1
|
Huerta A, Xiccato G, Bordignon F, Birolo M, Boskovic Cabrol M, Pirrone F, Trocino A. Dietary fat content and supplementation with sodium butyrate: effects on growth performance, carcass traits, meat quality, and myopathies in broiler chickens. Poult Sci 2024; 103:104199. [PMID: 39197337 PMCID: PMC11399674 DOI: 10.1016/j.psj.2024.104199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to evaluate the effects of the dietary inclusion of microencapsulated sodium butyrate (Na-butyrate; 0, 150, and 300 mg Na-butyrate/kg diet) and dietary fat reduction (7.7% vs. 6.7% in the grower diet; 8.9% vs. 7.7% in the finisher diet) in 792 (half male and half female) broiler chickens on growth performance, carcass traits, and meat quality and the occurrence of wooden breast (WB), white striping (WS), and spaghetti meat (SM). Dietary supplementation with Na-butyrate did not affect the growth performance, carcass traits, meat quality traits, or myopathy rates. Dietary fat reduction did not influence feed intake (FI) but decreased average daily gain (ADG); increased feed conversion ratio (FCR) (P < 0.001); and decreased the occurrence of WS (-38%; P < 0.01), WB (-48%; P < 0.05), and SM (-90%; P < 0.01). Dietary fat reduction also increased cold carcass weight (P < 0.01), carcass yield (P < 0.05), and pectoralis major yield (P < 0.05), whereas meat quality was not affected. Compared to females, males had high body weight, ADG, and FI and low FCR (P < 0.001) at the end of the trial. Moreover, cold carcass weight and hind leg yield were higher in males than in females (P < 0.001), whereas females had higher carcass, breast, and p. major yields (P < 0.001). Males showed a higher rate of WB (P < 0.001) and a lower rate of SM (P < 0.01) than females, whereas WS occurrence did not differ between sexes. In conclusion, Na-butyrate supplementation did not affect growth performance, carcass traits, or meat quality. Conversely, the reduction in dietary fat greatly decreased myopathy occurrence, whereas moderately impaired growth performance.
Collapse
Affiliation(s)
- A Huerta
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - G Xiccato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - F Bordignon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - M Birolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - M Boskovic Cabrol
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - F Pirrone
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - A Trocino
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy; Department of Comparative Biomedicine and Food Science (BCA), University of Padova, 35020 Legnaro, Padova, Italy.
| |
Collapse
|
2
|
Fu Q, Tian M, Yang Y, Zhu Y, Zhou H, Tan J, Wang J, Huang Q. Paotianxiong polysaccharides potential prebiotics: Structural analysis and prebiotic properties. Food Chem 2024; 451:139499. [PMID: 38703731 DOI: 10.1016/j.foodchem.2024.139499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Paotianxiong (PTX) is a processing product of Aconitum carmichaelii Debx., often used as a tonic food daily. However, the structure and activity of the polysaccharide component that plays a major role still need to be determined. In our work, two new polysaccharides were purified from PTX and named PTXP-1 and PTXP-2. Structural analysis showed that PTXP-1 is a glucan with a molecular weight of 915 Da and a structure of 4)-α-D-Glcp-(1 → as the main chain. PTXP-2 is a glucose arabinoglycan with 4)-α-D-Glcp-(1 → as the main chain, containing 8 glycosidic bonds attached, and a molecular weight of 57.9KDa. In vitro probiotic experiments demonstrated that PTXP-1 could significantly promote probiotic growth and acid production. In vivo experiments demonstrated that both PTXP-1 and PTXP-2 exhibited significant effectiveness in promoting the growth of intestinal probiotics. These findings help expand the application of polysaccharide components extracted from tonic herbs as functional food ingredients.
