1
|
Bharati J, Kumar S, Devi SJ, Gupta VK. A bibliometric mapping of advancements and trends in genome editing in pigs. Trop Anim Health Prod 2025; 57:201. [PMID: 40304841 DOI: 10.1007/s11250-025-04432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 04/11/2025] [Indexed: 05/02/2025]
Abstract
Researchers have widely undertaken targeted genome editing in pigs to optimize pig productivity, disease tolerance and for biomedical research. The present study aimed to investigate research advancements, focus areas, gaps, and challenges in genome editing in pigs using bibliometric analysis. The bibliographic information of publications on genome editing in pigs from 2010 to 2023 was retrieved from the Scopus database. Bibliometric parameters, such as coauthorship, keyword co-occurrence, citation, bibliographic coupling, and cocitation, was analyzed using VOSviewer. Literature mining was conducted to evaluate the emerging areas and challenges in the development of genome-edited pigs. We found 725 documents on genome editing in pigs, 407 of which were research articles authored by 2826 researchers from 1359 research organizations across 40 countries. The two countries, China and the United States, account for more than 50% of the research publications on genome editing in pigs. Investigations on the optimization of the procedure, delivery methods, editing efficiency, and reducing off-target effects dominated the early phase of research, which has shifted to its application for generating knockout (KO) or knockin (KI) pigs in recent years. Areas such as xenotransplantation, disease resistance, higher muscling, and disease models have dominated the research horizon for genome editing in pigs. Emerging areas in gene editing include base editing, CRISPR-based screens, diagnostics, and therapeutics. However, investigations on reducing heat stress and environmental footprint through genetic alterations need more attention from scientists. Challenges such as off-target effects and regulatory, ethical and societal issues related to channelizing gene-edited pigs from lab to land and then from farm to fork continue to restrain this field.
Collapse
Affiliation(s)
- Jaya Bharati
- Animal Physiology, ICAR-National Research Centre on Pig, Guwahati, 781131, Assam, India.
| | - Satish Kumar
- Animal Genetics and Breeding, ICAR-National Research Centre on Pig, Guwahati, 781131, Assam, India
| | - Salam Jayachitra Devi
- Computer Applications and Information Technology, ICAR-National Research Centre on Pig, Guwahati, 781131, Assam, India
| | - Vivek Kumar Gupta
- Director, ICAR-National Research Centre on Pig, Guwahati, 781131, Assam, India
| |
Collapse
|
2
|
Feng J, He S, Wan C, Liu J, Xie F. The effect of swine insurance participation on swine production efficiency: Evidence from China. PLoS One 2025; 20:e0317759. [PMID: 40073009 PMCID: PMC11902217 DOI: 10.1371/journal.pone.0317759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/04/2025] [Indexed: 03/14/2025] Open
Abstract
How does swine insurance affect the swine production efficiency in China? We focus on micro-survey data from 582 swine farmers in Liaoning Province, and uses the propensity score matching method (PSM) and mediated effects model for the empirical examination. The results indicate that swine insurance positively impacts production efficiency, compared to uninsured farmers, those who participate in swine insurance exhibit a 4.7% improvement in production efficiency. Additionally, the estimations from the mediated effects models indicate that swine insurance significantly enhances swine production efficiency by influencing risk appetite, production decision and technology adoption. Furthermore, the heterogeneity analysis revealed that the positive effect of swine insurance on production efficiency becomes more pronounced as the scale of farmers' swine production expands. Apart from this, the correlation between swine insurance coverage level and production efficiency reveals a significant U-shaped curve. These findings provide valuable insights for improving the swine insurance system and fostering the growth of the swine industry.
