1
|
Bamfield-Cummings S, Silva J, Karim ZA. A thematic analysis of prognostic, diagnostic, and therapeutic of circulating miRNA biomarkers in bortezomib-resistant multiple myeloma. SAGE Open Med 2025; 13:20503121251328486. [PMID: 40297788 PMCID: PMC12035079 DOI: 10.1177/20503121251328486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/03/2025] [Indexed: 04/30/2025] Open
Abstract
Objective The increasing demand for precision medicine has spurred molecular diagnostic investigations to emphasize the utility of miRNA as significant biomarkers. Recent studies have underscored miRNA's role as prognostic, diagnostic, and therapeutic biomarkers in managing and monitoring multiple myeloma patients. This review aims to present the latest insights on the potential of circulating miRNA as prognostic, diagnostic, and therapeutic biomarkers in bortezomib-resistant multiple myeloma. Methods For this purpose, a comprehensive thematic literature review from January 2014 and August 2024 was conducted utilizing the databases CINAHL, Pubmed, and Google Scholar. Twenty pertinent studies were meticulously analyzed and categorized into the following sections: Bortezomib (BTZ) resistance in multiple myeloma, the predictive role of miRNAs in BTZ resistance, the impact of circulating miRNAs in multiple myeloma, and the potential of circulating miRNA as prognostic, diagnostic, and therapeutic biomarkers. Results Of note, eight studies identified circulating miRNAs as diagnostic miRNA biomarkers (i.e., miR-744, miR-130a, let-7d, let-7e, miR-34a, etc.). In comparison, nine studies identified several circulating miRNAs that can be used as prognostic biomarkers (i.e., miR-20a, miR-483-5p, mir-1246, let-7a, let-7e, etc.). Moreover, five studies identified circulating miRNAs as promising therapeutic biomarkers (i.e., mir-15a, mir-92a, mir-19a, etc.). This discovery can significantly enhance early detection, accurate diagnosis, prognosis, overall survival rates, and quality of life for patients with multiple myeloma. Conclusion Based on this evidence, exploring circulating miRNAs as a potential noninvasive biomarker for multiple myeloma represents a noteworthy advancement. This is attributed to the abundance of miRNAs in plasma or serum, which exhibits remarkable stability against enzymatic degradation.
Collapse
Affiliation(s)
| | - Jeane Silva
- Department of Health Management, Economics, and Policy, Augusta University, GA, USA
| | - Zubair A. Karim
- Department of Nutrition and Dietetics, College of Allied Health Science, Augusta University, GA, USA
| |
Collapse
|
2
|
Chen S, Deng X, Sheng H, Rong Y, Zheng Y, Zhang Y, Lin J. Noncoding RNAs in pediatric brain tumors: Molecular functions and pathological implications. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:417-431. [PMID: 34552822 PMCID: PMC8426460 DOI: 10.1016/j.omtn.2021.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain tumors are common solid pediatric malignancies and the main reason for cancer-related death in the pediatric setting. Recently, evidence has revealed that noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), play a critical role in brain tumor development and progression. Therefore, in this review article, we describe the functions and molecular mechanisms of ncRNAs in multiple types of cancer, including medulloblastoma, pilocytic astrocytoma, ependymoma, atypical teratoid/rhabdoid tumor, glioblastoma, diffuse intrinsic pontine glioma, and craniopharyngioma. We also mention the limitations of using ncRNAs as therapeutic targets because of the nonspecificity of ncRNA targets and the delivery methods of ncRNAs. Due to the critical role of ncRNAs in brain oncogenesis, targeting aberrantly expressed ncRNAs might be an effective strategy to improve the outcomes of pediatric patients with brain tumors.
