1
|
Sharma A, Balde A, Nazeer RA. A review on animal venom-based matrix metalloproteinase modulators and their therapeutic implications. Int Immunopharmacol 2025; 157:114703. [PMID: 40300352 DOI: 10.1016/j.intimp.2025.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/03/2025] [Accepted: 04/19/2025] [Indexed: 05/01/2025]
Abstract
Matrix Metalloproteinases (MMPs) belong to a family of proteolytic enzymes that degrade extracellular matrix components, such as collagen, elastin, laminin, and fibronectin. They also play a part in tissue remodeling by cleaving and rejoining the tissue proteins. Cancer, neurodegenerative disorders, cardiovascular diseases, arthritis, and chronic inflammatory conditions are just some of the diseases that can start or get worse when different MMPs are not working properly. Venomous Animals such as honeybees, toads, snakes, spiders, scorpions, jellyfish, and sea anemones contain venom-secreting glands, which help them defend against predators and immobilize their prey. The molecules that come from animal venom are a complicated mix of bioactive molecules, such as peptides, enzymes, proteins, and small organic compounds that do a number of biological things. Venom-derived molecules have been found to modulate MMP. These venoms and their components target specific signaling pathways, modifying MMP expression levels to either induce inflammation or exhibit anti-inflammatory effects. In this review, we study and explore different MMPs, such as MMP1, MMP2, MMP3, MMP7, MMP8, and MMP9, and their roles in the progression of certain diseases. We also look at different types of molecules derived from marine and land animal venom that are used as MMP modulators. We look at how they work by targeting specific signaling pathways to change MMPs and how they might be used as a medicine to stop diseases by decreasing MMPs.
Collapse
Affiliation(s)
- Ansumaan Sharma
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
2
|
Kwon NY, Sung HK, Park JK. Systematic Review of the Antitumor Activities and Mechanisms of Scorpion Venom on Human Breast Cancer Cells Lines (In Vitro Study). J Clin Med 2025; 14:3181. [PMID: 40364211 PMCID: PMC12072316 DOI: 10.3390/jcm14093181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/26/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Background/Objectives: Breast cancer remains the most prevalent malignancy among women worldwide. Innovative therapies are essential to address its diverse subtypes and treatment resistance. Scorpion venom and its bioactive proteins have gained attention as potential anticancer agents owing to their multitargeted cellular effects. This review systematically evaluates their anticancer properties and mechanisms in breast cancer, highlighting therapeutic potential. Methods: A systematic search was conducted in five databases (PubMed, Science Direct, EMBASE, OVID, and KISS) up to September 2024. Only in vitro studies using breast cancer cell lines and investigating scorpion venom or its bioactive proteins were included. Extracted data covered study characteristics, intervention types, control groups, dose range, duration, and key outcomes. Results: In total, 19 studies met the eligibility criteria. Crude scorpion venom showed broad cytotoxicity against hormone receptor-positive, triple-negative, and HER2-positive breast cancer subtypes. The primary mechanisms included apoptosis induction, DNA fragmentation, oxidative stress modulation, and cell cycle regulation. Bioactive proteins, such as chlorotoxin (CTX) and Neopladine 1/2, exhibited selective anticancer effects by targeting signaling pathways, inhibiting migration and invasion, and promoting apoptosis. Conclusion: These findings support scorpion venom's potential as a multitargeted anticancer agent. The complementary actions of crude venom and its proteins highlight their promise for combination therapies. Further research is needed to clarify their synergistic interactions and optimize preclinical and clinical applications.
Collapse
Affiliation(s)
- Na-Yoen Kwon
- Department of Obstetrics and Gynecology, College of Korean Medicine, Ga-Chon University, Seongnam-si 13120, Republic of Korea;
| | - Hyun-Kyung Sung
- Department of Education, College of Korean Medicine, Dongguk University, Gyeongju-si 38066, Republic of Korea
| | - Jang-Kyung Park
- Division of Clinical Medicine, School of Korean Medicine, Pusan National University, Yangsan-si 50612, Republic of Korea
| |
Collapse
|
3
|
Silva LS, Cavallini E, da Silva RA, Sant’Ana M, Yoshikawa AH, Salomão T, Huang B, Craice P, de Souza Ferreira LP, Della Matta HP, Gil CD, Pereira MDLG, Girol AP. Garcinia brasiliensis Leaves Extracts Inhibit the Development of Ascitic and Solid Ehrlich Tumors. Pharmaceuticals (Basel) 2024; 18:24. [PMID: 39861087 PMCID: PMC11768557 DOI: 10.3390/ph18010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Background:Garcinia brasiliensis is traditionally known for its medicinal properties. Objectives: Here, we investigated the effects of crude extract (CE) and ethyl acetate fraction (EAF) obtained from G. brasiliensis leaves on the ascitic (EA) and solid (ES) forms of Ehrlich tumors. Methods: Induced and uninduced BALB/c mice were treated intramuscularly, for 7 or 14 days, with saline solution or CE and EAF, both at a 10% concentration, based on in vitro cytotoxicity assessment. Biochemical analyses were also performed to evaluate in vivo cytotoxicity. In relation to tumor-induced animals, morphological changes, plasma enzymes, inflammatory mediators and the induction of apoptosis were analyzed, in addition to histopathological studies, to evaluate the inhibition of tumor growth. Results: Alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma glutamyl transferase (GGT) were regulated by CE and EAF administration. Furthermore, both treatments were effective in inhibiting tumor growth in EA and ES by modulating the levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α, decreasing mast cells numbers and inducing apoptosis. Conclusions: This research indicates that both CE and EAF from G. brasiliensis leaves have potential antitumor effects with low cytotoxicity.
Collapse
Affiliation(s)
- Lucas Sylvestre Silva
- Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (L.S.S.); (E.C.); (M.S.); (L.P.d.S.F.); (C.D.G.)
| | - Eduardo Cavallini
- Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (L.S.S.); (E.C.); (M.S.); (L.P.d.S.F.); (C.D.G.)
| | - Rafael André da Silva
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | - Monielle Sant’Ana
- Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (L.S.S.); (E.C.); (M.S.); (L.P.d.S.F.); (C.D.G.)
| | - Ariane Harumi Yoshikawa
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.H.Y.); (T.S.); (B.H.); (P.C.); (H.P.D.M.)
| | - Thiago Salomão
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.H.Y.); (T.S.); (B.H.); (P.C.); (H.P.D.M.)
| | - Bianca Huang
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.H.Y.); (T.S.); (B.H.); (P.C.); (H.P.D.M.)
| | - Paula Craice
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.H.Y.); (T.S.); (B.H.); (P.C.); (H.P.D.M.)
| | - Luiz Philipe de Souza Ferreira
- Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (L.S.S.); (E.C.); (M.S.); (L.P.d.S.F.); (C.D.G.)
| | - Heitor Pedro Della Matta
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.H.Y.); (T.S.); (B.H.); (P.C.); (H.P.D.M.)
| | - Cristiane Damas Gil
- Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (L.S.S.); (E.C.); (M.S.); (L.P.d.S.F.); (C.D.G.)
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | | | - Ana Paula Girol
- Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil; (L.S.S.); (E.C.); (M.S.); (L.P.d.S.F.); (C.D.G.)
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.H.Y.); (T.S.); (B.H.); (P.C.); (H.P.D.M.)
| |
Collapse
|
4
|
El-Qassas J, Abd El-Atti M, El-Badri N. Harnessing the potency of scorpion venom-derived proteins: applications in cancer therapy. BIORESOUR BIOPROCESS 2024; 11:93. [PMID: 39361208 PMCID: PMC11450130 DOI: 10.1186/s40643-024-00805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 10/06/2024] Open
Abstract
Despite breakthroughs in the development of cancer diagnosis and therapy, most current therapeutic approaches lack precise specificity and sensitivity, resulting in damage to healthy cells. Selective delivery of anti-cancer agents is thus an important goal of cancer therapy. Scorpion venom (SV) and/or body parts have been used since early civilizations for medicinal purposes, and in cultures, SV is still applied to the treatment of several diseases including cancer. SV contains numerous active micro and macromolecules with diverse pharmacological effects. These include potent anti-microbial, anti-viral, anti-inflammatory, and anti-cancer properties. This review focuses on the recent advances of SV-derived peptides as promising anti-cancer agents and their diagnostic and therapeutic potential applications in cancers such as glioma, breast cancer, prostate cancer, and colon cancer. Well-characterized SV-derived peptides are thus needed to serve as potent and selective adjuvant therapy for cancer, to significantly enhance the patients' survival and wellbeing.
Collapse
Affiliation(s)
- Jihad El-Qassas
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, 6th of October City, Giza, 12578, Egypt
| | - Mahmoud Abd El-Atti
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, 6th of October City, Giza, 12578, Egypt.
| |
Collapse
|
5
|
Mabunda IG, Zinyemba NK, Pillay S, Offor BC, Muller B, Piater LA. The geographical distribution of scorpions, implication of venom toxins, envenomation, and potential therapeutics in Southern and Northern Africa. Toxicol Res (Camb) 2024; 13:tfae118. [PMID: 39100857 PMCID: PMC11298049 DOI: 10.1093/toxres/tfae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
Scorpions are predatory arachnids whose venomous sting primarily affects people in tropical and subtropical regions. Most scorpion stings can only cause localized pain without severe envenomation. Less than one-third of the stings cause systemic envenoming and possibly lead to death. About 350,000 scorpion stings in Northern Africa are recorded yearly, resulting in about 810 deaths. In Eastern/Southern Africa, there are about 79,000 stings recorded yearly, resulting in 245 deaths. Farmers and those living in poverty-stricken areas are among the most vulnerable to getting stung by scorpions. However, compared to adults, children are at greater risk of severe envenomation. Scorpion venom is made up of complex mixtures dominated by peptides and proteins that confer its potency and toxicity. These venom toxins have intra- and interspecies variations associated with the scorpion's habitat, sex, diet, and age. These variations alter the activity of antivenoms used to treat scorpion sting envenomation. Thus, the study of the proteome composition of medically important scorpion venoms needs to be scaled up along their geographical distribution and contributions to envenomation in Southern and Northern Africa. This will help the production of safer, more effective, and broad-spectrum antivenoms within these regions. Here, we review the clinical implications of scorpion sting envenomation in Southern and Northern Africa. We further highlight the compositions of scorpion venoms and tools used in scorpion venomics. We discuss current antivenoms used against scorpion sting envenomation and suggestions for future production of better antivenoms or alternatives. Finally, we discuss the therapeutic properties of scorpion venom.