Collapse
Affiliation(s)
- Jingyue Feng
- College of Economics and Management, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shan He
- College of Economics and Management, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chunli Wan
- College of Economics and Management, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jia Liu
- Liaoning Province Agricultural Development Service Center, Shenyang, Liaoning, China
| | - Fengjie Xie
- College of Economics and Management, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Monteiro MS, Carnevale RF, Muro BBD, Mezzina ALB, Carnino BB, Poor AP, Matajira CEC, Garbossa CAP. The Role of Nutrition Across Production Stages to Improve Sow Longevity. Animals (Basel) 2025; 15:189. [PMID: 39858189 PMCID: PMC11758652 DOI: 10.3390/ani15020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/31/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Modern hyperprolific sows are increasingly susceptible to health challenges. Their rapid growth rates predispose them to locomotor disorders, while high metabolic demands, reduced backfat thickness, and increased protein accretion heighten their vulnerability to heat stress and dystocia. Additionally, prolonged farrowing negatively affects the oxidative and inflammatory status of these females. Additionally, prevalent conditions such as gastric ulcers and cystitis raise ethical, welfare, and economic concerns. Despite the several studies related to sow nutrition, there are no studies which compile and extrapolate nutrition approaches from the rearing period and their impact on sows' health and longevity. Also, the aim of our review was to shed light on gaps that require further investigation. Controlling body condition scores is crucial for maximizing productivity in sows. During gestation, high-fiber diets help maintain optimal body condition and prevent constipation, particularly during the peripartum period. Antioxidants offer a range of beneficial effects during this critical phase. Additionally, probiotics and acidifiers can enhance gut health and lower the risk of genitourinary infections. On the day of farrowing, energy supplementation emerges as a promising strategy to reduce farrowing duration. Collectively, these strategies address major health challenges, enhancing welfare and promoting sow's longevity.
Collapse
Affiliation(s)
- Matheus Saliba Monteiro
- Nerthus Research and Development LTDA, Sao Carlos 13563-651, Sao Paulo, Brazil; (M.S.M.); (B.B.D.M.)
| | - Rafaella Fernandes Carnevale
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil; (R.F.C.); (A.L.B.M.); (B.B.C.)
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Ghent, Belgium
| | - Bruno Bracco Donatelli Muro
- Nerthus Research and Development LTDA, Sao Carlos 13563-651, Sao Paulo, Brazil; (M.S.M.); (B.B.D.M.)
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil; (R.F.C.); (A.L.B.M.); (B.B.C.)
- PoulPharm, 8870 Izegem, Belgium;
| | - Ana Lígia Braga Mezzina
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil; (R.F.C.); (A.L.B.M.); (B.B.C.)
| | - Bruno Braga Carnino
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil; (R.F.C.); (A.L.B.M.); (B.B.C.)
| | | | - Carlos Emilio Cabrera Matajira
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Sao Paulo 05508-000, Sao Paulo, Brazil;
| | - Cesar Augusto Pospissil Garbossa
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil; (R.F.C.); (A.L.B.M.); (B.B.C.)
| |
Collapse
|
4
|
Biswas D, Yoon JD, Mishra B, Hyun SH. Epigen enhances the developmental potential of in vitro fertilized embryos by improving cytoplasmic maturation. Theriogenology 2024; 218:16-25. [PMID: 38290231 DOI: 10.1016/j.theriogenology.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Numerous growth factors contribute to oocyte maturation and embryonic development in vivo; however, only a few are understood. One such factor is epigen, a new member of the epidermal growth factor (EGF) family that is secreted by the granulosa cells of immature oocytes. We hypothesized that epigen may play a role in oocyte maturation, specifically in the nuclear and cytoplasmic aspects. This study aimed to investigate the effects of epigen on porcine oocyte maturation and embryo development in vitro. In this study, three different concentrations of epigen (3, 6, and 30 ng/mL) were added to tissue culture medium-199 (TCM-199) during in vitro maturation of porcine oocytes. A control group that did not receive epigen supplementation was also included. Mature porcine oocytes were fertilized, and the resulting zygotes were cultured until day 7. The levels of intracellular glutathione (GSH) and reactive oxygen species (ROS) were measured in the in vitro matured oocytes. At the same time, the expression patterns of genes related to apoptosis were detected in day 7 blastocysts (BLs) using real-time quantitative PCR Apoptosis was detected by annexin-V assays in mature oocytes. Data were analyzed using ANOVA and Duncan's test on SPSS, and results are presented as mean ± SEM. The group that received 6 ng/mL epigen had a significantly lower rate of germinal vesicle breakdown (GVBD) than the control group without affecting the nuclear maturation among the experimental groups. Among the treatment groups, the 6 ng/mL epigen group showed significantly higher levels of intracellular GSH and lower ROS production. Supplementation with 6 ng/mL epigen significantly improved blastocyst (BL) formation rates compared to those in the control and 3 ng/mL groups. Additionally, the blastocyst expansion rate was significantly higher with epigen supplementation (6 ng/mL). In the fertilization experiment, the group supplemented with 6 ng/mL epigen exhibited significantly higher levels of monospermy and fertilization efficiency and lower levels of polyspermy than the control group. This study indicated that adding epigen at a concentration of 6 ng/mL can significantly enhance the developmental potential of porcine oocytes fertilized in vitro. Specifically, the study found that epigen improves cytoplasmic maturation, which helps prevent polyspermy and emulates monospermic penetration.
