J, Nowak JS, Dong M, Willén K, Cholak E, Bjerregaard-Andersen K, Mendez N, Rabadia P, Shahnawaz M, Soto C, Otzen DE, Akbey Ü, Meyer M, Giasson BI, Romero-Ramos M, Jensen PH. Multiple system atrophy-associated oligodendroglial protein p25α stimulates formation of novel α-synuclein strain with enhanced neurodegenerative potential. Acta Neuropathol 2021; 142:87-115. [PMID: 33978813 PMCID: PMC8217051 DOI: 10.1007/s00401-021-02316-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023]
Abstract
Pathology consisting of intracellular aggregates of alpha-Synuclein (α-Syn) spread through the nervous system in a variety of neurodegenerative disorders including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. The discovery of structurally distinct α-Syn polymorphs, so-called strains, supports a hypothesis where strain-specific structures are templated into aggregates formed by native α-Syn. These distinct strains are hypothesised to dictate the spreading of pathology in the tissue and the cellular impact of the aggregates, thereby contributing to the variety of clinical phenotypes. Here, we present evidence of a novel α-Syn strain induced by the multiple system atrophy-associated oligodendroglial protein p25α. Using an array of biophysical, biochemical, cellular, and in vivo analyses, we demonstrate that compared to α-Syn alone, a substoichiometric concentration of p25α redirects α-Syn aggregation into a unique α-Syn/p25α strain with a different structure and enhanced in vivo prodegenerative properties. The α-Syn/p25α strain induced larger inclusions in human dopaminergic neurons. In vivo, intramuscular injection of preformed fibrils (PFF) of the α-Syn/p25α strain compared to α-Syn PFF resulted in a shortened life span and a distinct anatomical distribution of inclusion pathology in the brain of a human A53T transgenic (line M83) mouse. Investigation of α-Syn aggregates in brain stem extracts of end-stage mice demonstrated that the more aggressive phenotype of the α-Syn/p25α strain was associated with an increased load of α-Syn aggregates based on a Förster resonance energy transfer immunoassay and a reduced α-Syn aggregate seeding activity based on a protein misfolding cyclic amplification assay. When injected unilaterally into the striata of wild-type mice, the α-Syn/p25α strain resulted in a more-pronounced motoric phenotype than α-Syn PFF and exhibited a "tropism" for nigro-striatal neurons compared to α-Syn PFF. Overall, our data support a hypothesis whereby oligodendroglial p25α is responsible for generating a highly prodegenerative α-Syn strain in multiple system atrophy.
Collapse
|
37
|
Li D, McIntosh CS, Mastaglia FL, Wilton SD, Aung-Htut MT. Neurodegenerative diseases: a hotbed for splicing defects and the potential therapies. Transl Neurodegener 2021; 10:16. [PMID: 34016162 PMCID: PMC8136212 DOI: 10.1186/s40035-021-00240-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a fundamental step in eukaryotic gene expression that systematically removes non-coding regions (introns) and ligates coding regions (exons) into a continuous message (mature mRNA). This process is highly regulated and can be highly flexible through a process known as alternative splicing, which allows for several transcripts to arise from a single gene, thereby greatly increasing genetic plasticity and the diversity of proteome. Alternative splicing is particularly prevalent in neuronal cells, where the splicing patterns are continuously changing to maintain cellular homeostasis and promote neurogenesis, migration and synaptic function. The continuous changes in splicing patterns and a high demand on many cis- and trans-splicing factors contribute to the susceptibility of neuronal tissues to splicing defects. The resultant neurodegenerative diseases are a large group of disorders defined by a gradual loss of neurons and a progressive impairment in neuronal function. Several of the most common neurodegenerative diseases involve some form of splicing defect(s), such as Alzheimer's disease, Parkinson's disease and spinal muscular atrophy. Our growing understanding of RNA splicing has led to the explosion of research in the field of splice-switching antisense oligonucleotide therapeutics. Here we review our current understanding of the effects alternative splicing has on neuronal differentiation, neuronal migration, synaptic maturation and regulation, as well as the impact on neurodegenerative diseases. We will also review the current landscape of splice-switching antisense oligonucleotides as a therapeutic strategy for a number of common neurodegenerative disorders.