Collapse
Affiliation(s)
- Isac G Mabunda
- Department of Biochemistry, Corner of Kingsway and University Road, Auckland Park Campus, University of Johannesburg, Auckland Park, 2006, Gauteng, South Africa
| | - Nodji K Zinyemba
- Department of Biochemistry, Corner of Kingsway and University Road, Auckland Park Campus, University of Johannesburg, Auckland Park, 2006, Gauteng, South Africa
| | - Shanelle Pillay
- Department of Biochemistry, Corner of Kingsway and University Road, Auckland Park Campus, University of Johannesburg, Auckland Park, 2006, Gauteng, South Africa
| | - Benedict C Offor
- Department of Biochemistry, Corner of Kingsway and University Road, Auckland Park Campus, University of Johannesburg, Auckland Park, 2006, Gauteng, South Africa
| | - Beric Muller
- South Africa Venom Suppliers cc, 41 Louis, Trichardt 0920, South Africa
| | - Lizelle A Piater
- Department of Biochemistry, Corner of Kingsway and University Road, Auckland Park Campus, University of Johannesburg, Auckland Park, 2006, Gauteng, South Africa
| |
Collapse
|
6
|
Elmahboub Y, Albash R, Magdy William M, Rayan AH, Hamed NO, Ousman MS, Raslan NA, Mosallam S. Metformin Loaded Zein Polymeric Nanoparticles to Augment Antitumor Activity against Ehrlich Carcinoma via Activation of AMPK Pathway: D-Optimal Design Optimization, In Vitro Characterization, and In Vivo Study. Molecules 2024; 29:1614. [PMID: 38611893 PMCID: PMC11013883 DOI: 10.3390/molecules29071614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Metformin (MET), an antidiabetic drug, is emerging as a promising anticancer agent. This study was initiated to investigate the antitumor effects and potential molecular targets of MET in mice bearing solid Ehrlich carcinoma (SEC) as a model of breast cancer (BC) and to explore the potential of zein nanoparticles (ZNs) as a carrier for improving the anticancer effect of MET. ZNs were fabricated through ethanol injection followed by probe sonication method. The optimum ZN formulation (ZN8) was spherical and contained 5 mg zein and 30 mg sodium deoxycholate with a small particle size and high entrapment efficiency percentage and zeta potential. A stability study showed that ZN8 was stable for up to three months. In vitro release profiles proved the sustained effect of ZN8 compared to the MET solution. Treatment of SEC-bearing mice with ZN8 produced a more pronounced anticancer effect which was mediated by upregulation of P53 and miRNA-543 as well as downregulation of NF-κB and miRNA-191-5p gene expression. Furthermore, ZN8 produced a marked elevation in pAMPK and caspase-3 levels as well as a significant decrease in cyclin D1, COX-2, and PGE2 levels. The acquired findings verified the potency of MET-loaded ZNs as a treatment approach for BC.
Collapse
Affiliation(s)
- Yasmina Elmahboub
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12585, Egypt;
| | - Rofida Albash
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12585, Egypt;
| | - Mira Magdy William
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Amal H. Rayan
- Department of Medical Education, College of Medicine, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia
| | - Najat O. Hamed
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia;
| | - Mona S. Ousman
- Emergency Medical Services, College of Applied Sciences, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia;
| | - Nahed A Raslan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
- Clinical Pharmacy Program, College of Health Sciences and Nursing, Al-Rayan Colleges, Medina 42541, Saudi Arabia
| | - Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt;
| |
Collapse
|
7
|
Sarhan MH, Felemban SG, Alelwani W, Sharaf HM, Abd El-Latif YA, Elgazzar E, Kandil AM, Tellez-Isaias G, Mohamed AA. Zinc Oxide and Magnesium-Doped Zinc Oxide Nanoparticles Ameliorate Murine Chronic Toxoplasmosis. Pharmaceuticals (Basel) 2024; 17:113. [PMID: 38256946 PMCID: PMC10819917 DOI: 10.3390/ph17010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Toxoplasma gondii causes a global parasitic disease. Therapeutic options for eradicating toxoplasmosis are limited. In this study, ZnO and Mg-doped ZnO NPs were prepared, and their structural and morphological chrematistics were investigated. The XRD pattern revealed that Mg-doped ZnO NPs have weak crystallinity and a small crystallite size. FTIR and XPS analyses confirmed the integration of Mg ions into the ZnO framework, producing the high-purity Mg-doped ZnO nanocomposite. TEM micrographs determined the particle size of un-doped ZnO in the range of 29 nm, reduced to 23 nm with Mg2+ replacements. ZnO and Mg-doped ZnO NPs significantly decreased the number of brain cysts (p < 0.05) by 29.30% and 35.08%, respectively, compared to the infected untreated group. The administration of ZnO and Mg-doped ZnO NPs revealed a marked histopathological improvement in the brain, liver, and spleen. Furthermore, ZnO and Mg-doped ZnO NPs reduced P53 expression in the cerebral tissue while inducing CD31 expression, which indicated a protective effect against the infection-induced apoptosis and the restoration of balance between free radicals and antioxidant defense activity. In conclusion, the study proved these nanoparticles have antiparasitic, antiapoptotic, and angiogenetic effects. Being nontoxic compounds, these nanoparticles could be promising adjuvants in treating chronic toxoplasmosis.
Collapse
Affiliation(s)
- Mohamed H. Sarhan
- Microbiology Section, Basic Medical Sciences Department, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Shatha G. Felemban
- Medical Laboratory Science Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia;
| | - Walla Alelwani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 23890, Saudi Arabia;
| | - Hesham M. Sharaf
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (Y.A.A.E.-L.); (A.A.M.)
| | - Yasmin A. Abd El-Latif
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (Y.A.A.E.-L.); (A.A.M.)
| | - Elsayed Elgazzar
- Physics Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmad M. Kandil
- Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo 11651, Egypt;
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Aya A. Mohamed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (Y.A.A.E.-L.); (A.A.M.)
| |
Collapse
|
8
|
Yglesias-Rivera A, Sánchez-Rodríguez H, Soto-Febles C, Monzote L. Heteroctenus junceus Scorpion Venom Modulates the Concentration of Pro-Inflammatory Cytokines in F3II Tumor Cells. Life (Basel) 2023; 13:2287. [PMID: 38137888 PMCID: PMC10871110 DOI: 10.3390/life13122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The ability of Heteroctenus junceus scorpion venom to modulate the concentration of cytokines related to its antitumoral effect is unknown. F3II cells were treated with ¼ IC50, ½ IC50 and the IC50 of H. junceus scorpion venom. Tumor growth kinetics in F3II-bearing mice were evaluated after 24 days of oral administration of venom doses. The effect of tumor lysates on F3II cell viability was evaluated by MTT assay, while cytokines present in each sample were determined by ELISA. In supernatant, H. junceus scorpion venom decreased the concentration of IL-6 (p < 0.001), IFN-γ (p < 0.001), IL-1β (p < 0.01); meanwhile IL-12 (p < 0.001) and TNF-α (p < 0.001) levels increased significantly, according to the concentration and the time of incubation. Heteroctenus junceus scorpion venom effectively inhibits in vivo tumor progression. In the sera, a significant decrease was observed in TNF-α levels (p < 0.05). In tumor lysates, IL-6 decreased significantly in the groups treated with 12.5 mg/kg (p < 0.001) and 25 mg/kg (p < 0.05). Heteroctenus junceus scorpion venom is capable of modulating other proinflammatory and protumoral cytokines involved in the inflammation associated with cancer.
Collapse
Affiliation(s)
- Arianna Yglesias-Rivera
- Research Department, Laboratories of Biopharmaceutical and Chemistry Productions (LABIOFAM), Ave. Independencia Km 16 1/2, Santiago de las Vegas, Boyeros, La Habana 10800, Cuba
| | - Hermis Sánchez-Rodríguez
- Microbiology Department, Institute of Tropical Medicine “Pedro Kouri”, Autopista Novia del Mediodía Km 6 1/2, La Lisa, La Habana 17100, Cuba;
| | - Carmen Soto-Febles
- Center for Protein Studies, Biology Faculty, University of Havana, Calle 25 Entre J e I, # 455, Plaza de la Revolución, La Habana 10400, Cuba;
| | - Lianet Monzote
- Microbiology Department, Institute of Tropical Medicine “Pedro Kouri”, Autopista Novia del Mediodía Km 6 1/2, La Lisa, La Habana 17100, Cuba;
| |
Collapse
|
9
|
Tiwari S, Liu S, Anees M, Mehrotra N, Thakur A, Tawa GJ, Grewal G, Stone R, Kharbanda S, Singh H. Quatramer™ encapsulation of dual-targeted PI3-Kδ/HDAC6 inhibitor, HSB-510, suppresses growth of breast cancer. Bioeng Transl Med 2023; 8:e10541. [PMID: 37693068 PMCID: PMC10487321 DOI: 10.1002/btm2.10541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 09/12/2023] Open
Abstract
Multiple studies have shown that the progression of breast cancer depends on multiple signaling pathways, suggesting that therapies with multitargeted anticancer agents will offer improved therapeutic benefits through synergistic effects in inhibiting cancer growth. Dual-targeted inhibitors of phosphoinositide 3-kinase (PI3-K) and histone deacetylase (HDAC) have emerged as promising cancer therapy candidates. However, poor aqueous solubility and bioavailability limited their efficacy in cancer. The present study investigates the encapsulation of a PI3-Kδ/HDAC6 dual inhibitor into hybrid block copolymers (polylactic acid-methoxy polyethylene glycol; polylactic acid-polyethylene glycol-polypropylene glycol-polyethylene glycol-polylactic acid) (HSB-510) as a delivery system to target PI3-Kδ and HDAC6 pathways in breast cancer cells. The prepared HSB-510 showed an average diameter of 96 ± 3 nm, a zeta potential of -17 ± 2 mV, and PDI of ˂0.1 with a slow and sustained release profile of PI3-Kδ/HDAC6 inhibitors in a nonphysiological buffer. In vitro studies with HSB-510 have demonstrated substantial growth inhibition of breast cancer cell lines, MDA-MB-468, SUM-149, MCF-7, and Ehrlich ascites carcinoma (EAC) as well as downregulation of phospho-AKT, phospho-ERK, and c-Myc levels. Importantly, bi-weekly treatment of Balb/c wild-type mice harboring EAC cells with HSB-510 at a dose of 25 mg/kg resulted in significant tumor growth inhibition. The treatment with HSB-510 was without any significant effect on the body weights of the mice. These results demonstrate that a novel Quatramer encapsulation of a PI3-Kδ/HDAC6 dual inhibitor (HSB-510) represents an approach for the successful targeting of breast cancer and potentially other cancer types.
Collapse
Affiliation(s)
- Sachchidanand Tiwari
- Centre for Biomedical EngineeringIndian Institute of Technology DelhiNew DelhiIndia
| | - Suiyang Liu
- Dana Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Mohd Anees
- Centre for Biomedical EngineeringIndian Institute of Technology DelhiNew DelhiIndia
| | - Neha Mehrotra
- Centre for Biomedical EngineeringIndian Institute of Technology DelhiNew DelhiIndia
| | - Ashish Thakur
- National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | - Gregory J. Tawa
- National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | - Gurmit Grewal
- National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | - Richard Stone
- Dana Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Surender Kharbanda
- Dana Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Harpal Singh
- Centre for Biomedical EngineeringIndian Institute of Technology DelhiNew DelhiIndia
- Department of Biomedical EngineeringAll India Institute of Medical Sciences DelhiNew DelhiIndia
| |
Collapse
|
10
|
Abd El-Salam M, El-Tanbouly G, Bastos J, Metwaly H. Suppression of VEGF and inflammatory cytokines, modulation of Annexin A1 and organ functions by galloylquinic acids in breast cancer model. Sci Rep 2023; 13:12268. [PMID: 37507468 PMCID: PMC10382581 DOI: 10.1038/s41598-023-37654-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
The ongoing development of novel drugs for breast cancer aims to improve therapeutic outcomes, reduce toxicities, and mitigate resistance to chemotherapeutic agents. Doxorubicin (Dox) is known for its significant side effects caused by non-specific cytotoxicity. In this study, we investigated the antitumor activity of galloylquinic acids (BF) and the beneficial role of their combination with Dox in an Ehrlich ascites carcinoma (EAC)-bearing mouse model, as well as their cytotoxic effect on MCF-7 cells. The EAC-mice were randomized into five experimental groups: normal saline, Dox (2 mg/kg, i.p), BF (150 mg/kg, orally), Dox and BF combined mixture, and a control group. Mice were subjected to a 14-day treatment regimen. Results showed that BF compounds exerted chemopreventive effects in EAC mice group by increasing mean survival time, decreasing tumor volume, inhibiting ascites tumor cell count, modulating body weight changes, and preventing multi-organ histopathological alterations. BF suppressed the increased levels of inflammatory mediators (IL-6 and TNF-α) and the angiogenic marker VEGF in the ascitic fluid. In addition, BF and their combination with Dox exhibited significant cytotoxic activity on MCF-7 cells by inhibiting cell viability and modulating Annexin A1 level. Moreover, BF treatments could revert oxidative stress, restore liver and kidney functions, and normalize blood cell counts.
