1
|
Machado-Costa D, Miranda G, Correia-Pinto J, Moura RS. Exploring hyperglycemia's impact on embryonic development: Insights from the chicken embryo model. Tissue Cell 2025; 95:102925. [PMID: 40286730 DOI: 10.1016/j.tice.2025.102925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Hyperglycemia during pregnancy is a growing health concern due to its association with congenital anomalies. While rodent models have been used to study this condition, their variability and inability to control the embryonic microenvironment is a limitation. Having this in mind, this study explores the chicken embryo (Gallus gallus) as an alternative model for studying the effects of hyperglycemia on early embryonic development. For that purpose, fertilized chicken eggs were exposed to glucose (0.2 and 0.4 mmol) from embryonic day 1 (E1) onwards. On embryonic day 5 (E5), glucose levels, developmental outcomes, and molecular alterations were assessed in the embryos. Hyperglycemia led to a significant increase in glucose concentration in both the surrounding environment and the embryo's bloodstream. High glucose levels caused developmental toxicity, namely increased mortality and severe abnormalities such as defects in the optic organ, brain, heart, and neural tube. Molecular analysis demonstrated an increase in igf2 and a decrease in glut1 expression in the liver, which may point to a potential protective response to high glucose levels despite the absence of insulin. Superoxide Dismutase activity was reduced suggesting an oxidative stress response. In conclusion, this study retrieves the chicken embryo model for researching hyperglycemia's effect on embryonic development, providing insights into potential molecular mechanisms and highlighting its relevance for future teratogenic research.
Collapse
Affiliation(s)
- Daniela Machado-Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4710-057, Portugal
| | - Gonçalo Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4710-057, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto 4200-072, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4710-057, Portugal; Department of Pediatric Surgery, Hospital of Braga, Braga 4710-243, Portugal
| | - Rute S Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4710-057, Portugal.
| |
Collapse
|
2
|
Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo Q, Song G. Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application. Signal Transduct Target Ther 2024; 9:340. [PMID: 39627201 PMCID: PMC11615378 DOI: 10.1038/s41392-024-02030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
The dynamic regulation of chromatin accessibility is one of the prominent characteristics of eukaryotic genome. The inaccessible regions are mainly located in heterochromatin, which is multilevel compressed and access restricted. The remaining accessible loci are generally located in the euchromatin, which have less nucleosome occupancy and higher regulatory activity. The opening of chromatin is the most important prerequisite for DNA transcription, replication, and damage repair, which is regulated by genetic, epigenetic, environmental, and other factors, playing a vital role in multiple biological progresses. Currently, based on the susceptibility difference of occupied or free DNA to enzymatic cleavage, solubility, methylation, and transposition, there are many methods to detect chromatin accessibility both in bulk and single-cell level. Through combining with high-throughput sequencing, the genome-wide chromatin accessibility landscape of many tissues and cells types also have been constructed. The chromatin accessibility feature is distinct in different tissues and biological states. Research on the regulation network of chromatin accessibility is crucial for uncovering the secret of various biological processes. In this review, we comprehensively introduced the major functions and mechanisms of chromatin accessibility variation in different physiological and pathological processes, meanwhile, the targeted therapies based on chromatin dynamics regulation are also summarized.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Yong Li
- Hepatobiliary Pancreatic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lingli Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
3
|
Ruuskanen S. Early-life environmental effects on birds: epigenetics and microbiome as mechanisms underlying long-lasting phenotypic changes. J Exp Biol 2024; 227:jeb246024. [PMID: 38449325 DOI: 10.1242/jeb.246024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Although the long-lasting effects of variation in early-life environment have been well documented across organisms, the underlying causal mechanisms are only recently starting to be unraveled. Yet understanding the underlying mechanisms of long-lasting effects can help us predict how organisms will respond to changing environments. Birds offer a great system in which to study developmental plasticity and its underlying mechanisms owing to the production of large external eggs and variation in developmental trajectories, combined with a long tradition of applied, physiological, ecological and evolutionary research. Epigenetic changes (such as DNA methylation) have been suggested to be a key mechanism mediating long-lasting effects of the early-life environment across taxa. More recently, changes in the early-life gut microbiome have been identified as another potential mediator of developmental plasticity. As a first step in understanding whether these mechanisms contribute to developmental plasticity in birds, this Review summarizes how changes in early-life environment (both prenatal and postnatal) influence epigenetic markers and the gut microbiome. The literature shows how both early-life biotic (such as resources and social environment) and abiotic (thermal environment and various anthropogenic stressors) factors modify epigenetic markers and the gut microbiome in birds, yet data concerning many other environmental factors are limited. The causal links of these modifications to lasting phenotypic changes are still scarce, but changes in the hypothalamic-pituitary-adrenal axis have been identified as one putative pathway. This Review identifies several knowledge gaps, including data on the long-term effects, stability of the molecular changes, and lack of diversity in the systems studied, and provides directions for future research.