Collapse
Affiliation(s)
- Shaohuai Chen
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Deng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hansong Sheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuxi Rong
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanhao Zheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yusong Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Lin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
He J, Han Z, An Z, Li Y, Xie X, Zhou J, He S, Lv Y, He M, Qu H, Liu G, Li Y. The miR-203a Regulatory Network Affects the Proliferation of Chronic Myeloid Leukemia K562 Cells. Front Cell Dev Biol 2021; 9:616711. [PMID: 33659248 PMCID: PMC7917221 DOI: 10.3389/fcell.2021.616711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/15/2021] [Indexed: 11/27/2022] Open
Abstract
To study the molecular mechanism by which miR-203a affects the development of CML, bioinformatics software was used to predict the upstream transcription factors and downstream target genes of miR-203a. A 5’-rapid amplification of cDNA ends assay was performed to detect gene transcription initiation sites. A chromatin immunoprecipitation assay was used to verify the binding of transcription factors and promoter regions. A double luciferase reporter gene vector was constructed to demonstrate the regulatory effect of miR-203a on target genes. Real-time PCR and western blotting were used to detect the relative expression levels of genes and proteins, respectively. The results showed that there was a binding site for the transcription factor EGR1 in the upstream promoter region of miR-203a. WT1, BMI1, and XIAP were identified as target genes regulated by miR-203a. EGR1 and miR-203a were downregulated in human peripheral blood mononuclear cells and the CML K562 cell line, while WT1, BMI1, and XIAP were upregulated. The transcription initiation site of miR-203a was identified in the upstream promoter region (G nucleotide at −339 bp), and the transcription factor EGR1 could bind to the promoter region (at −268 bp) of miR-203a and increase its expression. Over expression of miR-203a inhibited the proliferation of K562 cells. A rescue assay showed that overexpression of WT1, BMI1, and XIAP offset the antitumor effect of miR-203a. Conclusion, EGR1 positively regulated the expression of miR-203a, thus relieving the inhibition of miR-203a on the translation of its target genes (WT1, BMI1, and XIAP) and affecting the proliferation of K562 cells.
Collapse
Affiliation(s)
- Jinhua He
- Department of Laboratory Medicine, Panyu District Central Hospital, Guangzhou, China
| | - Zeping Han
- Department of Laboratory Medicine, Panyu District Central Hospital, Guangzhou, China
| | - Ziyi An
- Department of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Yumin Li
- Medical Laboratory of Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Xingyi Xie
- Department of Laboratory Medicine, Panyu District Central Hospital, Guangzhou, China
| | - Jiabin Zhou
- Department of Laboratory Medicine, Panyu District Central Hospital, Guangzhou, China
| | - Sihua He
- Department of Laboratory Medicine, Panyu District Central Hospital, Guangzhou, China
| | - Yubing Lv
- Department of Laboratory Medicine, Panyu District Central Hospital, Guangzhou, China
| | - Mengling He
- Department of Laboratory Medicine, Panyu District Central Hospital, Guangzhou, China
| | - Hong Qu
- Department of Hematology, PanYu District Central Hospital, Guangzhou, China
| | - Gexiu Liu
- Department of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Yuguang Li
- Department of Laboratory Medicine, Panyu District Central Hospital, Guangzhou, China
| |
Collapse
|
4
|
Peng Q, Shen Y, Zhao P, Cai S, Feng Z, Cheng M, Wu Y, Zhu Y. Biomarker exploration of microRNA-203 as a promising substrate for predicting poor survival outcome in colorectal cancer. BMC Cancer 2020; 20:1003. [PMID: 33059609 PMCID: PMC7559172 DOI: 10.1186/s12885-020-07512-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Background Increasing studies indicated that microRNA-203 (miR-203) may play an important part in the prognosis of CRC. Nevertheless, the prognostic and influential mechanism of miR-203 expression in CRC remains to be inconclusive. Accordingly, we conducted the current study to investigate the biomarker performance of miR-203 in CRC. Methods In the present study, we conducted an evidence synthesis of the published literatures to identify the prognostic roles of miR-203 in patients with CRC. Moreover, several bioinformatics methods were applied for exploring the biomarker roles of miR-203. Results It was demonstrated that elevated miR-203 expression was clearly related to worse overall survival (HR: 1.55, 95% CI: 1.07–2.24, P = 0.021) for CRC. The gene Ontology (GO) analysis indicated that miR-203 targets were primarily involved in a series of GO items closely associated with the molecular pathogenesis of CRC. The pathway analysis exhibited the potential signal pathways of miR-203 involved in CRC including pathways in cancer, wnt pathway, prolactin signaling pathway, proteoglycans in cancer, FoxO pathway, focal adhesion and Ras pathway. By constructing a protein-protein interaction (PPI) network of the targets of miR-203, ten crucial proteins and a significant network module were retrieved and found to serve important roles in the molecular pathogenesis of CRC. Conclusions Our results indicated that miR-203 may function as a promising biomarker to monitor CRC survival outcomes and progression. Notably, large-scale prospective cohort studies and biological experiments are required to confirm our conclusions.