Collapse
Affiliation(s)
- Mohamed Abd El-Salam
- Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt.
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland.
| | - Ghada El-Tanbouly
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Jairo Bastos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
| | - Heba Metwaly
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21500, Egypt.
| |
Collapse
|
11
|
Eissa MM, Gaafar MR, Younis LK, Ismail CA, El Skhawy N. Prophylactic antineoplastic activity of Toxoplasma gondii RH derived antigen against ehrlich solid carcinoma with evidence of shared antigens by comparative immunoblotting. Infect Agent Cancer 2023; 18:21. [PMID: 37029378 PMCID: PMC10082516 DOI: 10.1186/s13027-023-00500-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND With cancer cases escalation, an urgent request to develop novel combating strategies arise. Pathogen-based cancer-immunotherapy is getting more consideration. Autoclaved parasitic antigens seem promising candidates, taking steadily their first steps. Our aim was to examine the prophylactic antineoplastic activity of autoclaved Toxoplasma vaccine (ATV) and to test for the shared antigen theory between Toxoplasma gondii and cancer cells. METHODS Mice were immunized with ATV followed by Ehrlich solid carcinoma (ESC) inoculation. Tumor weight, volume, histopathology, and immunohistochemistry for CD8+ T cells, Treg cells and VEGF were assessed. In addition, the proposed shared antigen theory between parasites and cancer was also verified using SDS-PAGE and immunoblotting. RESULTS Results revealed powerful prophylactic activity of ATV with 13.3% inhibition of ESC incidence, significant reduction in tumor weight and volume in ATV vaccinated mice. Immunologically, significantly higher CD8+T cells and lower FOXP3+ Treg cells surrounded and infiltrated ESC in ATV immunized mice with higher CD8+T/Treg cells ratio and significant antiangiogenic effect. Moreover, SDS-PAGE and immunoblotting showed four shared bands between Ehrlich carcinoma and ATV of approximate molecular weights 60, 26, 22 and 12.5 KDa. CONCLUSION Exclusively, we demonstrated a prophylactic antineoplastic activity of autoclaved Toxoplasma vaccine against ESC. Moreover, to the best of our knowledge this is the first report highlighting the existence of cross-reactive antigens between Toxoplasma gondi parasite and cancer cells of Ehrlich carcinoma.
Collapse
Affiliation(s)
- Maha M Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Maha R Gaafar
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Layla K Younis
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Cherine A Ismail
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nahla El Skhawy
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
12
|
Ismail CA, Eissa MM, Gaafar MR, Younis LK, El Skhawy N. Toxoplasma gondii-derived antigen modifies tumor microenvironment of Ehrlich solid carcinoma murine model and enhances immunotherapeutic activity of cyclophosphamide. Med Oncol 2023; 40:136. [PMID: 37014499 PMCID: PMC10073061 DOI: 10.1007/s12032-023-01994-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Pathogen-based cancer vaccine is a promising immunotherapeutic weapon to stimulate cancer immunosuppressive state. Toxoplasma gondii is a potent immunostimulant, and low-dose infection was linked to cancer resistance. Our goal was to evaluate the therapeutic antineoplastic activity of autoclaved Toxoplasma vaccine (ATV) against Ehrlich solid carcinoma (ESC) in mice in reference to and in combination with low-dose cyclophosphamide (CP), a cancer immunomodulator. Mice inoculation with ESC was followed by applying different treatment modalities including ATV, CP, and CP/ATV. We evaluated the impact of the different treatments on liver enzymes and pathology, tumor weight, volume, and histopathological changes. Using immunohistochemistry, we evaluated CD8+ T cell, FOXP3+ Treg, CD8+/Treg outside and inside ESC, and angiogenesis. Results showed significant tumor weights and volumes reduction with all treatments with 13.3% inhibition of tumor development upon combined CP/ATV use. Significant necrosis and fibrosis were noted in ESC by all treatments with improved hepatic functions versus non-treated control. Although ATV was almost equivalent to CP in tumor gross and histopathology, it promoted an immunostimulatory activity with significant Treg cells depletion outside ESC and CD8+ T cells infiltration inside ESC with higher CD8+ T/Treg ratio inside ESC superior to CP. Combined with CP, ATV exhibited significant synergistic immunotherapeutic and antiangiogenic action compared to either treatment alone with significant Kupffer cells hyperplasia and hypertrophy. Exclusively, therapeutic antineoplastic and antiangiogenic activity of ATV against ESC was verified that boosted CP immunomodulatory action which highlights a novel biological cancer immunotherapeutic vaccine candidate.
Collapse
Affiliation(s)
- Cherine A Ismail
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Maha M Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Maha R Gaafar
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Layla K Younis
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nahla El Skhawy
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
13
|
Kola P, Manjula SN, Metowogo K, Madhunapantula SV, Eklu-Gadegbeku K. Four Togolese plant species exhibiting cytotoxicity and antitumor activities lightning polytherapy approach in cancer treatment. Heliyon 2023; 9:e13869. [PMID: 36873464 PMCID: PMC9982628 DOI: 10.1016/j.heliyon.2023.e13869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Background Cancer is leading to premature deaths across the globe. Therapeutic approaches are still being developed to enhance the survival of cancer patients. In our previous study, extracts from four Togolese plants, namely, Cochlospermum planchonii (CP), Piliostigma thonningii (PT), Paullinia pinnata (PP), and Securidaca longipedunculata (SL), actually used in traditional medicine for cancer treatment, showed beneficial health effects against oxidative stress, inflammation, and angiogenesis. Purpose In the present study, we aimed to investigate the cytotoxicity and antitumor activities of these four plant extracts. Material and methods Breast, lung, cervical, and liver cancer cell lines were exposed to the extracts, and viability was assessed using the Sulforhodamine B method. P. pinnata and S. longipedunculata with significant cytotoxicity were selected for in vivo tests. The acute oral toxicity of these extracts was assessed using BALB/c mice. The antitumor activity was evaluated using the EAC tumor bearing mice model, wherein mice were orally treated with extracts at different concentrations for 14 days. The standard drug was cisplatin (3.5 mg/kg, i.p), single dose. Results Cytotoxicity tests revealed that SL, PP, and CP extracts have more than 50% cytotoxicity at 150 μg/mL. The acute oral toxicity of PP and SL at 2000 mg/kg did not show any toxic signs. At therapeutic doses of 100 mg/kg, 200 mg/kg and 400 mg/kg of PP and 40 mg/kg, 80 mg/kg, and 160 mg/kg of SL, extracts showed beneficial health effects by modulating several biological parameters. SL extract significantly reduced tumor volume (P < 0.001), cell viability, and normalized hematological parameters. SL also demonstrated a strong anti-inflammatory activity similar to the standard drug. The SL extract also revealed a significant increase of the life span of treated mice. PP extract reduced the tumor volume and significantly improved the values of endogenous antioxidants. Both PP and SL extracts also exerted significant anti-angiogenic potency. Conclusion The study indicated that polytherapy would be a panacea for the efficient use of medicinal plant extracts against cancer. This approach will make it possible to act simultaneously on several biological parameters. Molecular studies of both extracts targeting key cancer genes in several cancer cells are currently underway.
Collapse
Affiliation(s)
- P Kola
- Research Unit Pathophysiology-Bioactive Substances and Safety, Faculty of Sciences, University of Lome, 01 BP: 1515, Lome, Togo.,Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, India.,Centre of Excellence in Molecular Biology and Regenerative Medicine (DST-FIST Supported Centre), Department of Biochemistry (DST-FIST Supported Department) - Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, India
| | - S N Manjula
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, India
| | - K Metowogo
- Research Unit Pathophysiology-Bioactive Substances and Safety, Faculty of Sciences, University of Lome, 01 BP: 1515, Lome, Togo
| | - S V Madhunapantula
- Centre of Excellence in Molecular Biology and Regenerative Medicine (DST-FIST Supported Centre), Department of Biochemistry (DST-FIST Supported Department) - Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, India
| | - K Eklu-Gadegbeku
- Research Unit Pathophysiology-Bioactive Substances and Safety, Faculty of Sciences, University of Lome, 01 BP: 1515, Lome, Togo
| |
Collapse
|
14
|
Anti-Tumor Potential of Gymnema sylvestre Saponin Rich Fraction on In Vitro Breast Cancer Cell Lines and In Vivo Tumor-Bearing Mouse Models. Antioxidants (Basel) 2023; 12:antiox12010134. [PMID: 36670996 PMCID: PMC9854641 DOI: 10.3390/antiox12010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023] Open
Abstract
Gymnema sylvestre (GS) is a perennial woody vine native to tropical Asia, China, the Arabian Peninsula, Africa and Australia. GS has been used as a medicinal plant with potential anti-microbial, anti-inflammatory and anti-oxidant properties. This study was conceptualized to evaluate the cytotoxicity potential of Gymnema sylvestre saponin rich fraction (GSSRF) on breast cancer cell lines (MCF-7 and MDA-MB-468) by SRB assay. The anti-tumor activity of GSSRF was assessed in tumor-bearing Elrich ascites carcinoma (EAC) and Dalton's lymphoma ascites (DLA) mouse models. The anti-oxidant potential of GSSRF was assessed by DPPH radical scavenging assay. The acute toxicity of GSSRF was carried out according to OECD guideline 425. The yield of GSSRF was around 1.4% and the presence of saponin content in GSSRF was confirmed by qualitative and Fourier transform infrared spectroscopic (FTIR) analysis. The in vitro cytotoxic effects of GSSRF on breast cancer cell lines were promising and found to be dose-dependent. An acute toxicity study of GSSRF was found to be safe at 2000 mg/kg body weight. GSSRF treatment has shown a significant increase in the body weight and the life span of EAC-bearing mice in a dose-dependent manner when compared with the control group. In the solid tumor model, the doses of 100 and 200 mg/kg body weight per day have shown about 46.70% and 60.80% reduction in tumor weight and controlled the tumor weight until the 30th day when compared with the control group. The activity of GSSRF in both models was similar to the cisplatin, a standard anticancer agent used in the study. Together, these results open the door for detailed investigations of anti-tumor potentials of GSSRF in specific tumor models, mechanistic studies and clinical trials leading to promising novel therapeutics for cancer therapy.
Collapse
|
15
|
Hassan ST, Mohamed AF, AbdelAllah NH, Zedan H. Evaluation of MMR live attenuated vaccine oncolytic potential using Ehrlich ascites carcinoma in a murine model. Med Oncol 2023; 40:6. [PMID: 36308603 PMCID: PMC9617820 DOI: 10.1007/s12032-022-01866-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/02/2022] [Indexed: 01/17/2023]
Abstract
MMR vaccine is a common vaccine that contains oncolytic viruses (Measles, Mumps, and Rubella) and could be used as a potential anti-cancer treatment. In this study, we assessed the anti-tumor activity of the MMR vaccine against Ehrlich ascites carcinoma (EAC) solid tumor induced in mice. The in vitro assay showed that vaccine IC50 in EAC was approximately 200 CCID50. The vaccine was intratumorally administrated twice weekly in EAC-bearing mice. The antitumor response of the vaccine was measured by tumor growth, survival rate, histopathologic examination, flow cytometry analysis, and body biochemical parameters. The MMR vaccine demonstrated a substantial reduction of tumor growth and prolongation of life span as well. The proliferation marker was significantly lower in the vaccine-treated group. Moreover, the apoptosis key parameter Casp-3 was also higher in the vaccine-treated group. The vaccine somewhat restored the deterioration of the biochemical parameters (LDH, GOT, GPT, MDA, NO, and PON-1) in the tumor-bearing mice. Finally, this study indicated the potential antitumor effect of MMR vaccine via anti‑proliferative, apoptotic activities, and modulating the antioxidant parameters. This study opens a new field of inquiry for future research on the vaccine's anti-cancer properties.