Collapse
Affiliation(s)
- Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, 40500 Jyväskylä, Finland
- Department of Biology, University of Turku, Vesilinnankatu 5, 20500 Turku, Finland
| |
Collapse
|
4
|
Ren Y, Zeng Y, Wu Y, Zhang Q, Xiao X. Maternal methyl donor supplementation: A potential therapy for metabolic disorder in offspring. J Nutr Biochem 2024; 124:109533. [PMID: 37977406 DOI: 10.1016/j.jnutbio.2023.109533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
The prevalences of diabetes mellitus and obesity are increasing yearly and has become a serious social burden. In addition to genetic factors, environmental factors in early life development are critical in influencing the prevalence of metabolic disorders in offspring. A growing body of evidence suggests the critical role of early methyl donor intervention in offspring health. Emerging studies have shown that methyl donors can influence offspring metabolism through epigenetic modifications and changing metabolism-related genes. In this review, we focus on the role of folic acid, betaine, vitamin B12, methionine, and choline in protecting against metabolic disorders in offspring. To address the current evidence on the potential role of maternal methyl donors, we summarize clinical studies as well as experimental animal models that support the impact of maternal methyl donors on offspring metabolism and discuss the mechanisms of action that may bring about these positive effects. Given the worldwide prevalence of metabolic disorders, these findings could be utilized in clinical practice, in which methyl donor supplementation in the early life years may reverse metabolic disorders in offspring and block the harmful intergenerational effect.
Collapse
Affiliation(s)
- Yaolin Ren
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuan Zeng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yifan Wu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
5
|
Ma S, Wang Y, Chen L, Wang W, Zhuang X, Liu Y, Zhao R. Parental betaine supplementation promotes gosling growth with epigenetic modulation of IGF gene family in the liver. J Anim Sci 2024; 102:skae065. [PMID: 38483185 PMCID: PMC10980284 DOI: 10.1093/jas/skae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Betaine is widely used as a feed additive in the chicken industry to promote laying performance and growth performance, yet it is unknown whether betaine can be used in geese to improve the laying performance of goose breeders and the growth traits of offspring goslings. In this study, laying goose breeders at 39 wk of age were fed basal (Control, CON) or betaine-supplemented diets at low (2.5 g/kg, LBT) or high (5 g/kg, HBT) levels for 7 wk, and the breeder eggs laid in the last week were collected for incubation. Offspring goslings were examined at 35 and 63 d of age. The laying rate tended to be increased (P = 0.065), and the feed efficiency of the breeders was improved by betaine supplementation, while the average daily gain of the offspring goslings was significantly increased (P < 0.05). Concentrations of insulin-like growth factor 2 (IGF-2) in serum and liver were significantly increased in the HBT group (P < 0.05), with age-dependent alterations of serum T3 levels. Concurrently, hepatic mRNA expression of the IGF gene family was significantly increased in goslings derived from betaine-treated breeders (P < 0.05). A higher ratio of proliferating cell nuclear antigen (PCNA)-immunopositive nuclei was found in the liver sections of the HBT group, which was confirmed by significantly upregulated hepatic expression of PCNA mRNA and protein (P < 0.05). Moreover, hepatic expression of thyroxine deiodinase type 1 (Dio1) and thyroid hormone receptor β (TRβ) was also significantly upregulated in goslings of the HBT group (P < 0.05). These changes were associated with significantly higher levels of global DNA 5-mC methylation, together with increased expression of methyl transfer genes (P < 0.05), including betaine-homocysteine methyltransferase (BHMT), glycine N-methyltransferase (GNMT), and DNA (cytosine-5-)-methyltransferase 1 (DNMT1). The promoter regions of IGF-2 genes, as well as the predicted TRβ binding site on the IGF-2 gene, were significantly hypomethylated (P < 0.05). These results indicate that gosling growth can be improved by dietary betaine supplementation in goose breeders via epigenetic modulation of the IGF gene family, especially IGF-2, in the liver.
