1
|
Chen JT, Chang YH, Barquero C, Jia Teo MM, Kan NW, Wang CA. Microsaccade behavior associated with inhibitory control in athletes in the antisaccade task. PSYCHOLOGY OF SPORT AND EXERCISE 2025; 78:102818. [PMID: 39900169 DOI: 10.1016/j.psychsport.2025.102818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/24/2024] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
The ability to achieve a state of readiness before upcoming tasks, known as a preparatory set, is critical for athletic performance. Here, we investigated these preparatory processes associated with inhibitory control using the anti-saccade paradigm, in which participants are instructed, prior to target appearance, either to automatically look at the target (pro-saccade) or to suppress this automatic response and intentionally look in the opposite direction (anti-saccade). We focused on microsaccadic eye movements that happen before saccade responses in either pro- or anti-saccade tasks, as these microsaccades reflect ongoing preparatory processes during saccade planning before execution. We hypothesized that athletes, compared to non-athletes, would demonstrate better preparation, given research generally indicating higher inhibitory control in athletes. Our findings showed that microsaccade rates decreased before target appearance, with lower rates observed during anti-saccade preparation compared to pro-saccade preparation. However, microsaccade rates and metrics did not differ significantly between athletes and non-athletes. Moreover, reduced microsaccade rates were associated with improved task performance in non-athletes, leading to higher accuracy and faster saccade reaction times (SRTs) in trials without microsaccades. For athletes, only SRTs were affected by microsaccade occurrence. Moreover, the modulation of microsaccadic inhibition on accuracy was more pronounced in non-athletes compared to athletes. In conclusion, while microsaccade responses were modulated by task preparation, differences between athletes and non-athletes were non-significant. These findings, for the first time, highlight the potential of using microsaccades as an online objective index to study preparatory sets in sports science research.
Collapse
Affiliation(s)
- Jui-Tai Chen
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan; Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yi-Hsuan Chang
- Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City, Taiwan; Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Cesar Barquero
- Department of Physical Activity and Sport Science, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Moeka Mong Jia Teo
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei City, Taiwan
| | - Nai-Wen Kan
- Center of General Education, Taipei Medical University, Taipei City, Taiwan
| | - Chin-An Wang
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan; Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
2
|
Chen JT, Kan NW, Barquero C, Teo MMJ, Wang CA. Saccade Latency and Metrics in the Interleaved Pro- and Anti-Saccade Task in Open Skill Sports Athletes. Scand J Med Sci Sports 2024; 34:e14713. [PMID: 39155402 DOI: 10.1111/sms.14713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/17/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
Evidence has demonstrated that athletes exhibit superior cognitive performance associated with executive control. In the oculomotor system, this function has been examined using the interleaved pro-saccade and anti-saccade task (IPAST), wherein participants, prior to target appearance, are instructed to either automatically look at the peripheral target (pro-saccade) or suppress the automatic response and voluntarily look in the opposite direction (anti-saccade). While the IPAST has provided much insight into sensorimotor and inhibitory processing, it has yet to be performed in athletes. Moreover, limited research has examined saccade metrics in athletes. Here, we examined saccade latency and movement kinematics in the IPAST among athletes (N = 40) and nonathletes (NON) (N = 40). Higher direction error rates were obtained in the anti-saccade compared to the pro-saccade condition, with no differences between athletes and NON noted. Significantly faster saccade latencies were observed in athletes compared to NON in both conditions, in addition to faster pro-saccades compared to anti-saccades. Furthermore, athletes showed significantly higher frequencies and faster latencies of express saccades compared to NON in correct pro-saccades. Additionally, athletes exhibited significantly faster latencies of express saccades compared to NON in erroneous anti-saccades. Differences in saccade metrics between athletes and NON were not seen. Overall, these findings demonstrate that athletes display altered saccade performance likely associated with sensorimotor and preparatory processing, highlighting the potential of using IPAST to objectively investigate sensorimotor and cognitive functions in athletes.