Collapse
Affiliation(s)
- Qiliang Peng
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004, Jiangsu, China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Yi Shen
- Department of Radiation Oncology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Peifeng Zhao
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004, Jiangsu, China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Shang Cai
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004, Jiangsu, China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Zhengyang Feng
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ming Cheng
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongyou Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaqun Zhu
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004, Jiangsu, China. .,Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China.
| |
Collapse
|
5
|
MiR-155-5p and MiR-203a-3p Are Prognostic Factors in Soft Tissue Sarcoma. Cancers (Basel) 2020; 12:cancers12082254. [PMID: 32806571 PMCID: PMC7463991 DOI: 10.3390/cancers12082254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Soft tissue sarcoma (STS) is a heterogeneous group of rare malignancies with a five-year survival rate of approximately 50%. Reliable molecular markers for risk stratification and subsequent therapy management are still needed. Therefore, we analyzed the prognostic potential of miR-155-5p and miR-203a-3p expression in a cohort of 79 STS patients. MiR-155-5p and miR-203a-3p expression was measured from tumor total RNA by qPCR and correlated with the demographic, clinicopathological, and prognostic data of the patients. Elevated miR-155-5p expression was significantly associated with increased tumor stage and hypoxia-associated mRNA/protein expression. High miR-155-5p expression and low miR-203a-3p expression, as well as a combination of high miR-155-5p and low miR-203a-3p expression, were significantly associated with poor disease-specific survival in STS patients in the Kaplan–Meier survival analyses (p = 0.027, p = 0.001 and p = 0.0003, respectively) and in the univariate Cox regression analyses (RR = 1.96; p = 0.031; RR = 2.59; p = 0.002 and RR = 4.76; p = 0.001, respectively), but not in the multivariate Cox regression analyses. In conclusion, the oncomiR miR-155-5p and the tumor suppressor-miR miR-203a-3p exhibit an association with STS patient prognosis and are suggested as candidates for risk assessment.
Collapse
|
6
|
Zong M, Feng W, Wan L, Yu X, Yu W. miR-203 affects esophageal cancer cell proliferation, apoptosis and invasion by targeting MAP3K1. Oncol Lett 2020; 20:751-757. [PMID: 32566001 PMCID: PMC7285942 DOI: 10.3892/ol.2020.11610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
miR-203 has been indicated to be a tumor suppressor in esophageal cancer, however, the underlying molecular mechanisms by which it functions are not fully understood. The present study aimed to investigate the molecular mechanisms underlying the regulatory activities of microRNA (miR)-203 in esophageal cancer. The miR-203 mimic/inhibitor, Mitogen-Activated Protein Kinase Kinase Kinase 1 (MAP3K1) overexpression plasmid and MAP3K1 small interfering (si)RNA were transfected into TE-1 cells. miR-203 and MAP3K1 mRNA expression were detected via reverse transcription-quantitative PCR analysis, while MAP3K1 protein expression was detected via western blot analysis. Dual-luciferase reporter assay was used to determine whether MAP3K1 was a direct target of miR-203. Cell proliferation and invasion abilities were assessed via MTT and Matrigel assays, respectively. Cell apoptosis was analyzed via flow cytometry, Caspase 8/3 Assay kits and western blot analysis. The results demonstrated that MAP3K1 was a direct target of miR-203. Overexpression of MAP3K1 reversed the suppressed cell proliferation and invasion abilities induced by miR-203 mimic, as well as the inhibitory effect of miR-203 mimic on cell apoptosis. Furthermore, MAP3K1 siRNA weakened the effect of miR-203 inhibitor on cell proliferation, apoptosis and invasion.
Collapse
Affiliation(s)
- Mingzhu Zong
- Department of Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Wanting Feng
- Department of Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Li Wan
- Department of Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiaojuan Yu
- Department of Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Weiyong Yu
- Department of Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
7
|
Abstract
Even though the treatment of childhood cancer has evolved significantly in recent decades, aggressive central nervous system (CNS) tumors are still a leading cause of morbidity and mortality in this population. Consequently, the identification of molecular targets that can be incorporated into diagnostic practice, effectively predict prognosis, follow treatment response, and materialize into potential targeted therapeutic approaches are still warranted. Since the first evidence of the participation of miRNAs in cancer development and progression 20 years ago, notable progress has been made in the basic understanding of the contribution of their dysregulation as epigenetic driver of tumorigenesis. Nevertheless, among the plethora of articles in the literature, microRNA profiling of pediatric tumors are scarce. This article gives an overview of the recent advances in the diagnostic/prognostic potential of miRNAs in a selection of pediatric CNS tumors: medulloblastoma, ependymoma, pilocytic astrocytoma, glioblastoma, diffuse intrinsic pontine glioma, atypical teratoid/rhabdoid tumors, and choroid plexus tumors.