Collapse
Affiliation(s)
- Shuai Ma
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yan Wang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liang Chen
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenzheng Wang
- Jiangsu Lihua Animal Husbandry Co., Ltd., Changzhou, Jiangsu 213168, China
| | - Xinjuan Zhuang
- Jiangsu Lihua Animal Husbandry Co., Ltd., Changzhou, Jiangsu 213168, China
| | - Yuelong Liu
- Jiangsu Lihua Animal Husbandry Co., Ltd., Changzhou, Jiangsu 213168, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, PR China
| |
Collapse
|
6
|
Oladokun S, Adewole D. An investigation of the effect of folic acid and its delivery routes on broiler chickens' hatch and growth performance, blood biochemistry, anti-oxidant status, and intestinal morphology. J Anim Sci 2023; 101:skad083. [PMID: 36932991 PMCID: PMC10079817 DOI: 10.1093/jas/skad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
This study investigated the effect of folic acid (FA) and its delivery routes (in-feed or in ovo) on broiler chicken's hatch and growth performance, blood biochemistry, anti-oxidant status, and intestinal morphology. A total of 1,860 Cobb 500 hatching eggs were incubated for 21 d. On day 12 of incubation, viable eggs were randomly allotted to four groups: the noninjected group, in ovo saline (injected with 0.1 mL/egg of saline solution), in ovo FA 1 (injected with 0.1 ml FA containing 0.1 mg/egg; FA1), and in ovo FA 2 (injected with 0.1 ml FA containing 0.15 mg/egg). All in ovo treatments were delivered via the amnion. At hatch, chicks were re-allotted to five new treatment groups: FA1, FA2, in-feed FA (FA 3; 5mg/kg in feed), in-feed bacitracin methylene disalicylate (BMD; 55 mg/kg in feed), and negative control (NC; corn-wheat-soybean diet) in 6 replicate pens (22 birds/pen) and raised in starter (days 0 to14), grower (days 15 to 24), and finisher (days 25 to 35) phases. Hatch parameters were assessed on day 0, and body weight and feed intake (FI) were determined weekly. On day 25, 1 bird/cage was euthanized, immune organs weighed, and intestinal tissues harvested. Blood samples were collected for biochemistry and anti-oxidant (Superoxide dismutase-SOD and Malondialdehyde-MDA) analysis. Data were analyzed in a randomized complete block design. While FA1 and FA2 decreased (P < 0.001) hatchability in a dose-dependent manner, FA2 caused a 2% increase (P < 0.05) in average chick weight compared to the noninjected group. Compared to the BMD treatment, FA3 decreased (P < 0.05) average FI across all feeding phases. At the end of the trial on day 35, FA2 had similar feed conversion ratio as the BMD treatment while recording less (P < 0.001) FI. FA1 and FA2 recorded a tendency (P < 0.1) to increase MDA levels and SOD activity by 50% and 19%, respectively, compared to the NC treatment. Compared to NC treatment, FA2 increased (P < 0.01) villus height, width, and villus height to crypt depth ratio in the duodenum, and villus width in the jejunum. Besides its negative effect on hatchability, FA2 may help improve embryonic development and anti-oxidant status in broiler chickens.
Collapse
Affiliation(s)
- Samson Oladokun
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
7
|
Folate inhibits lipid deposition via the autophagy pathway in chicken hepatocytes. Poult Sci 2022; 102:102363. [PMID: 36525749 PMCID: PMC9791176 DOI: 10.1016/j.psj.2022.102363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Excessive fat deposition affects the efficiency and quality of broiler meat production. To understand the molecular mechanism underlying abdominal fat content of broiler lines under divergent selection, we have attempted multiple genetics and genomics methods previously. However, the molecular mechanism of hepatic fat deposition remains largely unknown. On broiler lines divergently selected for abdominal fat content, we performed integrated mRNA and lncRNA sequencing on liver tissues. Key genes and signaling pathways related to the biosynthesis, elongation and metabolism of fatty acids, metabolic pathways, and folate biosynthesis were revealed. Then, primary hepatocytes (sex determined) were isolated and cultured, and treatment concentrations of folate and palmitic acid were optimized. Expression profiling on primary hepatocytes treated by folate and/or palmitic acid revealed that folic acid inhibited lipid deposition in a sex-dependent way, through regulating transcriptional and protein levels of genes related to DNA methylation, lipid metabolism (mTOR/SREBP-1c/PI3K), and autophagy (LAMP2/ATG5) pathways. Taken together, folate could interfere with hepatic lipid deposition possibly through the involvement of the autophagy pathway in broilers.
