1
|
Zou J, Ba G, Wang D, Li M, Jin S, Chen C, Tan W, He J, Du H, Wang P, Zhu Y. Rumen Bacterial Community Responses to Three DHA Supplements: A Comparative In Vitro Study. Animals (Basel) 2025; 15:196. [PMID: 39858196 PMCID: PMC11758605 DOI: 10.3390/ani15020196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The aim of this study was to investigate the loss of docosahexaenoic acid (DHA) from three supplements (two powders and one oil) after digestion (rumen and gastrointestinal) and their effects on the number and composition of rumen bacteria, using an in vitro approach. The concentration of supplements has a significant impact on the DHA loss rate and algal oil exhibited the highest rate of loss, but bioaccessibility was not significantly different from the other supplements. 16S rRNA sequencing showed that three DHA supplements altered the bacterial composition of in vitro batch cultures inoculated with rumen microorganisms from cows, and caused changes in the relative abundance of important bacterial phyla, families, and genera. DHA supplements altered the abundance of bacterial species, including Prevotella, Ruminobacter, Succiniclassicum, Succinivibrio, Lachnospiraceae, and Muribaculaceae. Importantly, these changes may be associated with the ruminal response in biohydrogenation. Algal oil has the most significant impact on rumen microbiota by reducing the richness and diversity of rumen microbiota, and significantly altering the composition of multiple important microbiota.
Collapse
Affiliation(s)
- Jianmin Zou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China;
- Department of Nutrition and Health, China Agricultural University, No. 17 Tsinghua East Road, Haidian District, Beijing 100083, China; (S.J.); (C.C.)
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Genna Ba
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot 010110, China; (G.B.); (W.T.)
| | - Dian Wang
- Inner Mongolia Youran Dairy Group Limited, Hohhot 010010, China;
| | - Mengmeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Shaohong Jin
- Department of Nutrition and Health, China Agricultural University, No. 17 Tsinghua East Road, Haidian District, Beijing 100083, China; (S.J.); (C.C.)
| | - Chong Chen
- Department of Nutrition and Health, China Agricultural University, No. 17 Tsinghua East Road, Haidian District, Beijing 100083, China; (S.J.); (C.C.)
| | - Wei Tan
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot 010110, China; (G.B.); (W.T.)
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; (J.H.); (H.D.)
| | - Hengsheng Du
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; (J.H.); (H.D.)
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, No. 17 Tsinghua East Road, Haidian District, Beijing 100083, China; (S.J.); (C.C.)
| | - Yinhua Zhu
- Department of Nutrition and Health, China Agricultural University, No. 17 Tsinghua East Road, Haidian District, Beijing 100083, China; (S.J.); (C.C.)
| |
Collapse
|
2
|
Toral PG, Hervás G, Frutos P. Invited review: Research on ruminal biohydrogenation-Achievements, gaps in knowledge, and future approaches from the perspective of dairy science. J Dairy Sci 2024; 107:10115-10140. [PMID: 39154717 DOI: 10.3168/jds.2023-24591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Scientific knowledge about ruminal biohydrogenation (BH) has improved greatly since this metabolic process was empirically confirmed in 1951. For years, BH had mostly been perceived as a process to be avoided to increase the postruminal flow of UFA from the diet. Two milestones changed this perception and stimulated great interest in BH intermediates themselves: In 1987, the in vitro anticarcinogenic properties of CLA were described, and in 2000, the inhibition of milk fat synthesis by trans-10,cis-12 CLA was confirmed. Since then, numerous BH metabolites have been described in small and large ruminants, and the major deviation from the common BH pathway (i.e., the trans-10 shift) has been reasonably well established. However, there are some less well-characterized alterations, and the comprehensive description of new BH intermediates (e.g., using isotopic tracers) has not been coupled with research on their biological effects. In this regard, the low quality of some published fatty acid profiles may also be limiting the advance of knowledge in BH. Furthermore, although BH seems to no longer be considered a metabolic niche inhabited by a few bacterial species with a highly specific metabolic capability, researchers have failed to elucidate which specific microbial groups are involved in the process and the basis for alterations in BH pathways (i.e., changes in microbial populations or their activity). Unraveling both issues may be beneficial for the description of new microbial enzymes involved in ruminal lipid metabolism that have industrial interest. From the perspective of dairy science, other knowledge gaps that require additional research in the coming years are evaluation of the relationship between BH and feed efficiency and enteric methane emissions, as well as improving our understanding of how alterations in BH are involved in milk fat depression. Addressing these issues will have relevant practical implications in dairy science.