Collapse
Affiliation(s)
- Dunhui Li
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Craig Stewart McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Frank Louis Mastaglia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Steve Donald Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia. .,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
38
|
Mavroeidi P, Xilouri M. Neurons and Glia Interplay in α-Synucleinopathies. Int J Mol Sci 2021; 22:4994. [PMID: 34066733 PMCID: PMC8125822 DOI: 10.3390/ijms22094994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of the neuronal presynaptic protein alpha-synuclein within proteinaceous inclusions represents the key histophathological hallmark of a spectrum of neurodegenerative disorders, referred to by the umbrella term a-synucleinopathies. Even though alpha-synuclein is expressed predominantly in neurons, pathological aggregates of the protein are also found in the glial cells of the brain. In Parkinson's disease and dementia with Lewy bodies, alpha-synuclein accumulates mainly in neurons forming the Lewy bodies and Lewy neurites, whereas in multiple system atrophy, the protein aggregates mostly in the glial cytoplasmic inclusions within oligodendrocytes. In addition, astrogliosis and microgliosis are found in the synucleinopathy brains, whereas both astrocytes and microglia internalize alpha-synuclein and contribute to the spread of pathology. The mechanisms underlying the pathological accumulation of alpha-synuclein in glial cells that under physiological conditions express low to non-detectable levels of the protein are an area of intense research. Undoubtedly, the presence of aggregated alpha-synuclein can disrupt glial function in general and can contribute to neurodegeneration through numerous pathways. Herein, we summarize the current knowledge on the role of alpha-synuclein in both neurons and glia, highlighting the contribution of the neuron-glia connectome in the disease initiation and progression, which may represent potential therapeutic target for a-synucleinopathies.
Collapse
Affiliation(s)
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
39
|
Phytochemicals as Regulators of Genes Involved in Synucleinopathies. Biomolecules 2021; 11:biom11050624. [PMID: 33922207 PMCID: PMC8145209 DOI: 10.3390/biom11050624] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein aggregates in neurons, nerve fibers or glial cells. Three main types of diseases belong to the synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. All of them develop as a result of an interplay of genetic and environmental factors. Emerging evidence suggests that epigenetic mechanisms play an essential role in the development of synucleinopathies. Since there is no disease-modifying treatment for these disorders at this time, interest is growing in plant-derived chemicals as a potential treatment option. Phytochemicals are substances of plant origin that possess biological activity, which might have effects on human health. Phytochemicals with neuroprotective activity target different elements in pathogenic pathways due to their antioxidants, anti-inflammatory, and antiapoptotic properties, and ability to reduce cellular stress. Multiple recent studies demonstrate that the beneficial effects of phytochemicals may be explained by their ability to modulate the expression of genes implicated in synucleinopathies and other diseases. These substances may regulate transcription directly via transcription factors (TFs) or play the role of epigenetic regulators through their effect on histone modification, DNA methylation, and RNA-based mechanisms. Here, we summarize new data about the impact of phytochemicals on the pathogenesis of synucleinopathies through regulation of gene expression.