Collapse
Affiliation(s)
- Sara T. Hassan
- Laboratory Evaluation Administration, Egyptian Drug Authority, Giza, 12654 Egypt
| | - Aly F. Mohamed
- International Center for Training and Advanced Researches (ICTAR-Egypt), Cairo, Egypt
| | | | - Hamdallah Zedan
- grid.7776.10000 0004 0639 9286Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562 Egypt
| |
Collapse
|
16
|
Cytotoxicity and Molecular Alterations Induced by Scorpion Venom Antimicrobial Peptide Smp43 in Breast Cancer Cell Lines MDA-MB-231 and MCF-7. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10474-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
17
|
Molecular Characterization and In Silico Analyses of Maurolipin Structure as a Secretory Phospholipase ( ) from Venom Glands of Iranian Scorpio maurus (Arachnida: Scorpionida). J Trop Med 2022; 2022:1839946. [PMID: 36226273 PMCID: PMC9550507 DOI: 10.1155/2022/1839946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
The venom is a mixture of various compounds with specific biological activities, such as the phospholipase A2 (PLA2) enzyme present in scorpion venom. PLA2 plays a key role in inhibiting ryanodine receptor channels and has neurotoxic activity. This study is the first investigation of molecular characterization, cloning, and in silico analyses of PLA2 from Iranian Scorpio maurus, named Maurolipin. After RNA extraction from S. maurus venom glands, cDNA was synthesized and amplified through RT-PCR using specific primers. Amplified Maurolipin was cloned in TA cloning vector, pTG19. For in silico analyses, the characterized gene was analyzed utilizing different software. Maurolipin coding gene with 432 base pair nucleotide length encoded a protein of 144 amino acid residues and 16.34 kilodaltons. Comparing the coding sequence of Maurolipin with other characterized PLA2 from different species of scorpions showed that this protein was a member of the PLA2 superfamily. According to SWISS-MODEL prediction, Maurolipin had 38.83% identity with bee venom PLA2 with 100% confidence and 39% identity with insect phospholipase A2 family, which Phyre2 predicted. According to the three-dimensional structure prediction, Maurolipin with five disulfide bonds has a very high similarity to the structure of PLA2 that belonged to the group III subfamily. The in silico analyses showed that phospholipase A2 coding gene and protein structure is different based on scorpion species and geographical condition in which they live.
Collapse
|
18
|
Soltan-Alinejad P, Alipour H, Meharabani D, Azizi K. Therapeutic Potential of Bee and Scorpion Venom Phospholipase A2 (PLA2): A Narrative Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2022; 47:300-313. [PMID: 35919080 PMCID: PMC9339116 DOI: 10.30476/ijms.2021.88511.1927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/07/2020] [Accepted: 01/23/2021] [Indexed: 11/19/2022]
Abstract
Venomous arthropods such as scorpions and bees form one of the important groups with an essential role in medical entomology. Their venom possesses a mixture of diverse compounds, such as peptides, some of which have toxic effects, and enzymatic peptide Phospholipase A2 (PLA2) with a pharmacological potential in the treatment of a wide range of diseases. Bee and scorpion venom PLA2 group III has been used in immunotherapy, the treatment of neurodegenerative and inflammatory diseases. They were assessed for antinociceptive, wound healing, anti-cancer, anti-viral, anti-bacterial, anti-parasitic, and anti-angiogenesis effects. PLA2 has been identified in different species of scorpions and bees. The anti-leishmania, anti-bacterial, anti-viral, and anti-malarial activities of scorpion PLA2 still need further investigation. Many pieces of research have been stopped in the laboratory stage, and several studies need vast investigation in the clinical phase to show the pharmacological potential of PLA2. In this review, the medical significance of PLA2 from the venom of two arthropods, namely bees and scorpions, is discussed.
Collapse
Affiliation(s)
- Parisa Soltan-Alinejad
- Research Center for Health Sciences, Institute of Health, Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamzeh Alipour
- Research Center for Health Sciences, Institute of Health, Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Meharabani
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB, Canada,
Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kourosh Azizi
- Research Center for Health Sciences, Institute of Health, Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Sacco M, Zibetti A, Bonetta C, Scalise C, Abenavoli L, Guarna F, Gratteri S, Ricci P, Aquil I. KAMBO: NATURAL DRUG OR POTENTIAL TOXIC AGENT? A LITERATURE REVIEW OF ACUTE POISONING CASES. Toxicol Rep 2022; 9:905-913. [PMID: 35515815 PMCID: PMC9061256 DOI: 10.1016/j.toxrep.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/14/2022] Open
Abstract
Kambo is the name of a natural substance derived from the glandular secretions of the amphibian Phyllomedusa bicolor, a species native to regions in South America. The communities living in these areas administer the substance generally transdermally during rituals for religious-purifying purposes, producing small skin burns. The scientific literature has reported some cases of intoxication following the use of Kambo but this aspect is still poorly understood. In fact, no shared therapy protocols exist for these events nor any real legislation on Kambo. The purpose of this work was to examine all cases of acute intoxication resulting from the administration of Kambo and published over the last 10 years, illustrating clinical signs, laboratory findings, instrumental tests, and therapy. The several cases identified in our review confirm that acute Kambo intoxication can occur, with serious and life-threatening effects. We developed a protocol aimed at the early diagnosis of cases of suspected acute intoxication by creating a treatment algorithm. The study aims to investigate the pathophysiology of these events in humans, proposing a protocol for the diagnosis and treatment of these cases that can be used by healthcare professionals. The use of Kambo has spread for distribution worldwide through numerous websites. The literature review confirmed that acute Kambo intoxication include possible side effects. Intoxication may affect various systems with laboratory or instrumental alterations. Intoxication may be reversible if promptly diagnosed and treated. An algorithm with adequate triage can support diagnosis and treatment.
Collapse
|
20
|
Anti-Cancer Activity of Buthus occitanus Venom on Hepatocellular Carcinoma in 3D Cell Culture. Molecules 2022; 27:molecules27072219. [PMID: 35408621 PMCID: PMC9000837 DOI: 10.3390/molecules27072219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/12/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most dominant primary liver cancer, which can be caused by chronic hepatitis virus infections and other environmental factors. Resection, liver transplantation, and local ablation are only a few of the highly effective and curative procedures presently accessible. However, other complementary treatments can reduce cancer treatment side effects. In this present work, we evaluated the activity of Moroccan scorpion venom Buthus occitanus and its fractions obtained by chromatography gel filtration against HCC cells using a 3D cell culture model. The venom was fractionated by gel filtration chromatography, each fraction and the crude venom was tested on normal hepatocytes (Fa2N-4 cells). Additionally, the fractions and the crude venom were tested on MCTSs (multicellular tumor spheroids), and this latter was generated by cultivate Huh7.5 cancer cell line with WI38 cells, LX2 cells, and human endothelial cells (HUVEC). Our results indicate that Buthus occitanus venom toxin has no cytotoxic effects on normal hepatocytes. Moreover, it is reported that F3 fraction could significantly inhibit the MCTS cells. Other Protein Separation Techniques (High-performance liquid chromatography) are needed in order to identify the most active molecule.
Collapse
|
21
|
Rezaei A, Asgari S, Komijani S, Sadat SN, Sabatier JM, Nasrabadi D, Pooshang Bagheri K, Shahbazzadeh D, Akbari Eidgahi MR, De Waard M, Mirzahoseini H. Discovery of Leptulipin, a New Anticancer Protein from theIranian Scorpion, Hemiscorpius lepturus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072056. [PMID: 35408455 PMCID: PMC9000277 DOI: 10.3390/molecules27072056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022]
Abstract
Cancer is one of the leading causes of mortality in the world. Unfortunately, the present anticancer chemotherapeutics display high cytotoxicity. Accordingly, the discovery of new anticancer agents with lower side effects is highly necessitated. This study aimed to discover an anticancer compound from Hemiscorpius lepturus scorpion venom. Bioactivity-guided chromatography was performed to isolate an active compound against colon and breast cancer cell lines. 2D electrophoresis and MALDI-TOF were performed to identify the molecule. A partial protein sequence was obtained by mass spectrometry, while the full-length was deciphered using a cDNA library of the venom gland by bioinformatics analyses and was designated as leptulipin. The gene was cloned in pET-26b, expressed, and purified. The anticancer effect and mechanism action of leptulipin were evaluated by MTT, apoptosis, and cell cycle assays, as well as by gene expression analysis of apoptosis-related genes. The treated cells displayed inhibition of cell proliferation, altered morphology, DNA fragmentation, and cell cycle arrest. Furthermore, the treated cells showed a decrease in BCL-2 expression and an increase in Bax and Caspase 9 genes. In this study, we discovered a new anticancer protein from H. lepturus scorpion venom. Leptulipin showed significant anticancer activity against breast and colon cancer cell lines.
Collapse
Affiliation(s)
- Ali Rezaei
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 3514799422, Iran; (A.R.); (D.N.)
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.K.); (S.N.S.); (D.S.)
| | - Saeme Asgari
- Department of Biochemistry and Biophysics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 5157944533, Iran;
| | - Samira Komijani
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.K.); (S.N.S.); (D.S.)
| | - Seyedeh Narjes Sadat
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.K.); (S.N.S.); (D.S.)
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology (INP), Faculté de Pharmacie, Université D’Aix-Marseille, UMR 7051, 27 Bd Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Davood Nasrabadi
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 3514799422, Iran; (A.R.); (D.N.)
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.K.); (S.N.S.); (D.S.)
- Correspondence: (K.P.B.); (M.R.A.E.); (M.D.W.); (H.M.)
| | - Delavar Shahbazzadeh
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.K.); (S.N.S.); (D.S.)
| | - Mohammad Reza Akbari Eidgahi
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 3514799422, Iran; (A.R.); (D.N.)
- Correspondence: (K.P.B.); (M.R.A.E.); (M.D.W.); (H.M.)
| | - Michel De Waard
- L’Institut du Thorax, INSERM, CNRS, University of Nantes, 44000 Nantes, France
- LabEx “Ion Channels, Science & Therapeutics”, 65560 Valbonne, France
- Smartox Biotechnology, 6 Rue Des Platanes, 38120 Saint-Egrève, France
- Correspondence: (K.P.B.); (M.R.A.E.); (M.D.W.); (H.M.)
| | - Hasan Mirzahoseini
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.K.); (S.N.S.); (D.S.)