Collapse
Affiliation(s)
- P G Toral
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain.
| | - G Hervás
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - P Frutos
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| |
Collapse
|
3
|
Beyzi SB, Dallı CÇ. Changes in the rumen and milk fatty acid profile and milk composition in response to fish and microalgae oils supplementation to diet alone or combination in dairy goats. Trop Anim Health Prod 2023; 55:407. [PMID: 37982945 DOI: 10.1007/s11250-023-03824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Dietary fat supplementation in the ruminant diet is known to be a good strategy to increase beneficial milk fat compounds such as polyunsaturated fatty acids (PUFA) and conjugated linoleic acid (CLA). To the best of our knowledge, this is the first study to compare and combine fish oil (FO) and Schizachyrium microalgae oil (MA) supplementation to the diets of dairy goats. This study aimed to investigate the inclusion of FO, MA, and their combinations in the diets for effects on performance, milk composition, milk fatty acids, ruminal biohydrogenation, and fermentation parameters in dairy goats. Four cannulated Saanen dairy goats in the second lactation with a daily 3.25 ± 0.10 L milk yield and 45.08 ± 0.5kg body weight were assigned to four treatments: (1) no lipid supplementation (CON), (2) supplementation with 20 g/kg of FO, (3) 20 g/kg of MA, (4) 10 g/kg FO + 10 g/kg MA (FOMA). Milk and fatty acid composition were determined in samples taken from three consecutive days of milking after 21 days of adaptation. On the same days, ruminal fatty acids were determined. Dietary oil supplementations did not affect the performance parameters in dairy goats. However, fat yield decreased in FOMA. The oil supplementations did not affect the milk composition. However, cholesterol in milk increased in FO (P < 0.05). C16:0 FA in milk increased in MA. C18:0 FA in milk was lowest in MA. The highest milk trans-11 C18:1 FA was in the MA group. Cis-9, trans-11 CLA, trans-10, cis-12 CLA, and ∑PUFA increased in milk with oil supplementations to diet. Milk ∑SFA was the lowest in the FO group. Ruminal C18:0 fatty acid was decreased in oil supplementations to diet. Ruminal trans-11 C18:1, cis-9, trans-11 CLA, trans-10, and cis-12 CLA were increased in oil-supplemented groups. Ruminal fermentation parameters were not affected by oil supplementation to diet; however, there was a propionate increase in the MA group. The serum glucose and cholesterol levels were not affected by oil supplementation to diet.
Collapse
Affiliation(s)
- Selma Büyükkılıç Beyzi
- Department of Animal Science, Faculty of Agriculture, University of Erciyes, 38039, Kayseri, Turkey.
| | - Cem Çağlar Dallı
- Department of Animal Science, Faculty of Agriculture, University of Erciyes, 38039, Kayseri, Turkey
| |
Collapse
|
4
|
Buryakov NP, Sycheva LV, Trukhachev VI, Zaikina AS, Buryakova MA, Nikonov IN, Petrov AS, Kravchenko AV, Fathala MM, Medvedev IK, Aleshin DE. Role of Dietary Inclusion of Phytobiotics and Mineral Adsorbent Combination on Dairy Cows' Milk Production, Nutrient Digestibility, Nitrogen Utilization, and Biochemical Parameters. Vet Sci 2023; 10:vetsci10030238. [PMID: 36977277 PMCID: PMC10058306 DOI: 10.3390/vetsci10030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Our research purpose was to study the effect of the inclusion of a combination of phytobiotics in the form of dry Fucus vesiculosus grits (FG) and a mineral adsorbent from the heat-treated mineral shungite (TMS) on milk productivity, nutrient digestibility, and biochemical parameters of the Suksun dairy cows. A total of 80 dry-hardy cows of the Suksun breed were divided into four groups (20 heads each), balanced primarily by breed, age, body weight, body condition score, and indicators of milk yield for the previous lactation. The selected cows were with an average live body weight of 512.0 ± 1.28 kg, BCS 3.0-3.5, and parities of 6250 kg milk. The control group (CON) were fed the basic ration only; the second (TMS), third (FG), and fourth (TMS + FG) groups were fed the basic ration provided by 50 g of the mineral adsorbent from heat-treated shungite, 100 g of Fucus grits (Fucus vesiculosus), 50 g of the mineral adsorbent from heat-treated shungite, and 100 g of dry grits from Fucus vesiculosus, respectively. The total protein content in milk was significantly higher in the group receiving Fucus vesiculosus by 0.05% and the group receiving a combination of mineral adsorbent and Fucus vesiculosus by 0.03%. The percentage of milk fat content recorded the highest significant value in (TMS) group when compared to the control and represented (4.37 vs. 3.95). The group of cows that received (TMS + FG) revealed a significant difference in the digestibility of both ether extract and crude fiber when compared to the control group and represented (54.74 vs. 51.71 and 60.68 vs. 55.15%), respectively. The cows supplemented with a mineral adsorbent or a combination of mineral adsorbent and Fucus vesiculosus revealed a significant difference in the digestibility of ether extract and crude fiber in the group receiving TMS + FG by 3.0% (p < 0.05) and 5.5% (p < 0.05), respectively. The intake of nitrogen with the diet increased in (FG) and (TMS + FG) groups by 11.3 g (p < 0.05) and 13.4 g (p < 0.05) of nitrogen. There was an increase (p < 0.05) in the concentration of rumen ammonia in the control group compared to the other groups. The glucose content of those cows that received FG and TMS + FG combination increased (p < 0.05) by 0.76 mmol/L and 0.90 mmol/l in relation to the control group. The globulin, albumin/globulin ratio, and the level of triglycerides revealed a significant difference between the different experimental groups. In brief, the inclusion of a combination of phytobiotics in the form of dry Fucus vesiculosus grits and a mineral adsorbent from the heat-treated mineral shungite in Suksun dairy cows' diets improved milk composition, digestibility of nutrients, utilization of nitrogen, and did not cause deleterious effects on blood biochemical indicators.