Collapse
|
40
|
Mészáros L, Riemenschneider MJ, Gassner H, Marxreiter F, von Hörsten S, Hoffmann A, Winkler J. Human alpha-synuclein overexpressing MBP29 mice mimic functional and structural hallmarks of the cerebellar subtype of multiple system atrophy. Acta Neuropathol Commun 2021; 9:68. [PMID: 33853667 PMCID: PMC8048356 DOI: 10.1186/s40478-021-01166-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare, but fatal atypical parkinsonian disorder. The prototypical pathological hallmark are oligodendroglial cytoplasmic inclusions (GCIs) containing alpha-synuclein (α-syn). Currently, two MSA phenotypes are classified: the parkinsonian (MSA-P) and the cerebellar subtype (MSA-C), clinically characterized by predominant parkinsonism or cerebellar ataxia, respectively. Previous studies have shown that the transgenic MSA mouse model overexpressing human α-syn controlled by the oligodendroglial myelin basic protein (MBP) promoter (MBP29-hα-syn mice) mirrors crucial characteristics of the MSA-P subtype. However, it remains elusive, whether this model recapitulates important features of the MSA-C-related phenotype. First, we examined MSA-C-associated cerebellar pathology using human post-mortem tissue of MSA-C patients and controls. We observed the prototypical GCI pathology and a preserved number of oligodendrocytes in the cerebellar white matter (cbw) accompanied by severe myelin deficit, microgliosis, and a profound loss of Purkinje cells. Secondly, we phenotypically characterized MBP29-hα-syn mice using a dual approach: structural analysis of the hindbrain and functional assessment of gait. Matching the neuropathological features of MSA-C, GCI pathology within the cbw of MBP29-hα-syn mice was accompanied by a severe myelin deficit despite an increased number of oligodendrocytes and a high number of myeloid cells even at an early disease stage. Intriguingly, MBP29-hα-syn mice developed a significant loss of Purkinje cells at a more advanced disease stage. Catwalk XT gait analysis revealed decreased walking speed, increased stride length and width between hind paws. In addition, less dual diagonal support was observed toward more dual lateral and three paw support. Taken together, this wide-based and unsteady gait reflects cerebellar ataxia presumably linked to the cerebellar pathology in MBP29-hα-syn mice. In conclusion, the present study strongly supports the notion that the MBP29-hα-syn mouse model mimics important characteristics of the MSA-C subtype providing a powerful preclinical tool for evaluating future interventional strategies.
Collapse
Affiliation(s)
- Lisa Mészáros
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | | | - Heiko Gassner
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Franz Marxreiter
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Stephan von Hörsten
- Experimental Therapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Alana Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
| |
Collapse
|
41
|
Heras-Garvin A, Stefanova N. From Synaptic Protein to Prion: The Long and Controversial Journey of α-Synuclein. Front Synaptic Neurosci 2020; 12:584536. [PMID: 33071772 PMCID: PMC7536368 DOI: 10.3389/fnsyn.2020.584536] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Since its discovery 30 years ago, α-synuclein (α-syn) has been one of the most studied proteins in the field of neuroscience. Dozens of groups worldwide have tried to reveal not only its role in the CNS but also in other organs. α-syn has been linked to several processes essential in brain homeostasis such as neurotransmitter release, synaptic function, and plasticity. However, despite the efforts made in this direction, the main function of α-syn is still unknown. Moreover, α-syn became a protein of interest for neurologists and neuroscientists when mutations in its gene were found associated with Parkinson's disease (PD) and even more when α-syn protein deposits were observed in the brain of PD, dementia with Lewy bodies (DLB), and multiple system atrophy (MSA) patients. At present, the abnormal accumulation of α-syn constitutes one of the pathological hallmarks of these disorders, also referred to as α-synucleinopathies, and it is used for post-mortem diagnostic criteria. Whether α-syn aggregation is cause or consequence of the pathogenic events underlying α-synucleinopathies remains unclear and under discussion. Recently, different in vitro and in vivo studies have shown the ability of pathogenic α-syn to spread between cells, not only within the CNS but also from peripheral locations such as the gut, salivary glands, and through the olfactory network into the CNS, inducing abnormal misfolding of endogenous α-syn and leading to neurodegeneration and motor and cognitive impairment in animal models. Thus, it has been suggested that α-syn should be considered a prion protein. Here we present an update of what we know about α-syn function, aggregation and spreading, and its role in neurodegeneration. We also discuss the rationale and findings supporting the hypothetical prion nature of α-syn, its weaknesses, and future perspectives for research and the development of disease-modifying therapies.