Collapse
|
8
|
Folic Acid: Sources, Chemistry, Absorption, Metabolism, Beneficial Effects on Poultry Performance and Health. Vet Med Int 2022; 2022:2163756. [PMID: 36032042 PMCID: PMC9417761 DOI: 10.1155/2022/2163756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, there has been an increasing interest in the study of the effects of folic acid (FA) on poultry because it was observed that FA could overcome problems in poultry health while improving its performance. FA, or folate, is a water-soluble B vitamin essential in poultry, so FA intake must be available in the feed. Sources of FA in feed come from plants or animals, and animal sources have relatively more stable FA. The ingested FA will be absorbed in the intestinal lumen and transported into the liver through the blood vessels. Therefore, FA has a positive effect on the performance and health status of poultry. The effect of FA on poultry performance is to increase reproductive tract development, FA content in eggs, hatchability, weight gain, average initial body weight, feed intake, relative growth rate, chick body weight, breast fillet percentage, and reduce FCR and white striping score. At the same time, the effect on poultry health influences antioxidant activities, thyroid hormones, blood biochemicals, anti-inflammatory gene expressions, and immune responses. The present review deals with FA sources, chemistry, absorption, metabolism, effects on performance, and poultry health, which are based on valid basic information.
Collapse
|
9
|
Xu W, Song Z, Wang W, Li X, Yan P, Shi T, Fu C, Liu X. Effects of in ovo feeding of t10,c12-conjugated linoleic acid on hepatic lipid metabolism and subcutaneous adipose tissue deposition in newly hatched broiler chicks. Poult Sci 2022; 101:101797. [PMID: 35358926 PMCID: PMC8968647 DOI: 10.1016/j.psj.2022.101797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to investigate whether in ovo feeding of t10,c12-conjugated linoleic acid (CLA) could regulate hepatic lipid metabolism and decrease lipid accumulation in newly hatched chicks. Three hundred and sixty fertilely specific pathogen-free hatching eggs were selected and randomly divided into 6 groups. On embryonic day 11 of incubation (E11), 0, 1.5, 3.0, 4.5, 6.0, or 7.5 mg t10,c12-CLA were injected into the eggs. The results indicated that in ovo feeding of t10,c12-CLA significantly decreased the subcutaneous adipose tissue (SAT) mass and the relative SAT weight of newly hatched chicks in linear and quadratic manners (P < 0.05). In liver, the levels of triglycerides were reduced linearly and quadratically and total cholesterol were reduced quadratically as the dose of t10,c12-CLA increased (P < 0.05). Meanwhile, the hepatic carnitine palmitoyltransferase-1a (CPT1a) content and polyunsaturated fatty acid proportion were increased quadratically in t10,c12-CLA groups (P < 0.05), accompanied by the decrease of malondialdehyde level and the increase of glutathione peroxidase and total antioxidant capacity activities (P < 0.05). In addition, in ovo feeding of t10,c12-CLA decreased the mRNA expression levels of fatty acid synthase, acetyl-CoA carboxylase 1 in linear and quadratic manners (P < 0.05), and decreased the mRNA expression of adipose triacylglyceride lipase and stearoyl-CoA desaturase significantly in liver (P < 0.05), accompanied by upregulating the mRNA expression of CPT1a quadratically and AMP-activated protein kinase α linearly and quadratically (P < 0.05). In SAT, the mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element-binding protein-1c were decreased linearly and quadratically (P < 0.05), and the expression of PPARα and CPT1a genes were increased linearly and quadratically as the dose of t10,c12-CLA increased (P < 0.05). In conclusion, our findings demonstrate that in ovo feeding of t10,c12-CLA alleviates lipid accumulation in newly hatched chicks by suppressing fatty acid synthesis and stimulating lipolysis in the liver and inhibiting adipocyte differentiation in subcutaneous adipose tissue.