Collapse
|
8
|
Xu JZ, Shao CC, Wang XJ, Zhao X, Chen JQ, Ouyang YX, Feng J, Zhang F, Huang WH, Ying Q, Chen CF, Wei XL, Dong HY, Zhang GJ, Chen M. circTADA2As suppress breast cancer progression and metastasis via targeting miR-203a-3p/SOCS3 axis. Cell Death Dis 2019; 10:175. [PMID: 30787278 PMCID: PMC6382814 DOI: 10.1038/s41419-019-1382-y] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/09/2019] [Accepted: 01/17/2019] [Indexed: 02/05/2023]
Abstract
More and more evidence indicates that circular RNAs (circRNAs) have important roles in several diseases, especially in cancers. However, their involvement remains to be investigated in breast cancer. Through screening circRNA profile, we identified 235 differentially expressed circRNAs in breast cancer. Subsequently, we explored the clinical significance of two circTADA2As in a large cohort of triple-negative breast cancer (TNBC), and performed functional analysis of circTADA2A-E6 in vitro and in vivo to support clinical findings. Finally, we evaluated the effect of circTADA2A-E6 on miR-203a-3p and its target gene SOCS3. We detected two circRNAs, circTADA2A-E6 and circTADA2A-E5/E6, which were among the top five differentially expressed circRNAs in breast cancer. They were consistently and significantly decreased in a large cohort of breast cancer patients, and their downregulation was associated with poor patient survival for TNBC. Especially, circTADA2A-E6 suppressed in vitro cell proliferation, migration, invasion, and clonogenicity and possessed tumor-suppressor capability. circTADA2A-E6 preferentially acted as a miR-203a-3p sponge to restore the expression of miRNA target gene SOCS3, resulting in a less aggressive oncogenic phenotype. circTADA2As as promising prognostic biomarkers in TNBC patients, and therapeutic targeting of circTADA2As/miRNA/mRNA network may be a potential strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jian-Zhen Xu
- Department of Bioinformatics, Shantou University Medical College (SUMC), 515041, Shantou, China.
| | - Chang-Chun Shao
- ChangJiang Scholar's Laboratory, Shantou University Medical College, 515041, Shantou, China
| | - Xiao-Jia Wang
- Key Lab of Diagnosis & Treatment Technology on Thoracic Oncology, Zhejiang Cancer Hospital, 310000, Hangzhou, China
| | - Xing Zhao
- Department of Bioinformatics, Shantou University Medical College (SUMC), 515041, Shantou, China
| | - Jun-Qing Chen
- Key Lab of Diagnosis & Treatment Technology on Thoracic Oncology, Zhejiang Cancer Hospital, 310000, Hangzhou, China
| | - Yan-Xiu Ouyang
- ChangJiang Scholar's Laboratory, Shantou University Medical College, 515041, Shantou, China
| | - Jun Feng
- ChangJiang Scholar's Laboratory, Shantou University Medical College, 515041, Shantou, China
| | - Fan Zhang
- Guangdong Provincial Key Laboratory on Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Wen-He Huang
- The Breast Center, Cancer Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Qian Ying
- Key Lab of Diagnosis & Treatment Technology on Thoracic Oncology, Zhejiang Cancer Hospital, 310000, Hangzhou, China
| | - Chun-Fa Chen
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Xiao-Long Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Hong-Yan Dong
- Department of Pathology, Linyi People's Hospital, 276000, Linyi, China
| | - Guo-Jun Zhang
- ChangJiang Scholar's Laboratory, Shantou University Medical College, 515041, Shantou, China.
- The Breast Center, Cancer Hospital of Shantou University Medical College, 515041, Shantou, China.