Collapse
Affiliation(s)
- Jui-Tai Chen
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Nai-Wen Kan
- Center of General Education, Taipei Medical University, Taipei City, Taiwan
| | - Cesar Barquero
- Department of Physical Activity and Sport Science, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City, Taiwan
| | - Moeka Mong Jia Teo
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei City, Taiwan
| | - Chin-An Wang
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
3
|
Song A, Gabriel R, Mohiuddin O, Whitaker D, Wisely CE, Kim T. Automated Eye Tracking Enables Saccade Performance Evaluation of Patients with Concussion History. Optom Vis Sci 2023; 100:855-860. [PMID: 38033013 DOI: 10.1097/opx.0000000000002090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
SIGNIFICANCE Automated eye tracking could be used to evaluate saccade performance of patients with concussion history, providing quantitative insights about the degree of oculomotor impairment and potential vision rehabilitation strategies for this patient population. PURPOSE To evaluate the saccade performance of patients with concussion history based on automated eye-tracking test results. METHODS We conducted a retrospective study of patients with concussion history, primarily from sports participation, who underwent oculomotor testing based on an eye-tracking technology at the Duke Eye Center vision rehabilitation clinic between June 30, 2017, and January 10, 2022. Patients' saccade test results were reviewed, including saccade fixation and saccade speed/accuracy ratio. The outcomes were compared with age-matched normative population data derived from healthy individuals. Multiple linear regression analyses were performed to identify factors associated with saccade performance among patients with concussion history. RESULTS On hundred fifteen patients with concussion history were included in the study. Patients with concussion, on average, had fewer fixations on self-paced horizontal and vertical saccade tests and lower horizontal and vertical saccade speed/accuracy ratios compared with normative ranges. Among patients with concussion history, multiple linear regression analyses showed that older age was associated with fewer fixations on horizontal and vertical saccade tests, whereas male sex was associated with more fixations on horizontal and vertical saccade tests (all P < .01). In addition, older age was associated with lower horizontal saccade speed/accuracy ratio, after adjusting for sex, number of concussion(s), and time from most recent concussion to oculomotor testing ( P < .001). CONCLUSIONS Patients with concussion history had lower saccade performance based on eye tracking compared with healthy individuals. We additionally identified risk factors for lower saccade performance among patients with concussion history. These findings support the use of saccade test results as biomarkers for concussion and have implications for post-concussion rehabilitation strategies.
Collapse
Affiliation(s)
- Ailin Song
- Duke University School of Medicine, Durham, North Carolina
| | - Rami Gabriel
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Omar Mohiuddin
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Diane Whitaker
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | | | - Terry Kim
- Department of Ophthalmology, Duke University, Durham, North Carolina
| |
Collapse
|
4
|
Zou L, Herold F, Ludyga S, Kamijo K, Müller NG, Pontifex MB, Heath M, Kuwamizu R, Soya H, Hillman CH, Ando S, Alderman BL, Cheval B, Kramer AF. Look into my eyes: What can eye-based measures tell us about the relationship between physical activity and cognitive performance? JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:568-591. [PMID: 37148971 PMCID: PMC10466196 DOI: 10.1016/j.jshs.2023.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND There is a growing interest to understand the neurobiological mechanisms that drive the positive associations of physical activity and fitness with measures of cognitive performance. To better understand those mechanisms, several studies have employed eye-based measures (e.g., eye movement measures such as saccades, pupillary measures such as pupil dilation, and vascular measures such as retinal vessel diameter) deemed to be proxies for specific neurobiological mechanisms. However, there is currently no systematic review providing a comprehensive overview of these studies in the field of exercise-cognition science. Thus, this review aimed to address that gap in the literature. METHODS To identify eligible studies, we searched 5 electronic databases on October 23, 2022. Two researchers independently extracted data and assessed the risk of bias using a modified version of the Tool for the assEssment of Study qualiTy and reporting in EXercise (TESTEX scale, for interventional studies) and the critical appraisal tool from the Joanna Briggs Institute (for cross-sectional studies). RESULTS Our systematic review (n = 35 studies) offers the following main findings: (a) there is insufficient evidence available to draw solid conclusions concerning gaze-fixation-based measures; (b) the evidence that pupillometric measures, which are a proxy for the noradrenergic system, can explain the positive effect of acute exercise and cardiorespiratory fitness on cognitive performance is mixed; (c) physical training- or fitness-related changes of the cerebrovascular system (operationalized via changes in retinal vasculature) are, in general, positively associated with cognitive performance improvements; (d) acute and chronic physical exercises show a positive effect based on an oculomotor-based measure of executive function (operationalized via antisaccade tasks); and (e) the positive association between cardiorespiratory fitness and cognitive performance is partly mediated by the dopaminergic system (operationalized via spontaneous eye-blink rate). CONCLUSION This systematic review offers confirmation that eye-based measures can provide valuable insight into the neurobiological mechanisms that may drive positive associations between physical activity and fitness and measures of cognitive performance. However, due to the limited number of studies utilizing specific methods for obtaining eye-based measures (e.g., pupillometry, retinal vessel analysis, spontaneous eye blink rate) or investigating a possible dose-response relationship, further research is necessary before more nuanced conclusions can be drawn. Given that eye-based measures are economical and non-invasive, we hope this review will foster the future application of eye-based measures in the field of exercise-cognition science.