Collapse
Affiliation(s)
- Dibyendu Biswas
- Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Department of Medicine, Surgery and Obstetrics, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal Campus, Barisal, 8210, Bangladesh
| | - Junchul David Yoon
- Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Birendra Mishra
- Dept. of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Sang Hwan Hyun
- Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
5
|
Pepin B, Rodriguez-Villamil P, Sammel L, Yin J, Dacken B. Monitoring swine virus transmission in embryos derived from commercial abattoir oocytes. Front Vet Sci 2024; 11:1336005. [PMID: 38371600 PMCID: PMC10869560 DOI: 10.3389/fvets.2024.1336005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024] Open
Abstract
Pigs are pivotal in agriculture and biomedical research and hold promise for xenotransplantation. Specific-pathogen-free (SPF) herds are essential for commercial swine production and xenotransplantation research facilities. Commercial herds aim to safeguard animal health, welfare, and productivity, and research facilities require SPF status to protect immunocompromised patients. Somatic cell nuclear transfer (SCNT) embryos are the norm for producing cloned and genetically edited animals. Oocytes for embryo reconstruction are most conveniently sourced from commercial abattoirs with unclear disease statuses. However, research on viral clearance from donor oocytes during embryo reconstruction remains limited. SCNT has previously been shown to reduce the transmission of Porcine reproductive and respiratory syndrome virus, Bovine viral diarrhea virus, Porcine Circovirus type 2, and Porcine parvovirus. Still, it is lacking for other pathogens, including endogenous viruses. This project contains two preliminary studies investigating the polymerase chain reaction (PCR) assay detection of common swine viruses through the phases of producing parthenogenic and SCNT embryos. Exogenous pathogens detected in oocyte donor tissue or the oocyte maturation media were not detected in the produced embryos. Porcine endogenous retrovirus type C (PERVC) was not removed by parthenogenic embryo activation and was detected in 1 of the 2 tested SCNT embryos reconstructed using a PERVC-negative cell line. SCNT and parthenogenic embryo construction similarly reduced exogenous virus detection. SCNT embryo construction helped reduce endogenous virus detection. This project demonstrates the importance of screening embryos for endogenous viruses and shows the usefulness of parthenogenic embryos in future exogenous virus clearance studies.
Collapse
Affiliation(s)
- Brent Pepin
- Cytotheryx, Inc., Rochester, MN, United States
| | | | - Lauren Sammel
- Sustainable Swine Resources LLC, Watertown, WI, United States
| | - Jie Yin
- Sustainable Swine Resources LLC, Watertown, WI, United States
| | | |
Collapse
|
6
|
The effect of dietary supplementation with guar ( Cyamopsis tetragonoloba) meal protein on the quality and chemical composition of pig carcasses. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Abstract
Recent research efforts have focused on replacing expensive imported genetically modified soybean meal (GM SBM) as a protein source in animal diets with guar meal characterized by similar nutritional characteristics, which could improve meat quality. The aim of this study was to determine the effect of guar meal protein fed to pigs on carcass quality and the content of major nutrients and fatty acids in the longissimus lumborum (LL) muscle. Pigs were divided into four groups. Control group (1) animals were fed diets containing SBM as the main protein source. In diets for experimental groups 2, 3 and 4, SBM protein was replaced with guar meal protein in 25%, 50% and 75%, respectively. It was found that SBM replacement with guar meal protein at 25% affected carcass weight and the lean content, fat content and protein content of the LL muscle. An analysis of linear correlations revealed a strong negative correlation between the concentrations of monounsaturated fatty acids (MUFAs) and saturated fatty acids (SFAs) in the LL muscle of pigs fed diets containing 25% of guar meal protein, which is nutritionally desirable. The results of this study suggest that the dietary inclusion of guar meal protein at up to 25% of SBM protein has no negative effects on the fattening performance of pigs. Meat quality was not affected by diets fortified with guar meal protein.