- The Cancer Center, Xiang'an Hospital of Xiamen University, 2000 Xiang'an East Rd., 361111, Xiamen, Fujian, China.
| | - Min Chen
- ChangJiang Scholar's Laboratory, Shantou University Medical College, 515041, Shantou, China.
- The Cancer Center, Xiang'an Hospital of Xiamen University, 2000 Xiang'an East Rd., 361111, Xiamen, Fujian, China.
| |
Collapse
|
9
|
Cipro Š, Belhajová M, Eckschlager T, Zámečník J. MicroRNA expression in pediatric intracranial ependymomas and their potential value for tumor grading. Oncol Lett 2019; 17:1379-1383. [PMID: 30655909 DOI: 10.3892/ol.2018.9685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 10/26/2018] [Indexed: 11/06/2022] Open
Abstract
Intracranial ependymoma represents one of the most common pediatric central nervous system malignancies, and exhibits a wide range of clinical behavior from relatively indolent lesions to highly malignant anaplastic ependymomas. Due to the heterogeneous nature of this disease there is lack of prognostic markers, which would reliably predict the outcome of patients. MicroRNAs (miRNAs) have emerged as important molecules in cancer biology during past decade; however, very little is known about their role in ependymomas. The aim of the present study was to evaluate expression of miRNAs in archived formalin-fixed paraffin-embedded (FFPE) samples of pediatric intracranial ependymomas. The expression of miRNAs were examined in 29 samples of ependymoma and we observed that miR-135a-3p, miR-137, miR-17-5p, miR-181d and let-7d-5p were upregulated. In addition, a significantly higher expression of miR-203a was detected in Grade III tumors suggesting its possible use as a prognostic or diagnostic marker. The present study also demonstrated that storage of (FFPE) ependymoma samples for >20 years did not result in a deterioration of miRNAs. The present findings broaden the presently available knowledge regarding miRNA expression in ependymomas and provide further evidence for the employment of miRNA analysis as a supplementary method for the morphological assessment of ependymoma samples.
Collapse
Affiliation(s)
- Šimon Cipro
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Marie Belhajová
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Tomáš Eckschlager
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Josef Zámečník
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, 150 06 Prague 5, Czech Republic
| |
Collapse
|
10
|
Piasecka D, Braun M, Kordek R, Sadej R, Romanska H. MicroRNAs in regulation of triple-negative breast cancer progression. J Cancer Res Clin Oncol 2018; 144:1401-1411. [PMID: 29923083 PMCID: PMC6061037 DOI: 10.1007/s00432-018-2689-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Dysregulation of miRNA profile has been associated with a broad spectrum of cellular processes underlying progression of various human malignancies. Increasing evidence suggests that specific microRNA clusters might be of clinical utility, especially in triple-negative breast carcinoma (TNBC), devoid of both predictive markers and potential therapeutic targets. Here we provide a comprehensive review of the existing data on microRNAs in TNBC, their molecular targets, a putative role in invasive progression with a particular emphasis on the epithelial-to-mesenchymal transition (EMT) and acquisition of stem-cell properties (CSC), regarded both as prerequisites for metastasis, and significance for therapy. METHODS PubMed and Medline databases were systematically searched for the relevant literature. 121 articles have been selected and thoroughly analysed. RESULTS Several miRNAs associated with EMT/CSC and invasion were identified as significantly (1) upregulated: miR-10b, miR-21, miR-29, miR-9, miR-221/222, miR-373 or (2) downregulated: miR-145, miR-199a-5p, miR-200 family, miR-203, miR-205 in TNBC. Dysregulation of miR-10b, miR-21, miR-29, miR-145, miR-200 family, miR-203, miR-221/222 was reported of prognostic value in TNBC patients. CONCLUSION Available data suggest that specific microRNA clusters might play an important role in biology of TNBC, understanding of which should assist disease prognostication and therapy.