Collapse
|
10
|
Lin X, Fu B, Xiong Y, Xu S, Liu J, Zaky MY, Qiu D, Wu H. Folic acid Ameliorates the Declining Quality of Sodium Fluoride-Exposed Mouse Oocytes through the Sirt1/ Sod2 Pathway. Aging Dis 2022; 13:1471-1487. [PMID: 36186127 PMCID: PMC9466976 DOI: 10.14336/ad.2022.0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Excessive sodium fluoride (NaF) intake interferes with reproductive function in humans and animals; however, strategies to prevent these effects are still underexplored. Here, we showed that in vivo and in vitro supplementation of folic acid (FA) efficaciously improved the quality of NaF-exposed oocytes. FA supplementation not only increased ovulation of oocytes from NaF-treated mice but also enhanced oocyte meiotic competency and fertilization ability by restoring the spindle/chromosome structure. Moreover, FA supplementation could exert a beneficial effect on NaF- exposed oocytes by restoring mitochondrial function, eliminating reactive oxygen species accumulation to suppress apoptosis. We also found that FA supplementation restored the defective phenotypes in oocytes through a Sirt1/Sod2-dependent mechanism. Inhibition of Sirt1 with EX527 abolished the FA-mediated improvement in NaF-exposed oocyte quality. Collectively, our data indicated that FA supplementation is a feasible approach to protect oocytes from NaF-related deterioration.
Collapse
Affiliation(s)
- Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Shiyao Xu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Jin Liu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.
| | - Mohamed Y. Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Dan Qiu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
- Center of Space Exploration, Ministry of Education, Chongqing University, Chongqing, China
- Correspondence should be addressed to: Dr. Haibo Wu, School of Life Sciences, Chongqing University, Chongqing 401331, China. ; Dr. Dan Qiu, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
- Correspondence should be addressed to: Dr. Haibo Wu, School of Life Sciences, Chongqing University, Chongqing 401331, China. ; Dr. Dan Qiu, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
11
|
Zhang Y, Zhang N, Liu L, Wang Y, Xing J, Li X. Transcriptome Analysis of Effects of Folic Acid Supplement on Gene Expression in Liver of Broiler Chickens. Front Vet Sci 2021; 8:686609. [PMID: 34604366 PMCID: PMC8481781 DOI: 10.3389/fvets.2021.686609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
Folic acid is a water-soluble B vitamin, and plays an important role in regulating gene expression and methylation. The liver is the major site of lipid biosynthesis in the chicken. Nevertheless, how gene expression and regulatory networks are affected by folic acid in liver of broilers are poorly understood. This paper conducted the RNA-seq technology on the liver of broilers under folic acid challenge investigation. First, 405 differentially expressed genes (DEGs), including 157 significantly upregulated and 248 downregulated, were detected between the control group (C) and the 5 mg folic acid group (M). Second, 68 upregulated DEGs and 142 downregulated DEGs were determined between C group and 10 mg folic acid group (H). Third, there were 165 upregulated genes and 179 downregulated genes between M and H groups. Of these DEGs, 903 DEGs were successfully annotated in the public databases. The functional classification based on GO and KEEGG showed that “general function prediction only” represented the largest functional classes, “cell cycle” (C vs. M; M vs. H), and “neuroactive ligand-receptor interaction” (C vs. H) were the highest unique sequences among three groups. SNP analysis indicated that numbers of C, M and H groups were 145,450, 146,131, and 123,004, respectively. Total new predicted alternative splicing events in C, M, and H groups were 9,521, 9,328, and 8,929, respectively. A protein-protein interaction (PPI) network was constructed, and the top 10 hub genes were evaluated among three groups. The results of real time PCR indicated that mRNA abundance of PPARγ and FAS in abdominal fat of M and H groups were reduced compared with the C group (P < 0.05). Ultramicroscopy results showed that folic acid could reduce lipid droplets in livers from chickens. Finally, contents of LPL, PPARγ, and FAS in abdominal fat were decreased with the folic acid supplmented diets (P < 0.01). These findings reveal the effects of folic acid supplemention on gene expression in liver of broilers, which can provide information for understanding the molecular mechanisms of folic acid regulating liver lipid metabolism.