Collapse
Affiliation(s)
- Antonio Heras-Garvin
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW The purpose of this article is to provide a contemporary review of sleep issues affecting patients with multiple system atrophy (MSA). RECENT FINDINGS Prodromal symptoms of MSA may occur years prior to diagnosis, including autonomic dysfunction such as orthostatic hypotension, urogenital dysfunction, rapid eye movement (REM) sleep behavior disorder (RBD), and stridor. Patients may also develop sleep-related respiratory disorders such as obstructive sleep apnea (OSA), central sleep apnea (CSA), and stridor. The development of stridor is associated with a shortened lifespan and sudden death, which may be further accelerated by autonomic instability. MSA appears to follow a 'prion-like' disease progression. SUMMARY MSA is a rapidly progressive neurodegenerative disease characterized by a combination of autonomic failure and motor symptoms. MSA is often misdiagnosed as the initial presentation mimics other neurodegenerative disorders. There are diagnostic criteria to identify possible, probable, and definite MSA. Prodromal symptoms may occur years prior to diagnosis, including autonomic dysfunction such as orthostatic hypotension, urogenital dysfunction, REM RBD, and stridor. In previous years, treatment consisted of tracheostomy but did not address the component of CSA, which commonly coexisted or developed later because of destruction of medullary chemoreceptors. Positive airway pressure may be as effective as tracheostomy alone in ameliorating obstruction at the vocal cord level.
Collapse
|
43
|
Lemos M, Stefanova N. Histone Deacetylase 6 and the Disease Mechanisms of α-Synucleinopathies. Front Synaptic Neurosci 2020; 12:586453. [PMID: 33041780 PMCID: PMC7518386 DOI: 10.3389/fnsyn.2020.586453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022] Open
Abstract
The abnormal accumulation of α-Synuclein (α-Syn) is a prominent pathological feature in a group of diseases called α-Synucleinopathies, such as Parkinson’s disease, dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). The formation of Lewy bodies (LBs) and glial cytoplasmic inclusions (GCIs) in neurons and oligodendrocytes, respectively, is highly investigated. However, the molecular mechanisms behind α-Syn improper folding and aggregation remain unclear. Histone deacetylase 6 (HDAC6) is a Class II deacetylase, containing two active catalytic domains and a ubiquitin-binding domain. The properties of HDAC6 and its exclusive cytoplasmic localization allow HDAC6 to modulate the microtubule dynamics, acting as a specific α-tubulin deacetylase. Also, HDAC6 can bind ubiquitinated proteins, facilitating the formation of the aggresome, a cellular defense mechanism to cope with higher levels of misfolded proteins. Several studies report that the aggresome shares similarities in size and composition with LBs and GCIs. HDAC6 is found to co-localize with α-Syn in neurons and in oligodendrocytes, together with other aggresome-related proteins. The involvement of HDAC6 in several neurodegenerative diseases is already under discussion, however, the results obtained by modulating HDAC6 activity are not entirely conclusive. The main goal of this review is to summarize and critically discuss previous in vitro and in vivo data regarding the specific role of HDAC6 in the context of α-Syn accumulation and protein aggregation in α-Synucleinopathies.