Collapse
Affiliation(s)
| | - Marcin Braun
- Department of Pathology, Medical University of Lodz, Lodz, Poland
- Postgraduate School for Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Radzislaw Kordek
- Department of Pathology, Medical University of Lodz, Lodz, Poland
| | - Rafal Sadej
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| | - Hanna Romanska
- Department of Pathology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
11
|
Huang C, Yu M, Yao X. MicroRNA-17 and the prognosis of human carcinomas: a systematic review and meta-analysis. BMJ Open 2018; 8:e018070. [PMID: 29858404 PMCID: PMC5988052 DOI: 10.1136/bmjopen-2017-018070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 05/01/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Although the role of microRNA-17 (miR-17) has been identified as a tumour biomarker in various studies, its prognostic value in cancers remains unclear. Therefore, we performed a systematic review and meta-analysis to analyse and summarise the relationship between the miR-17 status and clinical outcome in a variety of human cancers. DESIGN Systematic review and meta-analysis. DATA SOURCES PubMed, Web of Science and Embase from the first year of records to 15 May 2017. OUTCOMES The patients' survival results were pooled, and pooled HRs with 95% CIs were calculated and used for measuring the strength of association between miR-17 and the prognosis of cancers, including hepatocellular carcinoma, lung cancer, osteosarcoma, glioma, T-cell lymphoblastic lymphoma and colon cancer. Heterogeneity, publication bias and subgroup analysis were also conducted. RESULTS A total of 1096 patients were included in this meta-analysis from 12 articles. The results indicated that the increased expression of miR-17 played an unfavourable role in overall survival in various human carcinomas with the HR of 1.342 taking into account the publication bias. In subgroup analysis, HR of ethnicity (non-Asian HR=1.48 and Asian HR=1.40), disease (digestive system HR=1.36 and blood system cancer (HR=2.38) were significant with P<0.05. For the analysis of disease-free survival and recurrence-free survival, the increased expression of miR-17 was associated with unfavourable prognosis (HR=1.40). CONCLUSIONS miR-17 may be a useful biomarker in predicting the clinical outcome of human cancers, but due to the limitations of the current studies, further verification of the role of miR-17 in human malignancies is urgently needed. PROSPERO REGISTRATION NUMBER CRD42017065749.
Collapse
Affiliation(s)
- Chengzhi Huang
- Department of General Surgery, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Medical College, Shantou University, Shantou, Guangdong, China
| | - Mengya Yu
- Department of General Surgery, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xueqing Yao
- Department of General Surgery, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Medical College, Shantou University, Shantou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Buschmann D, González R, Kirchner B, Mazzone C, Pfaffl MW, Schelling G, Steinlein O, Reithmair M. Glucocorticoid receptor overexpression slightly shifts microRNA expression patterns in triple-negative breast cancer. Int J Oncol 2018; 52:1765-1776. [PMID: 29620157 PMCID: PMC5919721 DOI: 10.3892/ijo.2018.4336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/15/2018] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a particularly aggressive subtype of breast cancer with limited options for clinical intervention. As with many solid tumors, TNBC is known to promote invasiveness and metastasis by secreting extracellular vesicles (EVs) capable of modulating the behaviour of recipient cells. Recent investigations have demonstrated that high expression levels of glucocorticoid receptor (GR) in TNBC are linked to therapy resistance, higher recurrence rates and increased mortality. In addition to activating protein-coding genes, GR is also involved in the expression of short non-coding RNAs including microRNAs (miRNAs or miRs). The molecular mechanisms responsible for the oncogenic effects of GR on TNBC have yet to be fully elucidated; however, emerging evidence suggests that miRNAs may play a pivotal role in tumorigenesis and metastasis. Thus, the aim of this study was to identify GR-regulated cellular and vesicular miRNAs that might contribute to the particularly oncogenic phenotype of TNBC with a high GR expression. We analyzed miRNA profiles of three TNBC cell lines using an in vitro model of GR overexpression. Next-generation sequencing revealed minor, cell line-specific changes in cellular miRNA expression, whereas vesicular miRNAs were not significantly regulated by GR. Additionally, the analysis of predicted miRNA targets failed to establish a causal link between GR-induced miRNA expression and oncogenic signaling. On the whole, given that GR influences miRNA profiles to only a small degree, other mechanisms are more likely to be responsible for the increased mortality of patients with TNBC with a high GR expression.