Collapse
Affiliation(s)
- Nikolai P Buryakov
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow 125493, Russia
| | - Larisa V Sycheva
- Department of Animal Husbandry, Faculty of Veterinary Medicine and Animal Science, Perm State Agro-Technological University, Perm 614990, Russia
| | - Vladimir I Trukhachev
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow 125493, Russia
| | - Anastasiya S Zaikina
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow 125493, Russia
| | - Maria A Buryakova
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow 125493, Russia
| | - Ilia N Nikonov
- Department of Animal Hygiene and Poultry Breeding Named after A.K. Danilova, Faculty of Animal Technologies and Agribusiness, Moscow State Academy of Veterinary Medicine and Biotechnology-MVA Named after K.I. Skryabin, Moscow 109472, Russia
| | - Alexander S Petrov
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow 125493, Russia
| | - Andrey V Kravchenko
- Department of Animal Husbandry, Faculty of Veterinary Medicine and Animal Science, Perm State Agro-Technological University, Perm 614990, Russia
| | - Mohamed M Fathala
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow 125493, Russia
- Animal Husbandry and Wealth Development Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria 5424041, Egypt
| | - Ivan K Medvedev
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow 125493, Russia
| | - Dmitrii E Aleshin
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow 125493, Russia
| |
Collapse
|
5
|
In Vitro Studies on Rumen Fermentation and Methanogenesis of Different Microalgae and Their Effects on Acidosis in Dairy Cows. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Two in vitro studies were carried out on nonlactating dairy cows. Experiment 1 compared the methanogenesis and rumen fermentation parameters of various microalgae (Spirulina platensis, Chlorella vulgaris, and Schizochytrium spp.) and protein feeds (sunflower meal, soybean meal, and alfalfa hay) with monensin (MON). Rumen fermentation parameters were determined by an in vitro gas production system. Experiment 2 compared the ability of three microalgae to prevent acidosis. They were tested for 6 h against oat straw (100 mg) and MON (12 g/mL) to ameliorate ruminal acidosis caused by the addition of glucose (0.1 g/mL) as a fermentable carbohydrate with rumen fluid. In experiment 1, there were variations in the nutrient content of microalgae and protein sources. The dry matter content of the substrates ranged from 90 to 94%, and the organic matter content ranged from 82 to 88%, with Schizochytrium spp. having the highest. Protein content in algae and protein feeds ranged from 18–62% of dry matter (DM) to 16–48% DM, with S. platensis and C. vulgaris having the highest. The ether extract of Schizochytrium spp. (45.5% DM) was the highest of any substrate. In vitro rumen fermentation revealed that protein feeds increased the cumulative gas production at the highest level while MON caused a decrease. Ruminal pH was found to be higher in MON (6.95) and protein feeds (6.77–6.81) than in algae (6.37–6.50). In addition, in terms of metabolizable energy and digestible organic matter, protein feeds outperformed algae. The MON produced the least amount of methane (CH4) of any substrate, but Schizochytrium spp. demonstrated potential for CH4 reduction. In these groups, the decrease in CH4 production was accompanied by a decrease in total volatile fatty acids, acetate, and the acetate-to-propionate ratio, but an increase in propionate. Experiment 2 revealed MON as the most effective cure for controlling acidosis. However, C. vulgaris and Schizochytrium spp. had an effect on medium culture pH and demonstrated potential for acidosis prevention. This study found that algae can influence ruminal fermentation, have the potential to reduce CH4 production, and may reduce acidosis incidence rates. These assumptions, however, must be validated through in vivo studies.