Collapse
|
7
|
Zhu C, Yang J, Nie X, Wu Q, Wang L, Jiang Z. Influences of Dietary Vitamin E, Selenium-Enriched Yeast, and Soy Isoflavone Supplementation on Growth Performance, Antioxidant Capacity, Carcass Traits, Meat Quality and Gut Microbiota in Finishing Pigs. Antioxidants (Basel) 2022; 11:antiox11081510. [PMID: 36009229 PMCID: PMC9405041 DOI: 10.3390/antiox11081510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/29/2022] Open
Abstract
This study investigated the effects of dietary compound antioxidants on growth performance, antioxidant capacity, carcass traits, meat quality, and gut microbiota in finishing pigs. A total of 36 barrows were randomly assigned to 2 treatments with 6 replicates. The pigs were fed with a basal diet (control) or the basal diet supplemented with 200 mg/kg vitamin E, 0.3 mg/kg selenium-enriched yeast, and 20 mg/kg soy isoflavone. Dietary compound antioxidants decreased the average daily feed intake (ADFI) and feed to gain ratio (F/G) at d 14−28 in finishing pigs (p < 0.05). The plasma total protein, urea nitrogen, triglyceride, and malondialdehyde (MDA) concentrations were decreased while the plasma glutathione (GSH) to glutathione oxidized (GSSG) ratio (GSH/GSSG) was increased by compound antioxidants (p < 0.05). Dietary compound antioxidants increased loin area and b* value at 45 min, decreased backfat thickness at last rib, and drip loss at 48 h (p < 0.05). The relative abundance of colonic Peptococcus at the genus level was increased and ileal Turicibacter_sp_H121 abundance at the species level was decreased by dietary compound antioxidants. Spearman analysis showed a significant negative correlation between the relative abundance of colonic Peptococcus and plasma MDA concentration and meat drip loss at 48 h. Collectively, dietary supplementation with compound antioxidants of vitamin E, selenium-enrich yeast, and soy isoflavone could improve feed efficiency and antioxidant capacity, and modify the backfat thickness and meat quality through modulation of the gut microbiota community.
Collapse
Affiliation(s)
- Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (C.Z.); (J.Y.); (X.N.)
| | - Jingsen Yang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (C.Z.); (J.Y.); (X.N.)
| | - Xiaoyan Nie
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (C.Z.); (J.Y.); (X.N.)
| | - Qiwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Correspondence: (L.W.); (Z.J.)
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Correspondence: (L.W.); (Z.J.)