Collapse
Affiliation(s)
- Dominik Buschmann
- Institute of Human Genetics, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Ricardo González
- Institute of Human Genetics, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Claudia Mazzone
- Department of Pharmacy and Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Michael W Pfaffl
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Gustav Schelling
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Ortrud Steinlein
- Institute of Human Genetics, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, LMU Munich, 80336 Munich, Germany
| |
Collapse
|
13
|
Masuda T, Hayashi N, Kuroda Y, Ito S, Eguchi H, Mimori K. MicroRNAs as Biomarkers in Colorectal Cancer. Cancers (Basel) 2017; 9:cancers9090124. [PMID: 28902152 PMCID: PMC5615339 DOI: 10.3390/cancers9090124] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/01/2017] [Accepted: 09/10/2017] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRs) are small RNAs that repress mRNA translation, resulting in the degradation of mRNAs and regulation of the expression levels of various genes. Recent studies have shown that aberrant miR expression has a functional role in the initiation and progression of various malignancies, including colorectal cancer (CRC), which is one of the leading causes of cancer-related death worldwide. miRs have also been shown to have applications as diagnostic, prognostic, and predictive biomarkers because of their high tissue specificity, stability, and altered expression in tumor development. In this report, we examined the role of miRs as biomarkers in CRC through a review of meta-analyses and large-scale analyses having strong statistical confidence in the study outcomes. We also discuss current issues in the clinical application of these miRs.
Collapse
Affiliation(s)
- Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan.
| | - Naoki Hayashi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan.
| | - Yosuke Kuroda
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan.
| | - Shuhei Ito
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan.
| | - Hidetoshi Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan.
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan.
| |
Collapse
|
14
|
Takano Y, Masuda T, Iinuma H, Yamaguchi R, Sato K, Tobo T, Hirata H, Kuroda Y, Nambara S, Hayashi N, Iguchi T, Ito S, Eguchi H, Ochiya T, Yanaga K, Miyano S, Mimori K. Circulating exosomal microRNA-203 is associated with metastasis possibly via inducing tumor-associated macrophages in colorectal cancer. Oncotarget 2017. [PMID: 29108252 DOI: 10.18632/omcotarget.20009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A primary tumor can create a premetastatic niche in distant organs to facilitate the development of metastasis. The mechanism by which tumor cells communicate with host cells to develop premetastatic niches is unclear. We focused on the role of microRNA (miR) signaling in promoting metastasis. Here, we identified miR-203 as a signaling molecule between tumors and monocytes in metastatic colorectal cancer (CRC) patients. Notably, high expression of serum exosomal miR-203, a major form in circulation, was associated with distant metastasis and an independent poor prognostic factor, whereas low expression in tumor tissues was a poor prognostic factor in CRC patients. We also found that exosomes carrying miR-203 from CRC cells were incorporated into monocytes and miR-203 could promote the expression of M2 markers in vitro, suggesting miR-203 promoted the differentiation of monocytes to M2-tumor-associated macrophages (TAMs). In a xenograft mouse model, miR-203-transfected CRC cells developed more liver metastasis compared to control cells. In conclusion, serum exosomal miR-203 expression is a novel biomarker for predicting metastasis, possibly via promoting the differentiation of monocytes to M2-TAMs in CRC. Furthermore, we propose the concept of site-dependent functions for miR-203 in tumor progression.
Collapse
Affiliation(s)
- Yuki Takano
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan.,Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hisae Iinuma
- Department of Surgery, Teikyo University, Tokyo, Japan
| | - Rui Yamaguchi
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kuniaki Sato
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Taro Tobo
- Department of Pathology, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hidenari Hirata
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yosuke Kuroda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Sho Nambara
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Naoki Hayashi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Tomohiro Iguchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Shuhei Ito
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Satoru Miyano
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| |
Collapse
|
15
|
Takano Y, Masuda T, Iinuma H, Yamaguchi R, Sato K, Tobo T, Hirata H, Kuroda Y, Nambara S, Hayashi N, Iguchi T, Ito S, Eguchi H, Ochiya T, Yanaga K, Miyano S, Mimori K. Circulating exosomal microRNA-203 is associated with metastasis possibly via inducing tumor-associated macrophages in colorectal cancer. Oncotarget 2017; 8:78598-78613. [PMID: 29108252 PMCID: PMC5667985 DOI: 10.18632/oncotarget.20009] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022] Open
Abstract
A primary tumor can create a premetastatic niche in distant organs to facilitate the development of metastasis. The mechanism by which tumor cells communicate with host cells to develop premetastatic niches is unclear. We focused on the role of microRNA (miR) signaling in promoting metastasis. Here, we identified miR-203 as a signaling molecule between tumors and monocytes in metastatic colorectal cancer (CRC) patients. Notably, high expression of serum exosomal miR-203, a major form in circulation, was associated with distant metastasis and an independent poor prognostic factor, whereas low expression in tumor tissues was a poor prognostic factor in CRC patients. We also found that exosomes carrying miR-203 from CRC cells were incorporated into monocytes and miR-203 could promote the expression of M2 markers in vitro, suggesting miR-203 promoted the differentiation of monocytes to M2-tumor-associated macrophages (TAMs). In a xenograft mouse model, miR-203-transfected CRC cells developed more liver metastasis compared to control cells. In conclusion, serum exosomal miR-203 expression is a novel biomarker for predicting metastasis, possibly via promoting the differentiation of monocytes to M2-TAMs in CRC. Furthermore, we propose the concept of site-dependent functions for miR-203 in tumor progression.