Collapse
|
6
|
Della Badia A, Frutos P, Toral PG, Hervás G. Susceptibility to milk fat depression in dairy sheep and goats: Individual variation in ruminal fermentation and biohydrogenation. J Dairy Sci 2022; 106:245-256. [DOI: 10.3168/jds.2022-22248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
|
7
|
Vítor ACM, Francisco AE, Silva J, Pinho M, Huws SA, Santos-Silva J, Bessa RJB, Alves SP. Freeze-dried Nannochloropsis oceanica biomass protects eicosapentaenoic acid (EPA) from metabolization in the rumen of lambs. Sci Rep 2021; 11:21878. [PMID: 34750444 PMCID: PMC8576006 DOI: 10.1038/s41598-021-01255-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/25/2021] [Indexed: 01/01/2023] Open
Abstract
Eicosapentaenoic acid (EPA) from freeze-dried biomass of Nannochloropsis oceanica microalgae resists ruminal biohydrogenation in vitro, but in vivo demonstration is needed. Therefore, the present study was designed to test the rumen protective effects of N. oceanica in lambs. Twenty-eight lambs were assigned to one of four diets: Control (C); and C diets supplemented with: 1.2% Nannochloropsis sp. oil (O); 12.3% spray-dried N. oceanica (SD); or 9.2% N. oceanica (FD), to achieve 3 g EPA /kg dry matter. Lambs were slaughtered after 3 weeks and digestive contents and ruminal wall samples were collected. EPA concentration in the rumen of lambs fed FD was about 50% higher than lambs fed SD or O diets. Nevertheless, the high levels of EPA in cecum and faeces of animals fed N. oceanica biomass, independently of the drying method, suggests that EPA was not completely released and absorbed in the small intestine. Furthermore, supplementation with EPA sources also affected the ruminal biohydrogenation of C18 fatty acids, mitigating the shift from the t10 biohydrogenation pathways to the t11 pathways compared to the Control diet. Overall, our results demonstrate that FD N. oceanica biomass is a natural rumen-protected source of EPA to ruminants.
Collapse
Affiliation(s)
- Ana C M Vítor
- Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal.,CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Alexandra E Francisco
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal.,Polo de Investigação de Santarém, Instituto Nacional de Investigação Agrária E Veterinária (INIAV-Santarém), 2005-048, Vale de Santarém, Portugal
| | - Joana Silva
- Allmicroalgae, Rua 25 Abril, 2445-413, Pataias, Portugal
| | - Mário Pinho
- Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal.,CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Sharon A Huws
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - José Santos-Silva
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal.,Polo de Investigação de Santarém, Instituto Nacional de Investigação Agrária E Veterinária (INIAV-Santarém), 2005-048, Vale de Santarém, Portugal
| | - Rui J B Bessa
- Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal.,CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Susana P Alves
- Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal. .,CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal.
| |
Collapse
|
8
|
Seaweeds as a Fermentation Substrate: A Challenge for the Food Processing Industry. Processes (Basel) 2021. [DOI: 10.3390/pr9111953] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Seaweeds are gaining momentum as novel and functional food and feed products. From whole consumption to small bioactive compounds, seaweeds have remarkable flexibility in their applicability, ranging from food production to fertilizers or usages in chemical industries. Regarding food production, there is an increasing interest in the development of novel foods that, at the same time, present high nutritious content and are sustainably developed. Seaweeds, because they require no arable land, no usage of fresh water, and they have high nutritious and bioactive content, can be further explored for the development of newer and functional food products. Fermentation, especially performed by lactic acid bacteria, is a method used to produce functional foods. However, fermentation of seaweed biomass remains an underdeveloped topic that nevertheless demonstrates high potential for the production of new alimentary products that hold and further improve the organoleptic and beneficial properties that these organisms are characterized for. Although further research has to be deployed in this field, the prebiotic and probiotic potential demonstrated by fermented seaweed can boost the development of new functional foods.
Collapse
|
9
|
The Effect of Forage-to-Concentrate Ratio on Schizochytrium spp.-Supplemented Goats: Modifying Rumen Microbiota. Animals (Basel) 2021; 11:ani11092746. [PMID: 34573711 PMCID: PMC8466047 DOI: 10.3390/ani11092746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The in-depth understanding of rumen functions would be the greatest achievement of animal nutritionists. Hence, plenty of feed additives and various nutritional techniques are studied in modifying and understand the rumen habitat. In our study, we investigated the effect of alteration of the forage: concentrate (F:C) ratio in goats supplemented with the microalgae Schizochytrium spp. on rumen microbiota communities and enzymatic activity. Our results suggested that even though specific microbes’ abundance was altered, their corresponding enzymatic potential did not follow the same trend. Nonetheless, principal ruminal functions such as ammonia accumulation, fibrolytic activity, and degradation rate of specific fatty acids were also modified due to dietary intervention. Abstract The inclusion of feed additives and the implementation of various nutritional strategies are studied to modify the rumen microbiome and consequently its function. Nevertheless, rumen enzymatic activity and its intermediate products are not always matched with the microbiome structure. To further elucidate such differences a two-phase trial using twenty-two dairy goats was carried out. During the first phase, both groups (20HF n = 11; high forage and 20HG n = 11; high grain) were supplemented with 20 g Schizochytrium spp./goat/day. The 20HF group consumed a diet with a forage:concentrate (F:C) ratio of 60:40 and the 20HG-diet consisted of a F:C = 40:60. In the second phase, the supplementation level of Schizochytrium spp. was increased to 40 g/day/goat while the F:C ratio between the two groups were remained identical (40HF n = 11; high forage and 40HG n = 11; high grain). By utilizing a next-generation sequencing technology, we monitored that the high microalgae inclusion level and foremost in combination with a high grains diet increased the unmapped bacteria within the rumen. Bacteroidetes and Prevotella brevis were increased in the 40HG -fed goats as observed by using a qPCR platform. Additionally, methanogens and Methanomassiliicoccales were increased in high microalgae-fed goats, while Methanobrevibacter and Methanobacteriales were decreased. Fibrolytic bacteria were decreased in high microalgae-fed goats, while cellulolytic activity was increased. Ammonia was decreased in high grains-fed goats, while docosapentaenoic and docosahexaenoic acids showed a lower degradation rate in the rumen of high forage-fed goats. The alteration of the F:C ratio in goats supplemented with Schizochytrium spp. levels modified both ruminal microbiota and enzymatic activity. However, there was no significant consistency in the relations between them.