Collapse
Affiliation(s)
- Yujie Zhang
- School of Life Sciences, Linyi University, Linyi, China
| | - Ningbo Zhang
- School of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| | - Lin Liu
- School of Pharmacy, Linyi University, Linyi, China
| | - Yan Wang
- School of Life Sciences, Linyi University, Linyi, China
| | - Jinyi Xing
- School of Life Sciences, Linyi University, Linyi, China
| | - Xiuling Li
- School of Life Sciences, Linyi University, Linyi, China
| |
Collapse
|
12
|
Bednarczyk M, Dunislawska A, Stadnicka K, Grochowska E. Chicken embryo as a model in epigenetic research. Poult Sci 2021; 100:101164. [PMID: 34058565 PMCID: PMC8170499 DOI: 10.1016/j.psj.2021.101164] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/27/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Epigenetics is defined as the study of changes in gene function that are mitotically or meiotically heritable and do not lead to a change in DNA sequence. Epigenetic modifications are important mechanisms that fine tune the expression of genes in response to extracellular signals and environmental changes. In vertebrates, crucial epigenetic reprogramming events occur during early embryogenesis and germ cell development. Chicken embryo, which develops external to the mother's body, can be easily manipulated in vivo and in vitro, and hence, it is an excellent model for performing epigenetic studies. Environmental factors such as temperature can affect the development of an embryo into the phenotype of an adult. A better understanding of the environmental impact on embryo development can be achieved by analyzing the direct effects of epigenetic modifications as well as their molecular background and their intergenerational and transgenerational inheritance. In this overview, the current possibility of epigenetic changes during chicken embryonic development and their effects on long-term postembryonic development are discussed.
Collapse
Affiliation(s)
- Marek Bednarczyk
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, 85-084 Bydgoszcz, Poland.
| | - Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - Katarzyna Stadnicka
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - Ewa Grochowska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, 85-084 Bydgoszcz, Poland
| |
Collapse
|
13
|
Gouda A, Tolba SA, Mahrose KM. Influences of vitamin A, L-carnitine, and folic acid in ovo feeding on embryo and hatchling characteristics and general health status in ducks. Anim Biotechnol 2021; 33:150-158. [PMID: 33406975 DOI: 10.1080/10495398.2020.1864389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The current investigation was conducted to test the potential effects of in ovo feeding of vitamin A, L-carnitine, and folic acid on embryonic growth and post-hatch performance. A total of 450 fertile duck eggs were randomly distributed into two experiments of five groups/experiment (255 eggs/experiment and 45 egg/group). The experimental groups were: negative control (non-injected eggs), positive control (eggs were injected with 0.1 ml sterile deionized; DI water/egg), and three other treatments in which vitamin A, L-carnitine, and folic acid were injected (1 mg of each nutrient dissolved in 0.1 ml sterile DI water/egg). All-in ovo injected groups with vitamin A, L-carnitine, and folic acid increased the embryo weight, residual yolk weight, heart weight, hatchability percentage, and embryo length at the 25th day of incubation. At hatching, all micronutrients-in ovo injected treatments increased the duckling's weight, levels of blood hemoglobulin, plasma triiodothyronine, and thyroxin, insulin-like growth factor1, total protein, albumin, and globulin, compared with the controls in both experiments. Conclusively, the in ovo feeding of the present micronutrients showed positive impacts on embryonic development, hatchling health status of ducklings.
Collapse
Affiliation(s)
- Ahmed Gouda
- Animal Production Department, Agricultural & Biological Research Division, National Research Center, Dokki, Egypt
| | - Samar A Tolba
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Khalid M Mahrose
- Animal and Poultry Department, Faculty of Technology and Development, Zagazig University, Sharkia, Egypt
| |
Collapse
|
14
|
The adaptability of Hy-Line Brown laying hens to low-phosphorus diets supplemented with phytase. Poult Sci 2020; 99:3525-3531. [PMID: 32616248 PMCID: PMC7597811 DOI: 10.1016/j.psj.2020.03.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/07/2020] [Accepted: 03/15/2020] [Indexed: 11/20/2022] Open
Abstract
Body phosphorus homeostasis network allows laying hens to adapt to wide range of changes in dietary phosphorus levels. Phytase hydrolyzes phytate rendering phosphorus and reduces the laying hens' requirements for inorganic phosphate rock. Here, we demonstrate that there is no need to keep large safety margins in dietary phosphorus when hens are fed with phytase. Hy-Line Brown laying hens (n = 504) were randomly assigned to 7 treatments (6 replicates of 12 birds). A corn-soybean meal–based diet, with no inorganic phosphate rock, was formulated to contain 0.12% nonphytate phosphorus (nPP), 3.8% calcium, and 2,000 FTU/kg phytase. Inorganic phosphate rock (di-calcium phosphate) was supplemented into the basal diet to create 6 other diets containing 0.17, 0.22, 0.27, 0.32, 0.37, and 0.42% nPP. Levels of calcium carbonate and zeolite powder were adjusted to make sure all the 7 experimental diets contained the same nutrition levels (including calcium and phytase) except nPP. The diets were subjected to laying hens from 29 to 40 wk of age. As a result, when supplemented with 2,000 FTU/kg phytase, extra supplementation of inorganic phosphate rock had no effects (P > 0.05) on serum phosphorus levels, serum calcium levels, laying performance (laying rate, egg weight, feed intake, feed-to-egg ratio, and unqualified egg rate), egg quality (shell thickness, shell strength, albumen height, yolk color, and Haugh unit), and tibia quality parameters (breaking strength and ash, calcium, and phosphorus contents). Extra supplementation of inorganic phosphate rock linearly increased (P < 0.01) fecal phosphorus excretion and linearly decreased (P = 0.032) the apparent metabolizability of dietary phosphorus. While serum hormones and intestine gene expressions were varied within treatments, no consistent changes were found. In conclusion, the supplementation of inorganic phosphate rock (provided 0.05–0.30% extra nPP) to phytase-containing basal diets (2,000 FTU/kg; nPP = 0.12%) provided limited benefits to egg production performance in laying hens from 29 to 40 wk of age. Further investigating the body phosphorus homeostasis would help to understand the nutritional and physiological reasonability of formulating low-phosphorus diets in the laying hen industry.