- Correspondence: (K.P.B.); (M.R.A.E.); (M.D.W.); (H.M.)
| |
Collapse
|
22
|
Raj S, Jayaraj R, Kodiveri Muthukaliannan G. Chemical Profiling and Evaluation of Antioxidant and Anticancer Potential of Tuber Crop Amorphophallus commutatus var. wayanadensis. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:68-76. [PMID: 34977995 DOI: 10.1007/s11130-021-00942-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Cancer and cancer-related diseases are a global health concern in the present scenario. Functional food and nutraceuticals are considered as a boon towards cancer management. Amorphophallus commutatus var. wayanadensis (ACW) is an herbaceous plant used by the local communities of Wayanad, India, for food and primary healthcare. Various radical scavenging and reducing power assays were undertaken to evaluate the antioxidant activity of methanolic extract of ACW (MEAC). In vitro anticancer activity was evaluated against HT-29 cell line by MTT assay, morphological analysis, DNA fragmentation assay and cell cycle analysis. Caspase and COX-2 enzyme assays were conducted to examine the underlying mechanism. Studies on Ehrlich Ascites Carcinoma (EAC) transplanted mice models was carried out to evaluate the in-vivo antioxidant and anticancer potential of MEAC. The major bioactive nutraceutical compound present in MEAC was isolated by bioactivity-guided fractionation. MEAC showed significant in vitro antioxidant activity. Further, MEAC promoted cytotoxicity against HT-29 cells by activating caspase-3 dependent apoptotic pathway with a cell cycle arrest at the G1/S phase and subsequent down regulation of COX-2 pathway. The potential antitumor activity of MEAC was further confirmed in EAC tumor bearing mice models in which treatment with MEAC increased the levels of antioxidant enzymes, improved the hematological profile towards normal and also augmented the life span of tumor bearing mice. β-sitosterol isolated from ACW induces anticancer activity via caspase-dependent pathway. Our study confirmed the antioxidant and anticancer activities of ACW, which proposes the medicinal importance of this plant as a preventive and supportive therapy for arising tumors.
Collapse
Affiliation(s)
- Sreena Raj
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Rama Jayaraj
- Northern Territory Institute of Research and Technology, Darwin, Australia
| | | |
Collapse
|
23
|
Salehi-Najafabadi Z, Goudarzi HR, Sajadi M. Evaluation of in vivo Lethality and in vitro Cytotoxic Effect of Odontobuthus bidentatus Scorpion Venom. ARCHIVES OF RAZI INSTITUTE 2022; 77:29-36. [PMID: 35891741 PMCID: PMC9288595 DOI: 10.22092/ari.2021.353302.1595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 01/24/2023]
Abstract
The results of numerous studies have revealed that some deadly scorpion venoms are composed of various bioactive molecules that have significant cytotoxic effects on cancer cells. In this study, the in vivo lethality and cytotoxic effect of Odontobuthus bidentatus venom were evaluated in different cancer cell lines. Through MTT assay, the cytotoxic effects of O. bidentatus scorpion venom were analyzed on the MCF-7, A549, AGS, HepG2, and Ht-29 cancer cell lines and Hu02 normal cells. To this end, six venom fractions were obtained through a Sephadex G-50 column, and the cytotoxic effects of isolated fractions were evaluated on A549 lung cancer cells. The median lethal dose of O. bidentatus scorpion venom was determined at 0.73 mg/kg by intravenous administration of different venom doses in male BALB/c mice according to the Spearman-Karber method. The O. bidentatus scorpion whole venom had a significant cytotoxic effect on MCF-7, A549, and AGS cells. The treatment of A549 cells with various concentrations of fraction F1 showed that this fraction significantly induced growth inhibitory effect on the cells in a dose-dependent manner, compared to untreated cells.
Collapse
Affiliation(s)
- Z Salehi-Najafabadi
- Department of Human Bacterial Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - H R Goudarzi
- Department of Human Bacterial Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - M Sajadi
- Department of Biology, Tofigh Daru Research and Engineering Company, Tehran, Iran
| |
Collapse
|
24
|
Daghestani MH, Ambreen K, Hakami HH, Omair MA, Saleem AM, Aleisa NA, AlNeghery LM, Amin MH, Alobaid HM, Omair MA, Hassen LM. Venom of the desert black snake Walterinnesia aegyptia enhances anti-tumor immunity via its beneficial modulatory effects on pro- and anti-tumorigenic inflammatory mediators in cultured colon cancer cells. Toxicol Res (Camb) 2021; 10:1116-1128. [PMID: 34956615 DOI: 10.1093/toxres/tfab093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 11/14/2022] Open
Abstract
The role of inflammation in colon cancer is understood as a well-accepted factor that has the tendency to release multiple pro- and anti-tumorigenic inflammatory mediators. Inflammation-induced increased expression of anti-tumorigenic inflammatory mediators and decreased expression of pro-tumorigenic inflammatory mediators encourage beneficial inflammatory effects in terms of powerful anti-tumor immunity. The present study aims to screen the beneficial inflammatory effects of Walterinnesia aegyptia venom via determining its modulatory tendency on the expression of 40 pro- and anti-tumorigenic inflammatory mediators (cytokines/growth factors/chemokines) in LoVo human colon cancer cell line. LoVo-cells were treated with varying doses of crude venom of W. aegyptia. Cell viability was checked utilizing flow cytometry, and IC50 of venom was determined. Venom-induced inflammatory effects were evaluated on the expression of 40 different inflammatory mediators (12 anti-tumorigenic cytokines, 11 pro-tumorigenic cytokines, 7 pro-tumorigenic growth factors, 9 pro-tumorigenic chemokines and 1 anti-tumorigenic chemokine) in treated LoVo-cells [utilizing enzyme-linked immunosorbent assay (ELISA)] and compared with controls. Treatment of venom induced significant cytotoxic effects on inflamed LoVo-cells. IC50 treatment of venom caused significant modulations on the expression of 22 inflammatory mediators in treated LoVo-cells. The beneficial modulatory effects of venom were screened via its capability to significantly increase the expression of five powerful anti-tumorigenic mediators (IL-9, IL-12p40, IL-15, IL-1RA and Fractalkine) and decrease the expression of four major pro-tumorigenic mediators (IL-1β, VEGF, MCP-1 and MCP-3). Walterinnesia aegyptia venom-induced beneficial modulations on the expression of nine crucial pro/anti-tumorigenic inflammatory mediators can be effectively used to enhance powerful anti-tumor immunity against colon cancer.
Collapse
Affiliation(s)
- Maha H Daghestani
- Department of Zoology, College of Science, Centre for Scientific and Medical Female Colleges, King Saud University, Riyadh, Saudi Arabia
| | - Khushboo Ambreen
- Department of Biotechnology, Integral University, Lucknow, India
| | - Hana H Hakami
- Department of Zoology, College of Science, Centre for Scientific and Medical Female Colleges, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A Omair
- Division of Rheumatology, Department of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz M Saleem
- Department of Surgery, Medical College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nadia A Aleisa
- Department of Zoology, College of Science, Centre for Scientific and Medical Female Colleges, King Saud University, Riyadh, Saudi Arabia
| | - Lina M AlNeghery
- Department of Biology, College of Science, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohannad H Amin
- College of Dentistry, Riyadh ELM University, Riyadh, Saudi Arabia
| | - Hussah M Alobaid
- Department of Zoology, College of Science, Centre for Scientific and Medical Female Colleges, King Saud University, Riyadh, Saudi Arabia
| | - Maha A Omair
- Department of Statistics and Operations Research, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Lena M Hassen
- Department of Zoology, College of Science, Centre for Scientific and Medical Female Colleges, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Serag WM, Zahran F, Abdelghany YM, Elshaarawy RF, Abdelhamid MS. Synthesis and molecular docking of hybrids ionic azole Schiff bases as novel CDK1 inhibitors and anti-breast cancer agents: In vitro and in vivo study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Haque MA, Reza ASMA, Nasrin MS, Rahman MA. Pleurotus highking mushrooms potentiate antiproliferative and antimigratory activity against triple-negative breast cancer cells by suppressing Akt signaling. Integr Cancer Ther 2021; 19:1534735420969809. [PMID: 33176517 PMCID: PMC7673053 DOI: 10.1177/1534735420969809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this study, we evaluated the antiproliferative and antimetastatic effects of the Pleurotus highking mushroom on the human triple-negative breast cancer cell lines MDA-MB-231 and HCC-1937 and attempted to elucidate the underlying molecular mechanisms. The antiproliferative effects of P. highking purified fraction-III (PEF-III) were investigated using colony formation and MTS assays. The antimigratory effects of PEF-III were determined by wound healing, transwell migration, and matrigel cell invasion assays. The protein expression levels were evaluated using Western blot analysis. The effect of PEF-III on tumor-sphere formation was examined in a 3D sphere-forming medium, and the mRNA expressions of proliferation- and migration-related genes in the cells from the tumor spheres were determined using RT-qPCR. PEF-III treatment caused a potent and concentration-dependent decrease in the numbers of colonies and viable cells. It also remarkably suppressed the migratory ability of the cells. Mechanistically, PEF-III treatment reduced the expression of pAkt, matrix metallopeptidase-9 (MMP-9), and vimentin. Furthermore, PEF-III reduced the number and size of the tumor spheres in the 3D culture system. It also significantly reduced the mRNA expression of Ki-67, MMP-9, and vimentin in the PEF-III-treated tumor-sphere cells. PEF-III exerted promising antiproliferative and antimigratory effects in triple-negative breast cancer cell lines by suppressing Akt signaling. Therefore, P. highking mushrooms may be considered a potential source for the development of potent anticancer drug(s) for the treatment of breast cancer.
Collapse
Affiliation(s)
- Md Anwarul Haque
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh.,Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - A S M Ali Reza
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh.,Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Mst Samima Nasrin
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh.,Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Md Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
27
|
Donia T, Gerges MN, Mohamed TM. Anticancer Effects of Combination of Indole-3-Carbinol and Hydroxychloroquine on Ehrlich Ascites Carcinoma via Targeting Autophagy and Apoptosis. Nutr Cancer 2021; 74:1802-1818. [PMID: 34379013 DOI: 10.1080/01635581.2021.1960388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Indole-3-carbinol (I3C) is an active component of cruciferous vegetables which is considered a promising antineoplastic agent. This study aimed to assess I3C antineoplastic activity alone and with hydroxychloroquine (HCQ) on Ehrlich ascites carcinoma (EAC) model. Eighty female mice were divided into six groups wherein all groups except groups I and II received EAC cells (106 cells/mouse i.p.). Group I, served as control; group II served as I3C; group III served as EAC; groups IV and V received I3C (250 mg/kg body weight oral), and HCQ (60 mg/kg body weight i.p.) respectively; GVI received both I3C and HCQ. Antitumor response markers, serum, hepatic and renal biochemical parameters, histopathological changes, as well as autophagy and apoptosis markers in EAC cells were analyzed. The combination of I3C and HCQ showed the best antitumor responses with increased survival time and ameliorated biochemical parameters. Moreover, I3C upregulated LC3B and downregulated p62 gene expression in EAC cells. Furthermore, I3C combined with HCQ induced apoptosis by highly upregulating cleaved caspase-3 and Bax while downregulating Bcl-2 proteins expression in EAC cells in comparison with each drug alone. In conclusion, I3C combined with HCQ exhibited better antitumor activities than each drug alone via targeting autophagy and apoptosis.