Collapse
|
10
|
Mavrommatis A, Skliros D, Flemetakis E, Tsiplakou E. Changes in the Rumen Bacteriome Structure and Enzymatic Activities of Goats in Response to Dietary Supplementation with Schizochytrium spp. Microorganisms 2021; 9:microorganisms9071528. [PMID: 34361963 PMCID: PMC8303384 DOI: 10.3390/microorganisms9071528] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
With the aim to produce functional dairy products enriched with polyunsaturated fatty acids (PUFA) by using feed supplements, radical changes could occur in the rumen microbiome. This work investigated the alterations of the rumen bacteriome of goats fed with PUFA-rich marine microalgae Schizochytrium spp. For the trial, twenty-four goats were divided into four homogenous clusters (six goats/treatment) according to their fat-corrected (4%) milk yield, body weight, and age; they were individually fed with alfalfa hay and a concentrate (F/C = 50/50). The concentrate of the control group (CON) contained no microalgae, while those of the treated groups were supplemented daily with 20 (ALG20), 40 (ALG40), and 60 g (ALG60) of Schizochytrium spp./goat. Rumen fluid samples were collected using a stomach tube during the 20th and 40th days of the experiment. The microbiome analysis using a 16S rRNA sequencing platform revealed that Firmicutes were decreased in microalgae-fed goats, while Bacteroidetes showed a tendency to increase in the ALG40 group due to the enhancement of Prevotellaceae. Cellulolytic bacteria, namely Treponema bryantii, Ruminococcus gauvreauii, R. albus, and R. flavefaciens, were decreased in the ALG40 group, resulting in an overall decrease of cellulase activity. In contrast, the amylolytic potential was significantly enhanced due to an upsurge in Ruminobacter amylophilus, Succinivibrio dextrinosolvens, and Fretibacterium fastidiosum populations. In conclusion, supplementing goats’ diets with 20 g Schizochytrium spp. could be considered a sustainable and efficient nutritional strategy to modulate rumen microbiome towards the development of dairy products enriched with bioactive compounds, while higher levels induced substantial shifts in determinant microbes’ populations.
Collapse
Affiliation(s)
- Alexandros Mavrommatis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, GR-11855 Athens, Greece;
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, GR-11855 Athens, Greece; (D.S.); (E.F.)
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, GR-11855 Athens, Greece; (D.S.); (E.F.)
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, GR-11855 Athens, Greece;
- Correspondence: ; Tel.: +30-2105294435
| |
Collapse
|
11
|
Changes in the Rumen Bacteriome Structure and Enzymatic Activities of Goats in Response to Dietary Supplementation with Schizochytrium spp. Microorganisms 2021. [PMID: 34361963 DOI: 10.3390/microorganisms9071528/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
With the aim to produce functional dairy products enriched with polyunsaturated fatty acids (PUFA) by using feed supplements, radical changes could occur in the rumen microbiome. This work investigated the alterations of the rumen bacteriome of goats fed with PUFA-rich marine microalgae Schizochytrium spp. For the trial, twenty-four goats were divided into four homogenous clusters (six goats/treatment) according to their fat-corrected (4%) milk yield, body weight, and age; they were individually fed with alfalfa hay and a concentrate (F/C = 50/50). The concentrate of the control group (CON) contained no microalgae, while those of the treated groups were supplemented daily with 20 (ALG20), 40 (ALG40), and 60 g (ALG60) of Schizochytrium spp./goat. Rumen fluid samples were collected using a stomach tube during the 20th and 40th days of the experiment. The microbiome analysis using a 16S rRNA sequencing platform revealed that Firmicutes were decreased in microalgae-fed goats, while Bacteroidetes showed a tendency to increase in the ALG40 group due to the enhancement of Prevotellaceae. Cellulolytic bacteria, namely Treponema bryantii, Ruminococcus gauvreauii, R. albus, and R. flavefaciens, were decreased in the ALG40 group, resulting in an overall decrease of cellulase activity. In contrast, the amylolytic potential was significantly enhanced due to an upsurge in Ruminobacter amylophilus, Succinivibrio dextrinosolvens, and Fretibacterium fastidiosum populations. In conclusion, supplementing goats' diets with 20 g Schizochytrium spp. could be considered a sustainable and efficient nutritional strategy to modulate rumen microbiome towards the development of dairy products enriched with bioactive compounds, while higher levels induced substantial shifts in determinant microbes' populations.