Collapse
|
15
|
Saeed M, Babazadeh D, Naveed M, Alagawany M, Abd El-Hack ME, Arain MA, Tiwari R, Sachan S, Karthik K, Dhama K, Elnesr SS, Chao S. In ovo delivery of various biological supplements, vaccines and drugs in poultry: current knowledge. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3727-3739. [PMID: 30637739 DOI: 10.1002/jsfa.9593] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 06/09/2023]
Abstract
The technique of delivering various nutrients, supplements, immunostimulants, vaccines, and drugs via the in ovo route is gaining wide attention among researchers worldwide for boosting production performance, immunity and safeguarding the health of poultry. It involves direct administration of the nutrients and biologics into poultry eggs during the incubation period and before the chicks hatch out. In ovo delivery of nutrients has been found to be more effective than post-hatch administration in poultry production. The supplementation of feed additives, nutrients, hormones, probiotics, prebiotics, or their combination via in ovo techniques has shown diverse advantages for poultry products, such as improved growth performance and feed conversion efficiency, optimum development of the gastrointestinal tract, enhancing carcass yield, decreased embryo mortality, and enhanced immunity of poultry. In ovo delivery of vaccination has yielded a better response against various poultry pathogens than vaccination after hatch. So, this review has aimed to provide an insight on in ovo technology and its potential applications in poultry production to deliver different nutrients, supplements, beneficial microbes, vaccines, and drugs directly into the developing embryo to achieve an improvement in post-hatch growth, immunity, and health of poultry. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammad Saeed
- Department of Animal Nutrition, College of Animal Science and Technology, Northwest A & F University, Yangling, PR China
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | | | - Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, PR China
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Muhammad A Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Swati Sachan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shaaban S Elnesr
- Faculty of Agriculture, Department of Poultry Production, Fayoum University, Fayoum, Egypt
| | - Sun Chao
- Department of Animal Nutrition, College of Animal Science and Technology, Northwest A & F University, Yangling, PR China
| |
Collapse
|
16
|
Xing J, Jing W, Zhang Y, Liu L, Xu J, Chen X. Identification of differentially expressed genes in broiler offspring under maternal folate deficiency. Physiol Genomics 2018; 50:1015-1025. [DOI: 10.1152/physiolgenomics.00086.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Folate plays an important role in DNA and RNA synthesis by donating methyl groups. To investigate the effects of maternal folate deficiency (FD) on the abdominal adipose transcriptome and on the accumulation of lipid droplets in the liver tissue of chicken offspring, differentially expressed genes (DEGs) of FD were identified with digital gene expression tag profiling. Ultramicroscopy suggested that the size of lipid droplets in hepatocytes increased with FD, while the lipid droplets population number was largely not affected. The serum parameters assay showed that the concentrations of MTHFR (476.57 vs. 395.27), DHFR (45.056 vs. 38.952), LPL (50.408 vs. 48.677), HCY (4.354 vs. 3.836), LEP (9.951 vs. 8.673), and IGF2 (1209.4 vs. 1027.7) in offspring serum of the FD group were significantly higher than those of the normal folate (NF) group ( P < 0.01). The 442 DEGs between NF and FD groups were identified by digital gene expression profiling. Considering the DEGs in the FD groups vs. NF groups, 179 genes were upregulated while 263 downregulated, and in particular, 145 upregulated and 214 downregulated DEGs were successfully annotated with the nonredundant database. Gene Ontology analysis showed that FD mainly affected cellular processes, cell part and binding, cell killing, virions, and receptor regulator activity. With pathway analysis, it indicated that 123 unigenes were assigned to 115 KEGG pathways, but only five of 115 these pathways were significantly enriched with P values ≤ 0.05. Taken together, these results provide a foundation for further studying the responses of offspring to maternal FD in breeding chickens.