| |
Collapse
|
8
|
Gao C, Wu P, Yu L, Liu L, Liu H, Tan X, Wang L, Huang X, Wang H. The application of CRISPR/Cas9 system in cervical carcinogenesis. Cancer Gene Ther 2022; 29:466-474. [PMID: 34349239 PMCID: PMC9113934 DOI: 10.1038/s41417-021-00366-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 05/25/2021] [Accepted: 06/23/2021] [Indexed: 02/02/2023]
Abstract
Integration of high-risk HPV genomes into cellular chromatin has been confirmed to promote cervical carcinogenesis, with HPV16 being the most prevalent high-risk type. Herein, we evaluated the therapeutic effect of the CRISPR/Cas9 system in cervical carcinogenesis, especially for cervical precancerous lesions. In cervical cancer/pre-cancer cell lines, we transfected the HPV16 E7 targeted CRISPR/Cas9, TALEN, ZFN plasmids, respectively. Compared to previous established ZFN and TALEN systems, CRISPR/Cas9 has shown comparable efficiency and specificity in inhibiting cell growth and colony formation and inducing apoptosis in cervical cancer/pre-cancer cell lines, which seemed to be more pronounced in the S12 cell line derived from the low-grade cervical lesion. Furthermore, in xenograft formation assays, CRISPR/Cas9 inhibited tumor formation of the S12 cell line in vivo and affected the corresponding protein expression. In the K14-HPV16 transgenic mice model of HPV-driven spontaneous cervical carcinogenesis, cervical application of CRISPR/Cas9 treatment caused mutations of the E7 gene and restored the expression of RB, E2F1, and CDK2, thereby reversing the cervical carcinogenesis phenotype. In this study, we have demonstrated that CRISPR/Cas9 targeting HPV16 E7 could effectively revert the HPV-related cervical carcinogenesis in vitro, as well as in K14-HPV16 transgenic mice, which has shown great potential in clinical treatment for cervical precancerous lesions.
Collapse
Affiliation(s)
- Chun Gao
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.412793.a0000 0004 1799 5032Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Ping Wu
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.412793.a0000 0004 1799 5032Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Lan Yu
- grid.488530.20000 0004 1803 6191Department of Gynecologic Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Liting Liu
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Hong Liu
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Xiangyu Tan
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Liming Wang
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.412793.a0000 0004 1799 5032Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Xiaoyuan Huang
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.412793.a0000 0004 1799 5032Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Hui Wang
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.412793.a0000 0004 1799 5032Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.431048.a0000 0004 1757 7762Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
9
|
Use of Genome Editing Techniques to Produce Transgenic Farm Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1354:279-297. [PMID: 34807447 PMCID: PMC9810480 DOI: 10.1007/978-3-030-85686-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recombinant proteins are essential for the treatment and diagnosis of clinical human ailments. The availability and biological activity of recombinant proteins is heavily influenced by production platforms. Conventional production platforms such as yeast, bacteria, and mammalian cells have biological and economical challenges. Transgenic livestock species have been explored as an alternative production platform for recombinant proteins, predominantly through milk secretion; the strategy has been demonstrated to produce large quantities of biologically active proteins. The major limitation of utilizing livestock species as bioreactors has been efforts required to alter the genome of livestock. Advancements in the genome editing field have drastically improved the ability to genetically engineer livestock species. Specifically, genome editing tools such as the CRISPR/Cas9 system have lowered efforts required to generate genetically engineered livestock, thus minimizing restrictions on the type of genetic modification in livestock. In this review, we discuss characteristics of transgenic animal bioreactors and how the use of genome editing systems enhances design and availability of the animal models.
Collapse
|
10
|
HUY DTN, TRUNG ND, HANG NT, HUONG LTT, THOM BT. Quality solutions and food safety for wild pigs (Sus Scrofa) and pork processing in the North of Vietnam (Thai Nguyen) in globalization and experiences from asian countries. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.70721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | - Bui Thi THOM
- Thai Nguyen University of Agriculture and Forestry, Vietnam
| |
Collapse
|
11
|
Nutrition and Metabolism: Foundations for Animal Growth, Development, Reproduction, and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:1-24. [PMID: 34807434 DOI: 10.1007/978-3-030-85686-1_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Consumption of high-quality animal protein plays an important role in improving human nutrition, growth, development, and health. With an exponential growth of the global population, demands for animal-sourced protein are expected to increase by 60% between 2021 and 2050. In addition to the production of food protein and fiber (wool), animals are useful models for biomedical research to prevent and treat human diseases and serve as bioreactors to produce therapeutic proteins. For a high efficiency to transform low-quality feedstuffs and forages into high-quality protein and highly bioavailable essential minerals in diets of humans, farm animals have dietary requirements for energy, amino acids, lipids, carbohydrates, minerals, vitamins, and water in their life cycles. All nutrients interact with each other to influence the growth, development, and health of mammals, birds, fish, and crustaceans, and adequate nutrition is crucial for preventing and treating their metabolic disorders (including metabolic diseases) and infectious diseases. At the organ level, the small intestine is not only the terminal site for nutrient digestion and absorption, but also intimately interacts with a diverse community of intestinal antigens and bacteria to influence gut and whole-body health. Understanding the species and metabolism of intestinal microbes, as well as their interactions with the intestinal immune systems and the host intestinal epithelium can help to mitigate antimicrobial resistance and develop prebiotic and probiotic alternatives to in-feed antibiotics in animal production. As abundant sources of amino acids, bioactive peptides, energy, and highly bioavailable minerals and vitamins, animal by-product feedstuffs are effective for improving the growth, development, health, feed efficiency, and survival of livestock and poultry, as well as companion and aquatic animals. The new knowledge covered in this and related volumes of Adv Exp Med Biol is essential to ensure sufficient provision of animal protein for humans, while helping reduce greenhouse gas emissions, minimize the urinary and fecal excretion of nitrogenous and other wastes to the environment, and sustain animal agriculture (including aquaculture).