Collapse
Affiliation(s)
- Yuki Takano
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan.,Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hisae Iinuma
- Department of Surgery, Teikyo University, Tokyo, Japan
| | - Rui Yamaguchi
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kuniaki Sato
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Taro Tobo
- Department of Pathology, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hidenari Hirata
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yosuke Kuroda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Sho Nambara
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Naoki Hayashi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Tomohiro Iguchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Shuhei Ito
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Satoru Miyano
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| |
Collapse
|
16
|
Haghnavaz N, Asghari F, Elieh Ali Komi D, Shanehbandi D, Baradaran B, Kazemi T. HER2 positivity may confer resistance to therapy with paclitaxel in breast cancer cell lines. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:518-523. [PMID: 28509576 DOI: 10.1080/21691401.2017.1326927] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION MicroRNAs (miRNAs) are short non-coding single-stranded RNAs. Involving in post-transcriptional gene silencing, miRNAs are thought to play important roles in many cancers such as breast cancer. Paclitaxel is used widely in the treatment of breast cancer. In this study, we investigated the effect of paclitaxel treatment on the expression levels of two oncomirs (oncomiRs), miR-21 and miR-203, in breast cancer cell lines. MATERIALS AND METHODS MTT assay was performed to determine IC50 of paclitaxel for human breast cancer cell lines including MCF-7, MDA-MB-231, SKBR3 and BT-474. After RNA extraction and cDNA synthesis, the expression levels of miRNAs were then quantitatively evaluated using real-time PCR. RESULTS Our results showed that after treatment, the expression levels of both miR-21 and miR-203 were significantly increased in HER2-positive cell lines, BT-474 and SKBR3. HER2-negative cell lines, MCF-7 and MDA-MB-231, in contrast had significantly decreased expression of both assessed oncomiRs. CONCLUSION Our results showed that the expression levels of oncomiRs were increased in HER-2 positive breast cancer cells and this finding is in line with previous studies. Our findings present a probable mechanism of resistance against paclitaxel chemotherapy in HER2-positive breast cancers.
Collapse
Affiliation(s)
- Navideh Haghnavaz
- a Immunology Research Center , Tabriz University of Medical Science , Tabriz , Iran.,b Department of Immunology, Faculty of Medicine , Tabriz University of Medical Science , Tabriz , Iran.,c Student research committee , Tabriz University of Medical Science , Tabriz , Iran
| | - Faezeh Asghari
- a Immunology Research Center , Tabriz University of Medical Science , Tabriz , Iran.,b Department of Immunology, Faculty of Medicine , Tabriz University of Medical Science , Tabriz , Iran
| | - Daniel Elieh Ali Komi
- a Immunology Research Center , Tabriz University of Medical Science , Tabriz , Iran.,b Department of Immunology, Faculty of Medicine , Tabriz University of Medical Science , Tabriz , Iran
| | - Dariush Shanehbandi
- b Department of Immunology, Faculty of Medicine , Tabriz University of Medical Science , Tabriz , Iran
| | - Behzad Baradaran
- a Immunology Research Center , Tabriz University of Medical Science , Tabriz , Iran.,b Department of Immunology, Faculty of Medicine , Tabriz University of Medical Science , Tabriz , Iran
| | - Tohid Kazemi
- a Immunology Research Center , Tabriz University of Medical Science , Tabriz , Iran.,b Department of Immunology, Faculty of Medicine , Tabriz University of Medical Science , Tabriz , Iran
| |
Collapse
|
17
|
Cells to Surgery Quiz: December 2016. J Invest Dermatol 2016; 136:e133. [PMID: 30487086 DOI: 10.1016/j.jid.2016.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
|