Collapse
|
12
|
Effects of Chlorella vulgaris, Nannochloropsis oceanica and Tetraselmis sp. supplementation levels on in vitro rumen fermentation. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Mavrommatis A, Sotirakoglou K, Skliros D, Flemetakis E, Tsiplakou E. Dose and time response of dietary supplementation with Schizochytrium sp. on the abundances of several microorganisms in the rumen liquid of dairy goats. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Kiani A, Wolf C, Giller K, Eggerschwiler L, Kreuzer M, Schwarm A. In vitro ruminal fermentation and methane inhibitory effect of three species of microalgae. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, in vitro ruminal fermentation, anti-methanogenesis, and ammonia formation of two autotrophic algae [Nannochloropsis gaditana (NG), Phaeodactylum tricornutum (PT)], and one heterotrophic alga [Schizochytrium sp. (SS)] were investigated. The experimental diets consisted of a hay-concentrate basal diet (BD; 200 mg dry matter) supplemented with (1) no algae (just BD), (2) 40 mg of dried NG (BD + NG), (3) 40 mg of dried PT (BD + PT), and (4) 14 mg of dried SS. In total, 48 samples (four algal treatments × two replicates × three runs × two cows) were incubated for 24 h using the Hohenheim gas test method. All three algae decreased (P < 0.05) the production of short-chain fatty acids and protozoal abundance (both adjusted in amount to BD) as compared with BD. Ammonia formation of BD + NG and BD + PT was 1.2- and 1.1-fold of values in BD, respectively. The BD + NG diet enhanced the proportions of isobutyrate, valerate, and isovalerate at cost of acetate proportion of total short-chain fatty acids, whereas the BD + PT diet promoted the proportions of propionate and valerate at cost of acetate. None of the microalgae affected in vitro methane formation. In conclusion, these algae showed a very poor fermentability and no anti-methanogenic effect in vitro.
Collapse
Affiliation(s)
- Ali Kiani
- Department of Animal Science, Lorestan University, P.O. Box 465, Khorramabad, Iran
- ETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
| | - Christina Wolf
- ETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
| | - Katrin Giller
- ETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
| | | | - Michael Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
| | - Angela Schwarm
- ETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
15
|
Dewanckele L, Jeyanathan J, Vlaeminck B, Fievez V. Identifying and exploring biohydrogenating rumen bacteria with emphasis on pathways including trans-10 intermediates. BMC Microbiol 2020; 20:198. [PMID: 32635901 PMCID: PMC7339423 DOI: 10.1186/s12866-020-01876-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/25/2020] [Indexed: 01/03/2023] Open
Abstract
Background Bacteria involved in ruminal formation of trans-10 intermediates are unclear. Therefore, this study aimed at identifying rumen bacteria that produce trans-10 intermediates from 18-carbon unsaturated fatty acids. Results Pure cultures of 28 rumen bacterial species were incubated individually in the presence of 40 μg/mL 18:3n-3, 18:2n-6 or trans-11 18:1 under control or lactate-enriched (200 mM Na lactate) conditions for 24 h. Of the 28 strains, Cutibacterium acnes (formerly Propionibacterium acnes) was the only bacterium found to produce trans-10 intermediates from 18:3n-3 and 18:2n-6, irrespective of the growth condition. To further assess the potential importance of this species in the trans-11 to trans-10 shift, different biomass ratios of Butyrivibrio fibrisolvens (as a trans-11 producer) and C. acnes were incubated in different growth media (control, low pH and 22:6n-3 enriched media) containing 40 μg/mL 18:2n-6. Under control conditions, a trans-10 shift, defined in the current study as trans-10/trans-11 ≥ 0.9, occurred when the biomass of C. acnes represented between 90 and 98% of the inoculum. A low pH or addition of 22:6n-3 inhibited cis-9, trans-11 CLA and trans-10, cis-12 CLA formation by B. fibrisolvens and C. acnes, respectively, whereby C. acnes seemed to be more tolerant. This resulted in a decreased biomass of C. acnes required at inoculation to induce a trans-10 shift to 50% (low pH) and 90% (22:6n-3 addition). Conclusions Among the bacterial species studied,C. acnes was the only bacterium that have the metabolic ability to produce trans-10 intermediates from 18:3n-3 and 18:2n-6. Nevertheless, this experiment revealed that it is unlikely that C. acnes is the only or predominant species involved in the trans-11 to trans-10 shift in vivo.