Collapse
Affiliation(s)
- Qinwen Fu
- State key laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Maoying Tian
- State key laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu Yang
- State key laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Zhu
- State key laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hailun Zhou
- State key laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jin Tan
- Gooddoctor Pharmaceutical Group Co., Ltd, Chengdu, Sichuan, China
| | - Jin Wang
- State key laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; College of Ethnic Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Qinwan Huang
- State key laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Kim DM, Liu J, Whitmore MA, Tobin I, Zhao Z, Zhang G. Two intestinal microbiota-derived metabolites, deoxycholic acid and butyrate, synergize to enhance host defense peptide synthesis and alleviate necrotic enteritis. J Anim Sci Biotechnol 2024; 15:29. [PMID: 38429856 PMCID: PMC10908072 DOI: 10.1186/s40104-024-00995-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/07/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Necrotic enteritis (NE) is a major enteric disease in poultry, yet effective mitigation strategies remain elusive. Deoxycholic acid (DCA) and butyrate, two major metabolites derived from the intestinal microbiota, have independently been shown to induce host defense peptide (HDP) synthesis. However, the potential synergy between these two compounds remains unexplored. METHODS To investigate the possible synergistic effect between DCA and butyrate in regulating HDP synthesis and barrier function, we treated chicken HD11 macrophage cells and jejunal explants with DCA and sodium butyrate (NaB), either individually or in combination, for 24 h. Subsequently, we performed RNA isolation and reverse transcription-quantitative PCR to analyze HDP genes as well as the major genes associated with barrier function. To further determine the synergy between DCA and NaB in enhancing NE resistance, we conducted two independent trials with Cobb broiler chicks. In each trial, the diet was supplemented with DCA or NaB on the day-of-hatch, followed by NE induction through sequential challenges with Eimeria maxima and Clostridium perfringens on d 10 and 14, respectively. We recorded animal mortality after infection and assessed intestinal lesions on d 17. The impact of DCA and NaB on the microbiota in the ileum and cecum was evaluated through bacterial 16S rRNA gene sequencing. RESULTS We found that the combination of DCA and NaB synergistically induced multiple HDP genes in both chicken HD11 cells and jejunal explants. Additionally, the gene for claudin-1, a major tight junction protein, also exhibited synergistic induction in response to DCA and NaB. Furthermore, dietary supplementation with a combination of 0.75 g/kg DCA and 1 g/kg NaB led to a significant improvement in animal survival and a reduction in intestinal lesions compared to either compound alone in a chicken model of NE. Notably, the cecal microbiota of NE-infected chickens showed a marked decrease in SCFA-producing bacteria such as Bacteroides, Faecalibacterium, and Cuneatibacter, with lactobacilli becoming the most dominant species. However, supplementation with DCA and NaB largely restored the intestinal microbiota to healthy levels. CONCLUSIONS DCA synergizes with NaB to induce HDP and claudin-1 expression and enhance NE resistance, with potential for further development as cost-effective antibiotic alternatives.
Collapse
Affiliation(s)
- Dohyung M Kim
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Jing Liu
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Melanie A Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Zijun Zhao
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
4
|
Gerunova LK, Gerunov TV, P'yanova LG, Lavrenov AV, Sedanova AV, Delyagina MS, Fedorov YN, Kornienko NV, Kryuchek YO, Tarasenko AA. Butyric acid and prospects for creation of new medicines based on its derivatives: a literature review. J Vet Sci 2024; 25:e23. [PMID: 38568825 PMCID: PMC10990906 DOI: 10.4142/jvs.23230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 04/05/2024] Open
Abstract
The widespread use of antimicrobials causes antibiotic resistance in bacteria. The use of butyric acid and its derivatives is an alternative tactic. This review summarizes the literature on the role of butyric acid in the body and provides further prospects for the clinical use of its derivatives and delivery methods to the animal body. Thus far, there is evidence confirming the vital role of butyric acid in the body and the effectiveness of its derivatives when used as animal medicines and growth stimulants. Butyric acid salts stimulate immunomodulatory activity by reducing microbial colonization of the intestine and suppressing inflammation. Extraintestinal effects occur against the background of hemoglobinopathy, hypercholesterolemia, insulin resistance, and cerebral ischemia. Butyric acid derivatives inhibit histone deacetylase. Aberrant histone deacetylase activity is associated with the development of certain types of cancer in humans. Feed additives containing butyric acid salts or tributyrin are used widely in animal husbandry. They improve the functional status of the intestine and accelerate animal growth and development. On the other hand, high concentrations of butyric acid stimulate the apoptosis of epithelial cells and disrupt the intestinal barrier function. This review highlights the biological activity and the mechanism of action of butyric acid, its salts, and esters, revealing their role in the treatment of various animal and human diseases. This paper also discussed the possibility of using butyric acid and its derivatives as surface modifiers of enterosorbents to obtain new drugs with bifunctional action.