Collapse
|
12
|
Arshad MA, Hassan FU, Rehman MS, Huws SA, Cheng Y, Din AU. Gut microbiome colonization and development in neonatal ruminants: Strategies, prospects, and opportunities. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:883-895. [PMID: 34632119 PMCID: PMC8484983 DOI: 10.1016/j.aninu.2021.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Colonization and development of the gut microbiome is a crucial consideration for optimizing the health and performance of livestock animals. This is mainly attributed to the fact that dietary and management practices greatly influence the gut microbiota, subsequently leading to changes in nutrient utilization and immune response. A favorable microbiome can be implanted through dietary or management interventions of livestock animals, especially during early life. In this review, we explore all the possible factors (for example gestation, colostrum, and milk feeding, drinking water, starter feed, inoculation from healthy animals, prebiotics/probiotics, weaning time, essential oil and transgenesis), which can influence rumen microbiome colonization and development. We discuss the advantages and disadvantages of potential strategies used to manipulate gut development and microbial colonization to improve the production and health of newborn calves at an early age when they are most susceptible to enteric disease. Moreover, we provide insights into possible interventions and their potential effects on rumen development and microbiota establishment. Prospects of latest techniques like transgenesis and host genetics have also been discussed regarding their potential role in modulation of rumen microbiome and subsequent effects on gut development and performance in neonatal ruminants.
Collapse
Affiliation(s)
- Muhammad A Arshad
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Muhammad S Rehman
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Sharon A Huws
- School of Biological Sciences, Institute for Global Food Security, Queen's University of Belfast, Belfast, BT9 5DL, GB-NIR, UK
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ahmad U Din
- Drug Discovery Research Center, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
13
|
Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock. World J Stem Cells 2021; 13:1-29. [PMID: 33584977 PMCID: PMC7859985 DOI: 10.4252/wjsc.v13.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The recent progress in derivation of pluripotent stem cells (PSCs) from farm animals opens new approaches not only for reproduction, genetic engineering, treatment and conservation of these species, but also for screening novel drugs for their efficacy and toxicity, and modelling of human diseases. Initial attempts to derive PSCs from the inner cell mass of blastocyst stages in farm animals were largely unsuccessful as either the cells survived for only a few passages, or lost their cellular potency; indicating that the protocols which allowed the derivation of murine or human embryonic stem (ES) cells were not sufficient to support the maintenance of ES cells from farm animals. This scenario changed by the innovation of induced pluripotency and by the development of the 3 inhibitor culture conditions to support naïve pluripotency in ES cells from livestock species. However, the long-term culture of livestock PSCs while maintaining the full pluripotency is still challenging, and requires further refinements. Here, we review the current achievements in the derivation of PSCs from farm animals, and discuss the potential application areas.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India.