Collapse
Affiliation(s)
- Thoria Donia
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Marian N Gerges
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
28
|
Elzahhar PA, Abd El Wahab SM, Elagawany M, Daabees H, Belal AS, EL-Yazbi AF, Eid AH, Alaaeddine R, Hegazy RR, Allam RM, Helmy MW, Bahaa Elgendy, Angeli A, El-Hawash SA, Supuran CT. Expanding the anticancer potential of 1,2,3-triazoles via simultaneously targeting Cyclooxygenase-2, 15-lipoxygenase and tumor-associated carbonic anhydrases. Eur J Med Chem 2020; 200:112439. [DOI: 10.1016/j.ejmech.2020.112439] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
|
29
|
Noble K, Rohaj A, Abegglen LM, Schiffman JD. Cancer therapeutics inspired by defense mechanisms in the animal kingdom. Evol Appl 2020. [DOI: 10.1111/eva.12963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Kathleen Noble
- Huntsman Cancer Institute University of Utah Salt Lake City Utah
| | - Aarushi Rohaj
- Huntsman Cancer Institute University of Utah Salt Lake City Utah
| | - Lisa M. Abegglen
- Huntsman Cancer Institute University of Utah Salt Lake City Utah
- Department of Pediatrics University of Utah Salt Lake City Utah
| | - Joshua D. Schiffman
- Huntsman Cancer Institute University of Utah Salt Lake City Utah
- Department of Pediatrics University of Utah Salt Lake City Utah
- PEEL Therapeutics, Inc. Salt Lake City Utah
| |
Collapse
|
30
|
Díaz-García A, Varela D. Voltage-Gated K +/Na + Channels and Scorpion Venom Toxins in Cancer. Front Pharmacol 2020; 11:913. [PMID: 32655396 PMCID: PMC7325878 DOI: 10.3389/fphar.2020.00913] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022] Open
Abstract
Ion channels have recently been recognized as novel therapeutic targets in cancer research since they are overexpressed in different histological tissues, and their activity is linked to proliferation, tumor progression, angiogenesis, metastasis, and apoptosis. Voltage gated-potassium channels (VGKC) are involved in cell proliferation, cancer progression, cell cycle transition, and apoptosis. Moreover, voltage-dependent sodium channels (VGSC) contribute to decreases in extracellular pH, which, in turn, promotes cancer cell migration and invasion. Furthermore, VGSC and VGKC modulate voltage-sensitive Ca2+ channel activity by controlling the membrane potential and regulating Ca2+ influx, which functions as a second messenger in processes related to proliferation, invasion, migration, and metastasis. The subgroup of these types of channels that have shown a high oncogenic potential have become known as "oncochannels", and the evidence has highlighted them as key potential therapeutic targets. Scorpion venoms contain a high proportion of peptide toxins that act by modulating voltage-gated Na+/K+ channel activity. Increasing scientific data have pointed out that scorpion venoms and their toxins can affect the activity of oncochannels, thus showing their potential for anticancer therapy. In this review, we provide an update of the most relevant voltage-gated Na+\K+ ion channels as cellular targets and discuss the possibility of using scorpion venom and toxins for anticancer therapy.
Collapse
Affiliation(s)
- Alexis Díaz-García
- LifEscozul Chile SpA, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| | - Diego Varela
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
- Program of Physiology and Biophysics, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
31
|
Sarhan AAM, Boraei ATA, Barakat A, Nafie MS. Discovery of hydrazide-based pyridazino[4,5- b]indole scaffold as a new phosphoinositide 3-kinase (PI3K) inhibitor for breast cancer therapy. RSC Adv 2020; 10:19534-19541. [PMID: 35515454 PMCID: PMC9054070 DOI: 10.1039/d0ra02798g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/28/2020] [Indexed: 02/05/2023] Open
Abstract
Herein, the mono and dialkylation of pyridazino[4,5-b]indole were achieved with a set of alkylating agents, including amyl bromide, allyl bromide, benzyl bromide and ethyl chloroacetate in the presence of K2CO3/acetone or KOH/DMSO. The hydrazinolysis of mono and di-esters 10 and 11 gave the target hydrazides 12 and 13, which displayed promising, potent, and significant cytotoxic activity against the MCF-7 cell line with IC50 values of 4.25 and 5.35 μm compared to that of the standard drug 5-FU (IC50 6.98 μm), respectively. RT-PCR analysis of the most active compound 12 was performed to determine its mode of action through the up-regulation of pro-apoptotic genes and inhibition of anti-apoptotic and PI3K/AKT/mTOR genes. The findings were consistent with the proposed mechanism illustrated in the in silico study. Further, the in vivo analysis exhibited its potent anti-cancer activity through the prolongation of survival parameters, and inhibition of ascetic fluid parameters in EAC-bearing mice.
Collapse
Affiliation(s)
- Ahmed A M Sarhan
- Chemistry Department, Faculty of Science, Arish University Al-Arish 45511 Egypt
| | - Ahmed T A Boraei
- Chemistry Department, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Assem Barakat
- Chemistry Department, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
- Chemistry Department, Faculty of Science, Alexandria University P.O. Box 426, Ibrahimia Alexandria 21321 Egypt
| | - Mohamed S Nafie
- Chemistry Department, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| |
Collapse
|
32
|
Karan S, Debnath S, Kuotsu K, Chatterjee TK. In-vitro and in-vivo evaluation of polymeric microsphere formulation for colon targeted delivery of 5-fluorouracil using biocompatible natural gum katira. Int J Biol Macromol 2020; 158:922-936. [PMID: 32335117 DOI: 10.1016/j.ijbiomac.2020.04.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/09/2020] [Accepted: 04/18/2020] [Indexed: 12/20/2022]
Abstract
The aim was to develop oral site-specific rate-controlled anticancer drug delivery to pacify systemic side-effects and offer effective and safe therapy for colon cancer with compressed dose and duration of treatment. The double emulsion solvent evaporation method was employed. To check functionality, DAPI-staining and in-vivo anticancer study of Ehrlich Ascites Carcinoma bearing mice was tested. Histopathology of liver and kidney and Cell morphology of EAC cell was also performed. Formulated and optimized polymeric microsphere of 5-FU showed excellent physicochemical features. In-vitro, DAPI results pointed drug-treated groups displayed the prominent feature of apoptosis. The percentage of apoptotic of entrapped drug played in a dose-dependent manner. Significant decreases in EAC liquid tumors and increased life span of treated mice were observed. Rate of variation of cell morphology was more in 5-FU loaded microsphere than 5-FU injection. Hematological and biochemical parameter's and Histopathology of liver and kidney resulted that due to control released formulation have slow release rate, that gives less trace on liver and kidney function. Finally, we foresee that polymeric microsphere of 5-FU applying natural gum katira could be an assuring micro-carrier for active colon targeting delivery tool with augmented chemotherapeutic efficacy and lowering side effect against colon cancer.
Collapse
Affiliation(s)
- Saumen Karan
- Division of Pharmacology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Souvik Debnath
- Division of Pharmacology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India; Department of Basic Medical Sciences, Purdue University, USA
| | - Ketousetuo Kuotsu
- Division of Pharmaceutics, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tapan Kumar Chatterjee
- Division of Pharmacology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India; Department of Pharmaceutical Science and Technology, JIS University, Kolkata, India.
| |
Collapse
|
33
|
Nafie MS, Arafa K, Sedky NK, Alakhdar AA, Arafa RK. Triaryl dicationic DNA minor-groove binders with antioxidant activity display cytotoxicity and induce apoptosis in breast cancer. Chem Biol Interact 2020; 324:109087. [PMID: 32294457 DOI: 10.1016/j.cbi.2020.109087] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022]
Abstract
Despite advances in cancer treatment modalities, DNA still stands as one of the targets for anticancer agents. DNA minor groove binders (MGBs) represent an important investigational chemotherapeutic class with promising cytotoxic capacity. Herein this study reports the potent cytotoxic effect of a series of repurposed flexible bis-imidamides 1-4, triaryl bis-guanidine 5 and bis-N-substituted guanidines 6,7 having a 1,4-diphenoxybenzene scaffold backbone on MCF-7 and MDA-MB-231 breast cancer cell lines. Of these compounds, imidamide 4 was chosen for further in-vitro, in-vivo and molecular dynamics (MD) studies owing to its promising anti-tumor activity, with IC50 values on MCF-7 and MDA-MB-231 breast cancer cell lines of 1.9 and 2.08 μM, respectively. Annexin V/propidium iodide apoptosis assay revealed apoptosis induction on imidamide 4 treated MCF-7 cells. RT-PCR assay results demonstrated the proapoptotic effect of compound 4 through increase of mRNA levels of the pro-apoptotic genes; p53, PUMA, and Bax, and inhibiting the anti-apoptotic Bcl-2 gene expression in MCF-7 cells. Moreover, compound 4 induced a G0/G1 cell-cycle arrest in MCF-7 in a dose-dependent manner. Corroborating in-vivo experiments on Ehrlich ascites carcinoma (EAC)-bearing mice, reflected the anticancer strength of derivative 4. For further target validation, molecular dynamics (MD) studies demonstrated an energetically favorable binding of imidamide 4 with the DNA minor groove AT rich site. In effect, imidamide 4 can be viewed as a promising hit dicationic compound with good cytotoxic and apoptotic inducing activity against breast cancer that can be adopted for future optimization.
Collapse
Affiliation(s)
- Mohamed S Nafie
- Chemistry Department, Faculty of Science Suez Canal University, Ismailia, 41522, Egypt
| | - Kholoud Arafa
- Center for Materials Science, Zewail City of Science and Technology, 12578, Cairo, Egypt
| | - Nada K Sedky
- Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, 12578, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Sinai University, East Kantara Branch, New City, El Ismailia, 41611, Cairo, Egypt
| | - Amira A Alakhdar
- Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, 12578, Cairo, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, 12578, Cairo, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, 12578, Cairo, Egypt.
| |
Collapse
|
34
|
Amirgholami N, Karampour NS, Ghadiri A, Tagavi Moghadam A, Ghasemi Dehcheshmeh M, Pipelzadeh MH. A. crassicauda, M. eupeus and H. lepturus scorpion venoms initiate a strong in vivo anticancer immune response in CT26-tumor mice model. Toxicon 2020; 180:31-38. [PMID: 32275983 DOI: 10.1016/j.toxicon.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/07/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022]
Abstract
In the present in vivo study the anticancer efficacy of the venoms from Androctonus crassicauda, Messobuthus eupeus and Hemiscorpius lepturus scorpions was investigated. In addition, we attempted to clarify whether the immune system is involved in this activity. Initially, the LD50 of the venoms from these scorpions were determined and their 0.1 and 0.2 LD50 were calculated. The toxicity of 0.1 and 0.2 LD50 was tested on healthy mice by daily SC administration of these venoms for 12 consecutive days. CT26 cells were inoculated by SC route in BALB/c mice to establish a sold tumor, and ten days later, the mice were treated with 0.1 and 0.2 LD50 doses of the venoms on daily basis for 12 consecutive days. The tumor volume was measured every 4 days. At day 13, the tumors from untreated-control and venom-treated groups were removed, weighed, and assessed by histopathological and immunohistochemical techniques. In addition, the levels of mRNA expression of IL-12, IFN-γ and IL-1β were measured by real-time PCR. All the venoms induced anticancer effects as evidenced by significant inhibition in tumor growth; significant increases in inflammatory and CD+-T cells and expression of mRNA IL-12 and IFN-γ in tumor microenvironment of venom-treated as compared to untreated-control. These findings demonstrated, for the first time, that sub-lethal doses of the venoms from these scorpions induce their in vivo anticancer effects by stimulating the immune system. Further studies, specifically designed to identify these active constituents are recommended.