Collapse
Affiliation(s)
- Lore Dewanckele
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Jeyamalar Jeyanathan
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Bruno Vlaeminck
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium.,Present address: Research Group Marine Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Veerle Fievez
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium.
| |
Collapse
|
16
|
Dewanckele L, Toral PG, Vlaeminck B, Fievez V. Invited review: Role of rumen biohydrogenation intermediates and rumen microbes in diet-induced milk fat depression: An update. J Dairy Sci 2020; 103:7655-7681. [PMID: 32600765 DOI: 10.3168/jds.2019-17662] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/18/2020] [Indexed: 12/22/2022]
Abstract
To meet the energy requirements of high-yielding dairy cows, grains and fats have increasingly been incorporated in ruminant diets. Moreover, lipid supplements have been included in ruminant diets under experimental or practical conditions to increase the concentrations of bioactive n-3 fatty acids and conjugated linoleic acids in milk and meat. Nevertheless, those feeding practices have dramatically increased the incidence of milk fat depression in dairy cattle. Although induction of milk fat depression may be a management tool, most often, diet-induced milk fat depression is unintended and associated with a direct economic loss. In this review, we give an update on the role of fatty acids, particularly originating from rumen biohydrogenation, as well as of rumen microbes in diet-induced milk fat depression. Although this syndrome seems to be multi-etiological, the best-known causal factor remains the shift in rumen biohydrogenation pathway from the formation of mainly trans-11 intermediates toward greater accumulation of trans-10 intermediates, referred to as the trans-11 to trans-10 shift. The microbial etiology of this trans-11 to trans-10 shift is not well understood yet and it seems that unraveling the microbial mechanisms of diet-induced milk fat depression is challenging. Potential strategies to avoid diet-induced milk fat depression are supplementation with rumen stabilizers, selection toward more tolerant animals, tailored management of cows at risk, selection toward more efficient fiber-digesting cows, or feeding less concentrates and grains.
Collapse
Affiliation(s)
- L Dewanckele
- Laboratory for Animal Nutrition and Animal Product Quality (Lanupro), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium
| | - P G Toral
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - B Vlaeminck
- Laboratory for Animal Nutrition and Animal Product Quality (Lanupro), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium
| | - V Fievez
- Laboratory for Animal Nutrition and Animal Product Quality (Lanupro), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium.
| |
Collapse
|
17
|
Dietary composition and yeast/microalgae combination supplementation modulate the microbial ecosystem in the caecum, colon and faeces of horses. Br J Nutr 2019; 123:372-382. [PMID: 31690358 DOI: 10.1017/s0007114519002824] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Starchy diets can induce hindgut dysbiosis in horses. The present study evaluated the impact of a yeast (Saccharomyces cerevisiae) and microalgae (Aurantiochytrium limacinum) supplementation on caecal, colonic and faecal microbial ecosystem and on blood inflammatory parameters of horses fed high-fibre or high-starch diets. Six fistulated geldings in a 2 × 2 Latin-square design were alternatively supplemented and received during each period 100 % hay (4 weeks) followed by a 56/44 hay/barley diet (3 weeks). Caecal, colonic and faecal samples were collected 4 h after the morning meal three times per diet, at 5-d intervals, to measure bacterial composition and microbial end products. Blood was simultaneously collected for measuring inflammatory markers. The starchy diet clearly modified the microbial ecosystem in the three digestive segments, with an increase of the amylolytic function and a decrease of the fibrolytic one. However, no effect of the diet was observed on the blood parameters. When horses were supplemented, no significant change was found in lipopolysaccharides, PG-E2, serum amyloid A concentrations and complete blood count neither in cellulose-utilising, starch-utilising and lactate-utilising bacteria concentrations nor in the volatile fatty acids and lactate concentrations and pH. Under supplementation, relative abundance of Family XIII Clostridiales increased in caecum and faeces irrespective of diet and relative abundance of Veillonellaceae was higher during the hay/barley diet in colon and faeces. Most variations of faecal bacterial taxa under supplementation were not observed in the hindgut. However, all variations suggested that supplementation could increase fibrolytic function whatever the diet and limit dysbiosis when the horses' diet changed from high fibre to high starch.