Collapse
Affiliation(s)
- Miguel Lemos
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
44
|
Kaji S, Maki T, Ueda J, Ishimoto T, Inoue Y, Yasuda K, Sawamura M, Hikawa R, Ayaki T, Yamakado H, Takahashi R. BCAS1-positive immature oligodendrocytes are affected by the α-synuclein-induced pathology of multiple system atrophy. Acta Neuropathol Commun 2020; 8:120. [PMID: 32727582 PMCID: PMC7391509 DOI: 10.1186/s40478-020-00997-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple system atrophy (MSA) is pathologically characterized by the presence of fibrillar α-synuclein-immunoreactive inclusions in oligodendrocytes. Although the myelinating process of oligodendrocytes can be observed in adult human brains, little is known regarding the presence of α-synuclein pathology in immature oligodendrocytes and how their maturation and myelination are affected in MSA brains. Recently, breast carcinoma amplified sequence 1 (BCAS1) has been found to be specifically expressed in immature oligodendrocytes undergoing maturation and myelination. Here, we analyzed the altered dynamics of oligodendroglial maturation in both MSA brains and primary oligodendroglial cell cultures which were incubated with α-synuclein pre-formed fibrils. The numbers of BCAS1-expressing oligodendrocytes that displayed a matured morphology negatively correlated with the density of pathological inclusions in MSA brains but not with that in Parkinson’s disease and diffuse Lewy body disease. In addition, a portion of the BCAS1-expressing oligodendrocyte population showed cytoplasmic inclusions, which were labeled with antibodies against phosphorylated α-synuclein and cleaved caspase-9. Further in vitro examination indicated that the α-synuclein pre-formed fibrils induced cytoplasmic inclusions in the majority of BCAS1-expressing oligodendrocytes. In contrast, the majority of BCAS1-non-expressing mature oligodendrocytes did not develop inclusions on day 4 after maturation induction. Furthermore, exposure of α-synuclein pre-formed fibrils in the BCAS1-positive phase caused a reduction in oligodendroglial cell viability. Our results indicated that oligodendroglial maturation and myelination are impaired in the BCAS1-positive phase of MSA brains, which may lead to the insufficient replacement of defective oligodendrocytes. In vitro, the high susceptibility of BCAS1-expressing primary oligodendrocytes to the extracellular α-synuclein pre-formed fibrils suggests the involvement of insufficient oligodendroglial maturation in MSA disease progression and support the hypothesis that the BCAS1-positive oligodendrocyte lineage cells are prone to take up aggregated α-synuclein in vivo.
Collapse
|
45
|
Jellinger KA. Multiple system atrophy - a clinicopathological update. FREE NEUROPATHOLOGY 2020; 1:17. [PMID: 37283673 PMCID: PMC10209915 DOI: 10.17879/freeneuropathology-2020-2813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/24/2020] [Indexed: 06/08/2023]
Abstract
Multiple system atrophy (MSA) is a fatal, adult-onset neurodegenerative disorder of uncertain etiology, clinically characterized by various combinations of Levo-dopa-unresponsive parkinsonism, and cerebellar, motor, and autonomic dysfunctions. MSA is an α-synucleinopathy with specific glioneuronal degeneration involving striatonigral, olivopontocerebellar, autonomic and peripheral nervous systems. The pathologic hallmark of this unique proteinopathy is the deposition of aberrant α-synuclein (αSyn) in both glia (mainly oligodendroglia) and neurons forming pathological inclusions that cause cell dysfunction and demise. The major variants are striatonigral degeneration (MSA with predominant parkinsonism / MSA-P) and olivopontocerebellar atrophy (MSA with prominent cerebellar ataxia / MSA-C). However, the clinical and pathological features of MSA are broader than previously considered. Studies in various mouse models and human patients have helped to better understand the molecular mechanisms that underlie the progression of the disease. The pathogenesis of MSA is characterized by propagation of disease-specific strains of αSyn from neurons to oligodendroglia and cell-to-cell spreading in a "prion-like" manner, oxidative stress, proteasomal and mitochondrial dysfunctions, myelin dysregulation, neuroinflammation, decreased neurotrophic factors, and energy failure. The combination of these mechanisms results in neurodegeneration with widespread demyelination and a multisystem involvement that is specific for MSA. Clinical diagnostic accuracy and differential diagnosis of MSA have improved by using combined biomarkers. Cognitive impairment, which has been a non-supporting feature of MSA, is not uncommon, while severe dementia is rare. Despite several pharmacological approaches in MSA models, no effective disease-modifying therapeutic strategies are currently available, although many clinical trials targeting disease modification, including immunotherapy and combined approaches, are under way. Multidisciplinary research to elucidate the genetic and molecular background of the noxious processes as the basis for development of an effective treatment of the hitherto incurable disorder are urgently needed.
Collapse
|