Collapse
Affiliation(s)
- Neda Amirgholami
- Toxicology Research Centre, Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sceinces, Ahvaz, Iran.
| | - Neda Sistani Karampour
- Toxicology Research Centre, Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sceinces, Ahvaz, Iran.
| | - Ata Ghadiri
- Department of Immunology, Medical School, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | | | - Mohamad Ghasemi Dehcheshmeh
- Department of Immunology, Medical School, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad Hassan Pipelzadeh
- Toxicology Research Centre, Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sceinces, Ahvaz, Iran.
| |
Collapse
|
35
|
Desales-Salazar E, Khusro A, Cipriano-Salazar M, Barbabosa-Pliego A, Rivas-Caceres RR. Scorpion venoms and associated toxins as anticancer agents: update on their application and mechanism of action. J Appl Toxicol 2020; 40:1310-1324. [PMID: 32249452 DOI: 10.1002/jat.3976] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/01/2020] [Accepted: 03/05/2020] [Indexed: 12/29/2022]
Abstract
Cancer remains one of the deadliest non-infectious diseases of the 21st century, causing millions of mortalities per year worldwide. Analyses of conventional treatments, such as radiotherapy and chemotherapy, have shown not only a lower therapeutic efficiency rate but also plethora of side-effects. Considering the desperate need to identify promising anticancer agents, researchers are in quest to design and develop new tumoricidal drugs from natural sources. Over the past few years, scorpion venoms have shown exemplary roles as pivotal anticancer agents. Scorpion venoms associated metabolites, particularly toxins demonstrated in vitro anticancer attributes against diversified cell lines by inhibiting the growth and progression of the cell cycle, inhibiting metastasis by blocking ion channels such as K+ and Cl- , and/or inducing apoptosis by intrinsic and extrinsic pathways. This review sheds light not only on in vitro anticancer properties of distinct scorpion venoms and their toxins, but also on their mechanism of action for designing and developing new therapeutic drugs in future.
Collapse
Affiliation(s)
- Erasto Desales-Salazar
- Centro de Investigación y Estudios Avanzados en Salud Animal (CIESA), Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México (UAEM), Toluca, Mexico
| | - Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, Tamil Nadu, India
| | - Moisés Cipriano-Salazar
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Alberto Barbabosa-Pliego
- Centro de Investigación y Estudios Avanzados en Salud Animal (CIESA), Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México (UAEM), Toluca, Mexico
| | | |
Collapse
|
36
|
Ibrahim HM, Mohamed AH, Salem ML, Osman GY, Morsi DS. Anti-neoplastic and immunomodulatory potency of co-treatment based on bovine lactoferrin and/or muramyl dipeptide in tumor-bearing mice. Toxicol Res (Camb) 2020; 9:137-147. [PMID: 32440345 PMCID: PMC7233322 DOI: 10.1093/toxres/tfaa012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
The current study investigates anti-neoplastic and immunomodulatory activities of co-treatment based on bovine lactoferrin (bLF) and/or muramyl dipeptide (MDP) with or without cisplatin (Cis) in tumor-bearing mice. In the present study, bLF (100 mg/kg; orally) and MDP (0.5 mg/kg; subcutaneously) was administered alone or together. MDP or bLF was co-treated with Cis (1 mg/kg; intraperitoneally) in mice-bearing Ehrlich solid carcinoma. Tumor size, tumor mass proliferation, apoptosis using immunohistochemistry, the alteration in spleen cell proliferation, phenotype using flow cytometry and white blood cells total and differential counts were detected. Treatment with Cis or (bLF and MDP) significantly reduced tumor size, upregulated the pro-apoptotic p53 expression and downregulated the anti-apoptotic Bcl-2 and proliferative marker PCNA expression compared to non-treated tumor-bearing animals. Moreover, co-treatment of MDP and Cis significantly potentiated the reduction of the tumor size, downregulated the Bcl-2 and PCNA expression and upregulated the p53 expression compared to Cis-treated animals. While bLF and Cis co-treatment positively controlled PCNA and p53 expression compared to tumor-bearing animals, it significantly potentiated the reduction of the tumor size and downregulated the Bcl-2 expression compared to Cis-treated animals. Co-treatment of (bLF and MDP), (bLF and Cis) or (MDP and Cis) increased the spleen cell proliferation and altered the immunological profile of the CD3+CD4+, CD3+CD8+, CD3+CD4+CD69+, CD3+CD8+CD69+ and CD11b+Ly6G+ cells to achieve better immune response against tumor. In conclusion, co-treatments based on bLF and/or MDP are promising therapies against cancer, through their potency to control proliferation, enhance apoptosis and improve the immune status against tumor cells.
Collapse
Affiliation(s)
- Hany M Ibrahim
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Azza H Mohamed
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Mohamed L Salem
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Center of Excellence in Cancer Research, Tanta University, Tanta 31527, Egypt
| | - Gamalat Y Osman
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Dalia S Morsi
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| |
Collapse
|
37
|
Mikaelian AG, Traboulay E, Zhang XM, Yeritsyan E, Pedersen PL, Ko YH, Matalka KZ. Pleiotropic Anticancer Properties of Scorpion Venom Peptides: Rhopalurus princeps Venom as an Anticancer Agent. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:881-893. [PMID: 32161447 PMCID: PMC7051175 DOI: 10.2147/dddt.s231008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/05/2020] [Indexed: 12/19/2022]
Abstract
To date, the success of conventional chemotherapy, radiotherapy, and targeted biological therapies in cancer treatment is not satisfactory. The main reasons for such outcomes rely on low target selectivity, primarily in chemo- and radiotherapy, ineffectiveness to metastatic disease, drug resistance, and severe side effects. Although immune checkpoint inhibitors may offer better clinical promise, success is still limited. Since cancer is a complex systemic disease, the need for new therapeutic modalities that can target or block several steps of cancer cell characteristics, modulate or repolarize immune cells, and are less toxic to healthy tissues is essential. Of these promising therapeutic modalities are pleiotropic natural products in which scorpion venom (SV) is an excellent example. SV consists of complex bioactive peptides that are disulfide-rich of different peptides’ length, potent, stable, and exerts various multi-pharmacological actions. SV peptides also contain ion channel inhibitors. These ion channels are dysregulated and overexpressed in cancer cells, and play essential roles in cancer development and invasion, as well as depolarizing immune cells. Furthermore, SV has been found to induce cancer cell apoptosis, and inhibit cancer cells proliferation, invasion, metastasis, and angiogenesis. In the current review, we are presenting data that show the pleiotropic effect of SV against different types of human cancer as well as revealing one potential anticancer agent, Rhopalurus princeps venom. Furthermore, we are addressing what is needed to be done to translate these potential cancer therapeutics to the clinic.
Collapse
Affiliation(s)
| | | | | | | | - Peter L Pedersen
- Johns Hopkins University, School of Medicine Laboratory, Baltimore, MD, USA
| | - Young Hee Ko
- Johns Hopkins University, School of Medicine Laboratory, Baltimore, MD, USA
| | | |
Collapse
|
38
|
Pleurotus highking Mushroom Induces Apoptosis by Altering the Balance of Proapoptotic and Antiapoptotic Genes in Breast Cancer Cells and Inhibits Tumor Sphere Formation. ACTA ACUST UNITED AC 2019; 55:medicina55110716. [PMID: 31661925 PMCID: PMC6915458 DOI: 10.3390/medicina55110716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 01/06/2023]
Abstract
Background and objectives: Mushrooms that have medicinal properties are part of many traditional diets. The aim of the present study was to use the human breast cancer cell line MCF-7 to investigate the anticancer activity of Pleurotus highking mushroom purified extract fraction-III (PEF-III) and to elucidate the possible mechanism of that activity. Materials and Methods: The effects of PEF-III on cell proliferation and viability were evaluated by a colony formation assay and an MTT assay, respectively. Cell morphological changes, annexin-V phycoerythrin and propidium iodide (PI) staining, DNA fragmentation, and caspase 3/7 activity assays were performed to determine the induction of apoptosis by PEF-III. The genes responsible for regulation of apoptosis were analyzed by means of Western blot analysis. In vitro tumor sphere formation assay was performed using a 3D sphere culture system. Results: PEF-III significantly reduced the proliferation and viability of MCF-7 cells. Cell shrinkage and rounding, and annexin-V phycoerythrin and PI staining followed by flow cytometry indicated that the cell death was due to apoptosis. Additionally, a laddering DNA pattern and increased levels of caspase-3/7 enzyme also corroborated the notion of apoptosis-mediated cell death. This incidence was further confirmed by upregulation of proapoptotic genes (p53 and its target gene, Bax) and downregulation of the expression of an antiapoptotic gene (Bcl-2). PEF-III also reduced the size and number of the tumor spheres in 3D culture conditions. Conclusions: The anticancer activity of PEF-III is due to induction of apoptosis by a shift in the balance of proapoptotic and antiapoptotic genes. Therefore, the findings of the present study may open a path to exploring potential drug candidates from the P.highking mushroom for combating breast cancer.
Collapse
|
39
|
Synthesis, Characterization, and In Vivo Anti-Cancer Activity of New Metal Complexes Derived from Isatin- N(4)antipyrinethiosemicarbazone Ligand Against Ehrlich Ascites Carcinoma Cells. Molecules 2019; 24:molecules24183313. [PMID: 31514445 PMCID: PMC6766913 DOI: 10.3390/molecules24183313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
The current study aimed to synthesize new metal coordination complexes with potential biomedical applications. Metal complexes were prepared via the reaction of isatin-N(4)anti- pyrinethiosemicarbazone ligand 1 with Cu(II), Ni(II), Co(II), Zn(II), and Fe(III) ions. The obtained metal complexes 2-12 were characterized using elemental, spectral (1H-NMR, EPR, Mass, IR, UV-Vis) and thermal (TGA) techniques, as well as magnetic moment and molar conductance measurements. In addition, their geometries were studied using EPR and UV-Vis spectroscopy. To evaluate the in vivo anti-cancer activities of these complexes, the ligand 1 and its metal complexes 2, 7 and 9 were tested against solid tumors. The solid tumors were induced by subcutaneous (SC) injection of Ehrlich ascites carcinoma (EAC) cells in mice. The impact of the selected complexes on the reduction of tumor volume was determined. Also, the expression levels of vascular endothelial growth factor (VEGF) and cysteine aspartyl-specific protease-7 (caspase-7) in tumor and liver tissues of mice bearing EAC tumor were determined. Moreover, their effects on alanine transaminase (ALT), aspartate transaminase (AST), albumin, and glucose levels were measured. The results revealed that the tested compounds, especially complex 9, reduced tumor volume, inhibited the expression of VEGF, and induced the expression of caspase-7. Additionally, they restored the levels of ALT, AST, albumin, and glucose close to their normal levels. Taken together, our newly synthesized metal complexes are promising anti-cancer agents against solid tumors induced by EAC cells as supported by the inhibition of VEGF and induction of caspase-7.
Collapse
|
40
|
Moradi M, Najafi R, Amini R, Solgi R, Tanzadehpanah H, Esfahani AM, Saidijam M. Remarkable apoptotic pathway of Hemiscorpius lepturus scorpion venom on CT26 cell line. Cell Biol Toxicol 2019; 35:373-385. [PMID: 30617443 DOI: 10.1007/s10565-018-09455-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Scorpion venom, considered as a treasure trove of various bioactive molecules, is a new approach to induce cancer cell death via apoptosis pathways. In the present study, we evaluated for first time the anti-proliferative efficacy of Hemiscorpius lepturus scorpion venom and its pathway on a colon carcinoma cell. MATERIALS AND METHODS The CT26 and VERO cell lines were treated with various concentrations of the venom. The IC50 values were estimated by MTT assay test, and the apoptosis was evaluated by flow cytometry. Moreover, RT-PCR analysis was used to investigate the levels of Bax, Bcl2, Trp53, and Casp3 mRNA expression. The mice xenograft model was established to evaluate the therapy efficiency of venom. Some valuable exponential growth parameters were evaluated in treated mice. RESULT The scorpion venom inhibited the growth of CT26 cells with an IC50 value about 120 μg/ml. However, VERO cells increased to 896 μg/ml under the same condition. A remarkable apoptotic cells in CT26 cells were revealed by flow cytometry assay. A significant over-expression was observed in Bax, Casp3, and Trp53 and downregulated in Bcl2 mRNA level in tumor tissue after treatment with scorpion venom (p < 0.05). All changes of valuable exponential growth parameters showed a shrinking tumor size. CONCLUSION Our findings indicated that Hemiscorpius lepturus venom has a special anti-proliferative effect on CT26 cells via Trp53/Bcl2/Casp3 pathway. Considering its powerful cytotoxic vigor against a colon cancer cell (CT26) and low toxicity to non-tumorigenic cell (VERO), we propose that this venom probably has a specific effect on other colon cancer cells and may turn out to be a novel therapeutic strategy in treating colon cancer.