Collapse
|
18
|
Carreño D, Toral PG, Pinloche E, Belenguer A, Yáñez-Ruiz DR, Hervás G, McEwan NR, Newbold CJ, Frutos P. Rumen bacterial community responses to DPA, EPA and DHA in cattle and sheep: A comparative in vitro study. Sci Rep 2019; 9:11857. [PMID: 31413283 PMCID: PMC6694141 DOI: 10.1038/s41598-019-48294-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022] Open
Abstract
The role of marine lipids as modulators of ruminal biohydrogenation of dietary unsaturated fatty acids may be explained by the effects of their n-3 polyunsaturated fatty acids (PUFA) on the bacterial community. However, the impact of individual PUFA has barely been examined, and it is uncertain which bacteria are truly involved in biohydrogenation. In addition, despite interspecies differences in rumen bacterial composition, we are not aware of any direct comparison of bovine and ovine responses to dietary PUFA. Therefore, rumen fluid from cannulated cattle and sheep were used as inocula to examine in vitro the effect of 20:5n-3 (EPA), 22:5n-3 (DPA), and 22:6n-3 (DHA) on the bacterial community. Amplicon 16 S rRNA sequencing suggested that EPA and DHA had a greater contribution to the action of marine lipids than DPA both in cattle and sheep. Certain effects were exclusive to each ruminant species, which underlines the complexity of rumen microbial responses to dietary fatty acids. Based on changes in bacterial abundance, Barnesiella, Prevotella, Paraprevotella, Hallela, Anaerovorax, Succiniclasticum, Ruminococcus and Ruminobacter may be involved in the ruminal response in biohydrogenation to the addition of marine lipids, but further research is necessary to confirm their actual role in ruminal lipid metabolism.
Collapse
Affiliation(s)
- D Carreño
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n, 24346 Grulleros, León, Spain.,Institute of Biological, Environmental and Rural Sciences (IBERS), Animal and Microbial Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom
| | - P G Toral
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n, 24346 Grulleros, León, Spain.
| | - E Pinloche
- Institute of Biological, Environmental and Rural Sciences (IBERS), Animal and Microbial Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom
| | - A Belenguer
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - D R Yáñez-Ruiz
- Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - G Hervás
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - N R McEwan
- Institute of Biological, Environmental and Rural Sciences (IBERS), Animal and Microbial Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom.,School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, United Kingdom
| | - C J Newbold
- Institute of Biological, Environmental and Rural Sciences (IBERS), Animal and Microbial Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom.,Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG, United Kingdom
| | - P Frutos
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| |
Collapse
|
19
|
Dewanckele L, Vlaeminck B, Hernandez-Sanabria E, Ruiz-González A, Debruyne S, Jeyanathan J, Fievez V. Rumen Biohydrogenation and Microbial Community Changes Upon Early Life Supplementation of 22:6 n-3 Enriched Microalgae to Goats. Front Microbiol 2018; 9:573. [PMID: 29636742 PMCID: PMC5880937 DOI: 10.3389/fmicb.2018.00573] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Dietary supplementation of docosahexaenoic acid (DHA)-enriched products inhibits the final step of biohydrogenation in the adult rumen, resulting in the accumulation of 18:1 isomers, particularly of trans(t)-11 18:1. Occasionally, a shift toward the formation of t10 intermediates at the expense of t11 intermediates can be triggered. However, whether similar impact would occur when supplementing DHA-enriched products during pregnancy or early life remains unknown. Therefore, the current in vivo study aimed to investigate the effect of a nutritional intervention with DHA in the early life of goat kids on rumen biohydrogenation and microbial community. Delivery of DHA was achieved by supplementing DHA-enriched microalgae (DHA Gold) either to the maternal diet during pregnancy (prenatal) or to the diet of the young offspring (postnatal). At the age of 12 weeks, rumen fluid was sampled for analysis of long-chain fatty acids and microbial community based on bacterial 16S rRNA amplicon sequencing. Postnatal supplementation with DHA-enriched microalgae inhibited the final biohydrogenation step, as observed in adult animals. This resulted particularly in increased ruminal proportions of t11 18:1 rather than a shift to t10 intermediates, suggesting that both young and adult goats might be less prone to dietary induced shifts toward the formation of t10 intermediates, in comparison with cows. Although Butyrivibrio species have been identified as the most important biohydrogenating bacteria, this genus was more abundant when complete biohydrogenation, i.e. 18:0 formation, was inhibited. Blautia abundance was positively correlated with 18:0 accumulation, whereas Lactobacillus spp. Dialister spp. and Bifidobacterium spp. were more abundant in situations with greater t10 accumulation. Extensive comparisons made between current results and literature data indicate that current associations between biohydrogenation intermediates and rumen bacteria in young goats align with former observations in adult ruminants.
Collapse
Affiliation(s)
- Lore Dewanckele
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bruno Vlaeminck
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Emma Hernandez-Sanabria
- Center for Microbial Ecology and Technology, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Alexis Ruiz-González
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sieglinde Debruyne
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | - Jeyamalar Jeyanathan
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Veerle Fievez
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Aemiro A, Kiiru P, Watanabe S, Suzuki K, Hanada M, Umetsu K, Nishida T. The effect of euglena ( Euglena gracilis ) supplementation on nutrient intake, digestibility, nitrogen balance and rumen fermentation in sheep. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|