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Iqbal Hyder
- Department of Physiology, NTR College of Veterinary Science, Gannavaram 521102, India
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institute, Federal Institute of Animal Health, Neustadt 31535, Germany
| |
Collapse
|
14
|
Hassan FU, Arshad MA, Ebeid HM, Rehman MSU, Khan MS, Shahid S, Yang C. Phytogenic Additives Can Modulate Rumen Microbiome to Mediate Fermentation Kinetics and Methanogenesis Through Exploiting Diet-Microbe Interaction. Front Vet Sci 2020; 7:575801. [PMID: 33263013 PMCID: PMC7688522 DOI: 10.3389/fvets.2020.575801] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Ruminants inhabit the consortia of gut microbes that play a critical functional role in their maintenance and nourishment by enabling them to use cellulosic and non-cellulosic feed material. These gut microbes perform major physiological activities, including digestion and metabolism of dietary components, to derive energy to meet major protein (65-85%) and energy (ca 80%) requirements of the host. Owing to their contribution to digestive physiology, rumen microbes are considered one of the crucial factors affecting feed conversion efficiency in ruminants. Any change in the rumen microbiome has an imperative effect on animal physiology. Ruminal microbes are fundamentally anaerobic and produce various compounds during rumen fermentation, which are directly used by the host or other microbes. Methane (CH4) is produced by methanogens through utilizing metabolic hydrogen during rumen fermentation. Maximizing the flow of metabolic hydrogen in the rumen away from CH4 and toward volatile fatty acids (VFA) would increase the efficiency of ruminant production and decrease its environmental impact. Understanding of microbial diversity and rumen dynamics is not only crucial for the optimization of host efficiency but also required to mediate emission of greenhouse gases (GHGs) from ruminants. There are various strategies to modulate the rumen microbiome, mainly including dietary interventions and the use of different feed additives. Phytogenic feed additives, mainly plant secondary compounds, have been shown to modulate rumen microflora and change rumen fermentation dynamics leading to enhanced animal performance. Many in vitro and in vivo studies aimed to evaluate the use of plant secondary metabolites in ruminants have been conducted using different plants or their extract or essential oils. This review specifically aims to provide insights into dietary interactions of rumen microbes and their subsequent consequences on rumen fermentation. Moreover, a comprehensive overview of the modulation of rumen microbiome by using phytogenic compounds (essential oils, saponins, and tannins) for manipulating rumen dynamics to mediate CH4 emanation from livestock is presented. We have also discussed the pros and cons of each strategy along with future prospective of dietary modulation of rumen microbiome to improve the performance of ruminants while decreasing GHG emissions.
Collapse
Affiliation(s)
- Faiz-ul Hassan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Adeel Arshad
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Hossam M. Ebeid
- Dairy Science Department, National Research Centre, Giza, Egypt
| | - Muhammad Saif-ur Rehman
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sajjad Khan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Shehryaar Shahid
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
15
|
Sharma B, Shukla G. Isolation, Identification, and Characterization of Phytase Producing Probiotic Lactic Acid Bacteria from Neonatal Fecal Samples Having Dephytinization Activity. FOOD BIOTECHNOL 2020. [DOI: 10.1080/08905436.2020.1746332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bhawna Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Geeta Shukla
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
16
|
Abstract
D- and most L-enantiomers of carbohydrates and carbohydrate-containing compounds occur naturally in plants and other organisms. These enantiomers play many important roles in plants including building up biomass, defense against pathogens, herbivory, abiotic stress, and plant nutrition. Carbohydrate enantiomers are also precursors of many plant compounds that significantly contribute to plant aroma. Microorganisms, insects, and other animals utilize both types of carbohydrate enantiomers, but their biomass and excrements are dominated by D-enantiomers. The aim of this work was to review the current knowledge about carbohydrate enantiomers in ecosystems with respect to both their metabolism in plants and occurrence in soils, and to identify critical knowledge gaps and directions for future research. Knowledge about the significance of D- versus L-enantiomers of carbohydrates in soils is rare. Determining the mechanism of genetic regulation of D- and L-carbohydrate metabolism in plants with respect to pathogen and pest control and ecosystem interactions represent the knowledge gaps and a direction for future research.
Collapse
|