Collapse
Affiliation(s)
- Mohammadreza Moradi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Hamadan University of Medical Sciences, Pejohesh Crossroads, Hamadan, 65178-38678, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Hamadan University of Medical Sciences, Pejohesh Crossroads, Hamadan, 65178-38678, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Hamadan University of Medical Sciences, Pejohesh Crossroads, Hamadan, 65178-38678, Iran
| | - Reza Solgi
- Legal Medicine Research Center, Legal Medicine Organization of Iran, Hamadan, Iran
- Felestin Square, General Office of Legal Medicine, Ghobare Hamadani Blvd, Hamadan, 65187-53141, Iran
| | - Hamid Tanzadehpanah
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Hamadan University of Medical Sciences, Pejohesh Crossroads, Hamadan, 65178-38678, Iran
| | - Alireza Monsef Esfahani
- Hamadan University of Medical Sciences, Pejohesh Crossroads, Hamadan, 65178-38678, Iran
- Department of Pathology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Hamadan University of Medical Sciences, Pejohesh Crossroads, Hamadan, 65178-38678, Iran.
| |
Collapse
|
41
|
El-Ashmawy NE, El-Zamarany EA, Salem ML, Khedr EG, Ibrahim AO. A new strategy for enhancing antitumor immune response using dendritic cells loaded with chemo-resistant cancer stem-like cells in experimental mice model. Mol Immunol 2019; 111:106-117. [PMID: 31051312 DOI: 10.1016/j.molimm.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Cancer stem cells (CSCs) are rare cell population present in the tumor bulk that are thought to be the reason for treatment failure following chemotherapy in terms of their intrinsic chemo-resistance. Our study aimed to develop an effective therapeutic strategy to target chemo-resistant cancer stem - like cells population in solid Ehrlich carcinoma (SEC) mice model using dendritic cells (DCs) loaded with enriched tumor cells lysate bearing CSC-like phenotype as a vaccine. MATERIALS AND METHODS Ehrlich carcinoma cell line was exposed to different concentrations of cisplatin, doxorubicin, or paclitaxel. Drug treatment that resulted in drug surviving cells with the highest expression of CSCs markers (CD44+/CD24-) was selected to obtain enriched cell cultures with resistant CSCs population. Dendritic cells were isolated from mice bone marrow, pulsed with enriched CSC lysate, analyzed and identified (CD11c, CD83 and CD86). SEC-bearing mice were treated with loaded or unloaded DCs either as single treatment or in combination with repeated low doses of cisplatin. IFN- γ serum level and p53gene expression in tumor tissues were determined by ELISA and real-time PCR, respectively. RESULTS AND CONCLUSION The results revealed that vaccination with CSC loaded DCs significantly reduced tumor size, prolonged survival rate, increased IFN-γ serum levels, and upregulated p53gene expression in SEC bearing mice. These findings were more evident and significant in the group co-treated with CSC-DC and cisplatin rather than other treated groups. This study opens the field for combining CSC-targeted immunotherapy with repeated low doses chemotherapy as an effective strategy to improve anticancer immune responses.
Collapse
Affiliation(s)
| | - Enas A El-Zamarany
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Egypt
| | - Mohamed L Salem
- Zoology Department, Faculty of Science, Tanta University, Egypt; Center of Excellence in Cancer Research, Tanta University, Tanta, Egypt
| | - Eman G Khedr
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt
| | - Amera O Ibrahim
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt.
| |
Collapse
|
42
|
Wu T, Wang M, Wu W, Luo Q, Jiang L, Tao H, Deng M. Spider venom peptides as potential drug candidates due to their anticancer and antinociceptive activities. J Venom Anim Toxins Incl Trop Dis 2019; 25:e146318. [PMID: 31210759 PMCID: PMC6551028 DOI: 10.1590/1678-9199-jvatitd-14-63-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
Spider venoms are known to contain proteins and polypeptides that perform various
functions including antimicrobial, neurotoxic, analgesic, cytotoxic, necrotic,
and hemagglutinic activities. Currently, several classes of natural molecules
from spider venoms are potential sources of chemotherapeutics against tumor
cells. Some of the spider peptide toxins produce lethal effects on tumor cells
by regulating the cell cycle, activating caspase pathway or inactivating
mitochondria. Some of them also target the various types of ion channels
(including voltage-gated calcium channels, voltage-gated sodium channels, and
acid-sensing ion channels) among other pain-related targets. Herein we review
the structure and pharmacology of spider-venom peptides that are being used as
leads for the development of therapeutics against the pathophysiological
conditions including cancer and pain.
Collapse
Affiliation(s)
- Ting Wu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Meng Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wenfang Wu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Qianxuan Luo
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
43
|
Thapliyal A, Khar RK, Chandra A. AgNPs loaded microemulsion using gallic acid inhibits MCF-7 breast cancer cell line and solid ehrlich carcinoma. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1563086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | | | - Amrish Chandra
- Amity Institute of Pharmacy Amity University, Noida, India
| |
Collapse
|
44
|
Tobassum S, Tahir HM, Arshad M, Zahid MT, Ali S, Ahsan MM. Nature and applications of scorpion venom: an overview. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1530681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Saadia Tobassum
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Muhammad Arshad
- Department of Zoology, University of Education Lower Mall Campus, Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
45
|
Antitumor and immune-modulatory efficacy of dual-treatment based on levamisole and/or taurine in Ehrlich ascites carcinoma-bearing mice. Biomed Pharmacother 2018; 106:43-49. [DOI: 10.1016/j.biopha.2018.06.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 01/10/2023] Open
|
46
|
Ward MJ, Ellsworth SA, Nystrom GS. A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts. Toxicon 2018; 151:137-155. [DOI: 10.1016/j.toxicon.2018.07.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 01/18/2023]
|
47
|
Debnath S, Mukherjee A, Karan S, Debnath M, Chatterjee TK. Induction of apoptosis, anti-proliferation, tumor-angiogenic suppression and down-regulation of Dalton’s Ascitic Lymphoma (DAL) induced tumorigenesis by poly- l -lysine: A mechanistic study. Biomed Pharmacother 2018; 102:1064-1076. [DOI: 10.1016/j.biopha.2018.03.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 02/09/2023] Open
|
48
|
Indole-3-Carbinol (I3C) enhances the sensitivity of murine breast adenocarcinoma cells to doxorubicin (DOX) through inhibition of NF-κβ, blocking angiogenesis and regulation of mitochondrial apoptotic pathway. Chem Biol Interact 2018; 290:19-36. [DOI: 10.1016/j.cbi.2018.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/06/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022]
|
49
|
Subcutaneous Ehrlich Ascites Carcinoma mice model for studying cancer-induced cardiomyopathy. Sci Rep 2018; 8:5599. [PMID: 29618792 PMCID: PMC5884778 DOI: 10.1038/s41598-018-23669-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/08/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiomyopathy is one of the characteristic features of cancer. In this study, we establish a suitable model to study breast cancer-induced cardiomyopathy in mice. We used Ehrlich Ascites Carcinoma cells to induce subcutaneous tumor in 129/SvJ mice and studied its effect on heart function. In Ehrlich Ascites Carcinoma bearing mice, we found significant reduction in left ventricle wall thickness, ejection fraction, and fractional shortening increase in left ventricle internal diameter. We found higher muscle atrophy, degeneration, fibrosis, expression of cell-adhesion molecules and cell death in tumor-bearing mice hearts. As observed in cancer patients, we found that mTOR, a key signalling molecule responsible for maintaining cell growth and autophagy was suppressed in this model. Tumor bearing mice hearts show increased expression and nuclear localization of TFEB and FoxO3a transcription factors, which are involved in the upregulation of muscle atrophy genes, lysosomal biogenesis genes and autophagy genes. We propose that Ehrlich Ascites Carcinoma induced tumor can be used as a model to identify potential therapeutic targets for the treatment of heart failure in patients suffering from cancer-induced cardiomyopathy. This model can also be used to test the adverse consequences of cancer chemotherapy in heart.
Collapse
|
50
|
El-Ashmawy NE, Khedr NF, El-Bahrawy HA, Abo Mansour HE. Ginger extract adjuvant to doxorubicin in mammary carcinoma: study of some molecular mechanisms. Eur J Nutr 2018; 57:981-989. [PMID: 28229277 DOI: 10.1007/s00394-017-1382-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/24/2017] [Indexed: 12/27/2022]
Abstract
PURPOSE The present study aimed to investigate the molecular mechanisms underlying the anticancer properties of ginger extract (GE) in mice bearing solid Ehrlich carcinoma (SEC) and to evaluate the use of GE in combination with doxorubicin (DOX) as a complementary therapy against SEC. METHODS SEC was induced in 60 female mice. Mice were divided into four equal groups: SEC, GE, DOX and GE + DOX. GE (100 mg/kg orally day after day) and DOX (4 mg/kg i.p. for 4 cycles every 5 days) were given to mice starting on day 12 of inoculation. On the 28th day, blood samples were collected, mice were scarified, tumor volume was measured, and tumor tissues were excised. RESULTS The anti-cancer effect of GE was mediated by activation of adenosine monophosphate protein kinase (AMPK) and down-regulation of cyclin D1 gene expression. GE also showed pro-apoptotic properties as evidenced by elevation of the P53 and suppression of nuclear factor-kappa B (NF-κB) content in tumor tissue. Co-administration of GE alongside DOX markedly increased survival rate, decreased tumor volume, and increased the level of phosphorylated AMPK (PAMPK) and improved related pathways compared to DOX group. In addition, the histopathological results demonstrated enhanced apoptosis and absence of multinucleated cells in tumor tissue of GE + DOX group. CONCLUSION AMPK pathway and cyclin D1 gene expression could be a molecular therapeutic target for the anticancer effect of GE in mice bearing SEC. Combining GE and DOX revealed a greater efficacy as anticancer therapeutic regimen.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/chemistry
- AMP-Activated Protein Kinases/metabolism
- Animals
- Antibiotics, Antineoplastic/therapeutic use
- Antineoplastic Agents, Phytogenic/therapeutic use
- Apoptosis/drug effects
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Carcinoma, Ehrlich Tumor/diet therapy
- Carcinoma, Ehrlich Tumor/drug therapy
- Carcinoma, Ehrlich Tumor/metabolism
- Carcinoma, Ehrlich Tumor/pathology
- Combined Modality Therapy
- Cyclin D1/antagonists & inhibitors
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Dietary Supplements
- Doxorubicin/therapeutic use
- Enzyme Activation/drug effects
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Zingiber officinale/chemistry
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/diet therapy
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Necrosis
- Neoplasm Proteins/agonists
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Plant Extracts/therapeutic use
- Rhizome/chemistry
- Survival Analysis
- Tumor Burden/drug effects
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt
| | - Naglaa F Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt
| | - Hoda A El-Bahrawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt
| | - Hend E Abo Mansour
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt.
| |
Collapse
|