Collapse
Affiliation(s)
- Jinyi Xing
- School of Life Sciences, Linyi University, Linyi, China
| | - Wenqian Jing
- School of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| | - Yujie Zhang
- School of Life Sciences, Linyi University, Linyi, China
| | - Lin Liu
- School of Pharmacy, Linyi University, Linyi, China
| | - Junjie Xu
- School of Pharmacy, Linyi University, Linyi, China
| | - Xianwei Chen
- School of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| |
Collapse
|
17
|
Peebles ED. In ovo applications in poultry: A review,. Poult Sci 2018; 97:2322-2338. [PMID: 29617899 DOI: 10.3382/ps/pey081] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 01/01/2023] Open
Abstract
The various methods employed for the in ovo administration of different materials for promoting the health and productivity of poultry are discussed in this review article. The amnion has proven to be an effective site for injection and the timing of in ovo injection has commonly occurred at transfer. However, the volumes and dosages or concentrations of the materials administered vary depending on bird type, egg size, timing and site of injection, incubation system and regimen, and the type of material. Both manual and automated injections have been shown to be effective. Nevertheless, commercial application mandates automation. Materials described in the literature over the past 20 years or more for in ovo use in avian species include vaccines, drugs, hormones, competitive exclusion cultures and prebiotics, and supplemental nutrients. Vaccines approved for in ovo delivery include those for Marek's disease, infectious bursal disease, fowl pox, Newcastle disease, and coccidiosis. Some of the materials listed above have been shown to be viable candidates for enhancing immunity and for promoting embryonic and posthatch development. Several reports have indicated that probiotics may be effectively used to fight intestinal bacterial infections, and folic aid, as well as egg white protein and various amino acids, including L-arginine, L-lysine, L-histidine, HMB, and threonine alone or in combination, have been shown to benefit embryonic development or posthatch performance. Furthermore, CpG oligodeoxynucleotides, vitamins C and E, and thyme and savory have the potential to enhance immunity, carbohydrates can be used to increase tissue glycogen stores, and creatine can be used to promote muscle growth. Trace minerals and vitamin D3 have shown potential to improve bone strength, and potassium chloride may be an effective alternative electrolyte in vaccine diluent. The in ovo application of these and other materials will continue to expand and provide further benefits to the poultry industry.
Collapse
Affiliation(s)
- E D Peebles
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
18
|
Liu Y, Wu S, Sun W, Chen S, Yang X, Yang X. Variation in proteomics and metabolomics of chicken hepatocytes exposed to medium with or without folic acid. J Cell Biochem 2018; 119:6113-6124. [DOI: 10.1002/jcb.26810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/23/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Yanli Liu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Shengru Wu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Wenqiang Sun
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Si Chen
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Xin Yang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Xiaojun Yang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
19
|
Nutritional requirements of meat-type and egg-type ducks: what do we know? J Anim Sci Biotechnol 2018; 9:1. [PMID: 29372052 PMCID: PMC5769293 DOI: 10.1186/s40104-017-0217-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022] Open
Abstract
The demand for duck meat, duck eggs, and associated products is increasing each year. Classic and modern selection programs have been applied to enhance the economic traits of ducks to satisfy the requirements of consumers and enhance the incomes of producers. The nutritional requirements of unselected ducks may not be adequate, however, to fulfill the potential productivity performance of modern birds, including both meat-type and egg-type ducks. In particular, an imbalanced diet is associated with low productive performance and signs of nutritional deficiency (if insufficient nutrients are supplied), as well as with high feed costs and manure problems that reflect flock health and welfare (if excessive nutrients are supplied). Thus, the main aim of this review is to summarize the results of previous studies that estimated the nutrient requirements of meat-type and egg-type ducks in order to evaluate current knowledge and to identify further issues that need to be addressed. In addition, the results obtained in previous studies are compared in order to understand how to lower commercial feed costs, fulfill the genetic potential of selected ducks, protect the environment from pollution, and satisfy the welfare and health needs of ducks.
Collapse
|