Collapse
Affiliation(s)
- Liye Zou
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam 14476, Germany.
| | - Fabian Herold
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam 14476, Germany
| | - Sebastian Ludyga
- Department of Sport, Exercise, and Health, University of Basel, Basel 4052, Switzerland
| | - Keita Kamijo
- Faculty of Liberal Arts and Sciences, Chukyo University, Nagoya 466-8666, Japan
| | - Notger G Müller
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam 14476, Germany
| | - Matthew B Pontifex
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| | - Matthew Heath
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London ON N6A 3K7, Canada; Canadian Centre for Activity and Aging, University of Western Ontario, London ON, N6A 3K7, Canada; Graduate Program in Neuroscience, University of Western Ontario, London ON, N6A 3K7, Canada
| | - Ryuta Kuwamizu
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-0006, Japan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-0006, Japan; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-0006, Japan
| | - Charles H Hillman
- Center for Cognitive and Brain Health, Department of Psychology, Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA
| | - Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Brandon L Alderman
- Department of Kinesiology and Health, Rutgers University-New Brunswick, New Brunswick, NJ 08854, USA
| | - Boris Cheval
- Swiss Center for Affective Sciences, University of Geneva, Geneva 1205, Switzerland; Laboratory for the Study of Emotion Elicitation and Expression (E3Lab), Department of Psychology, University of Geneva, Geneva 1205, Switzerland
| | - Arthur F Kramer
- Department of Psychology, Center for Cognitive and Brain Health, Northeastern University, Boston, MA 02115, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
5
|
Badau D, Stoica AM, Litoi MF, Badau A, Duta D, Hantau CG, Sabau AM, Oancea BM, Ciocan CV, Fleancu JL, Gozu B. The Impact of Peripheral Vision on Manual Reaction Time Using Fitlight Technology for Handball, Basketball and Volleyball Players. Bioengineering (Basel) 2023; 10:697. [PMID: 37370628 DOI: 10.3390/bioengineering10060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The purpose of the research was to identify the impact of peripheral (unilateral and bilateral) vision on manual reaction time to visual stimuli in handball, basketball and volleyball players by implementing a 6-week experimental program of specific exercises and some adapted tests using Fitlight technology. The research included 412 players (212 male-51.5%; 200 female-48.5%) from three team sports: basketball-146 (35.4%), handball-140 (40%) and volleyball-126 (30.6%). The experimental program carried out over 6 weeks was identical for all handball, basketball and volleyball players participating in the study; two training sessions per week were performed, with each session lasting 30 min; 15 exercises were used for the improvement of manual reaction time to visual stimuli involving peripheral vision. Through the Analysis of Variance (ANOVA), we identified statistically significant differences between the arithmetic means of the samples of handball, basketball and volleyball players, as well as according to general samples also of gender (male and female), p = 0.000. Male and female handball samples achieved the greatest progress in manual reaction time to visual stimuli involving peripheral vision for the Reaction time test with a unilateral right visual stimulus (30 s) and the Reaction time test with a unilateral left visual stimulus (30 s), while general sample also of male and female basketball samples, for the Reaction time test with bilateral visual stimuli (30 s) and the Reaction time test with six Fitlights (1 min); male and female volleyball samples recorded the lowest progress in all tests compared to handball and basketball groups. According to our results, female samples made greater progress in reaction time than male groups for all four tests of the present study. The implemented experimental program led to an improvement in manual reaction time to visual stimuli due to the use of Fitlight technology and the involvement of peripheral vision for all research samples.
Collapse
Affiliation(s)
- Dana Badau
- Petru Maior Faculty of Sciences and Letters, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania
- Interdisciplinary Doctoral School, Transylvania University of Brasov, 500036 Brasov, Romania
| | - Alina Mihaela Stoica
- Department of Physical Education and Sports, University of Bucharest, 050107 Bucharest, Romania
| | - Marin Florin Litoi
- Department of Physical Education and Sports, University of Bucharest, 050107 Bucharest, Romania
| | - Adela Badau
- Petru Maior Faculty of Sciences and Letters, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania
| | - Daniel Duta
- Faculty of Physical Education and Sport, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Cezar Gheorghe Hantau
- Faculty of Physical Education and Sport, National University of Physical Education and Sport, 060057 Bucharest, Romania
| | - Anca Maria Sabau
- Faculty of Geography, Tourism and Sports, University of Oradea, 410081 Oradea, Romania
| | - Bogdan Marian Oancea
- Faculty of Physical Education and Mountain Sports, Transylvania University of Brasov, 500036 Brasov, Romania
| | - Catalin Vasile Ciocan
- Faculty of Physical Education and Sports, Vasile Alecsandri University of Bacau, 600115 Bacau, Romania
| | - Julien Leonard Fleancu
- Faculty of Sciences, Physical Education and Informatics, University of Pitesti, 110040 Pitesti, Romania
| | - Bogdan Gozu
- Department of Physical Education and Sports, University of Bucharest, 050107 Bucharest, Romania
| |
Collapse
|