Collapse
Affiliation(s)
- Lyudmila K Gerunova
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Taras V Gerunov
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Lydia G P'yanova
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Alexander V Lavrenov
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Anna V Sedanova
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Maria S Delyagina
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation.
| | - Yuri N Fedorov
- Laboratory of Immunology, All-Russian Research and Technological Institute of Biological Industry, pos. Biokombinata, Shchelkovskii Region, Moscow Province 141142, Russian Federation
| | - Natalia V Kornienko
- Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC, Omsk 644040, Russian Federation
| | - Yana O Kryuchek
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| | - Anna A Tarasenko
- Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin, Omsk 644008, Russian Federation
| |
Collapse
|
5
|
Srivastava PK, Tiwari GN, Sinha ASK. Enhanced vermicomposting of rice straw and pressmud with biogas slurry employing Eisenia fetida: Production, characterization, growth, and toxicological risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120032. [PMID: 38184874 DOI: 10.1016/j.jenvman.2024.120032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The biogas plant plays a dual role: it directly provides energy and indirectly promotes organic farming through outlet slurry. However, agricultural biomass wastes such as rice straws (RS) and pressmud (PM), which can't be used as fertilizers on their own, were vermicomposted (60 days) with biogas slurry (BS), using earthworm, into four blends: T1(BS, 100%), T2(3:2, BS: RS), T3(3:2, BS: PM), and T4(3:1:1, BS: RS: PM). The characterization, elemental analysis, and toxicological risk assessment of derived vermimanure were carried out using various analytical tools, such as an organic elemental analyzer such as CHNS, FT-IR, FESEM-EDXA, XPS, and ICP-OES. The pH, electrical conductivity, and C/N values were within 7.1-7.8, 3.2-6.0 dSm-1, and 12-15, respectively, for all treatments. The proportions of N (38%), P (70%), K (58%), Mg (67%), Ca (42%), and ash (44%), increased significantly (P < 0.05) over the initial feedstocks. The ecological risks of heavy metals (Zn, Cu, Ni, Pb, Cd, and Cr) in all feedstocks were found to be under WHO-permitted levels. The growth performance of earthworms was also considerably higher (P < 0.05) over the control feedstock group. The analytical methods verified that feedstock T4 (3:1:1, BS: RS: PM) was more porous, containing NH4+, PO43-, K+, and other nutrients. Pellets of all vermimanure groups keep 65-75% of the original volume. As well, when these pellets have been employed for agronomy and dispersed in the field, they will cause less dust than traditional or powdered compost or manure. In comparison to the control group, the synergistic approach of RS, PM, and BS in vermimanure significantly (P < 0.05) enhanced seed germination (83%), vigour index (42.5%), and decreased mean germination time by 27%. Furthermore, pot trials with Abelmoschus esculentus seed indicated that seedlings cultivated with 40% vermimanure of T4 (3:1:1, BS: RS: PM) mixed soil showed high growth in shoot, root, and plant yield.
Collapse
Affiliation(s)
- Praveen Kumar Srivastava
- Department of Sciences and Humanities, Rajiv Gandhi Institute of Petroleum Technology, Amethi, Jais 229304, India.
| | - Gopal Nath Tiwari
- Department of Sciences and Humanities, Rajiv Gandhi Institute of Petroleum Technology, Amethi, Jais 229304, India; Sodha Energy Research Park, BERS Public School, Jawahar Nagar, Chikahar, Ballia 221701, India
| | - Akhoury Sudhir Kumar Sinha
- Department of Chemical Engineering and Biochemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Amethi, Jais 229304, India
| |
Collapse
|
6
|
Bawish BM, Zahran MFS, Ismael E, Kamel S, Ahmed YH, Hamza D, Attia T, Fahmy KNE. Impact of buffered sodium butyrate as a partial or total dietary alternative to lincomycin on performance, IGF-1 and TLR4 genes expression, serum indices, intestinal histomorphometry, Clostridia, and litter hygiene of broiler chickens. Acta Vet Scand 2023; 65:44. [PMID: 37770986 PMCID: PMC10540366 DOI: 10.1186/s13028-023-00704-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Sodium butyrate (SB) is a short-chain fatty acid and a safe antibiotic alternative. During 35 days, this study compared the impact of coated SB (Butirex C4) and lincomycin (Lincomix) on broiler growth, gut health, and litter hygiene in 1200 one-day-old Ross-308 broiler chicks that were randomly assigned into 5-dietary groups with 5-replications each. Groups divided as follows: T1: Basal diet (control), T2: Basal diet with buffered SB (1 kg/ton starter feed, 0.5 kg/ton grower-finisher feeds), T3: Basal diet with 100 g/ton lincomycin, T4: Basal diet with buffered SB (0.5 kg/ton starter feed, 0.25 kg/ton grower-finisher feeds) + 50 g/ton lincomycin, and T5: Basal diet with buffered SB (1 kg/ton starter feed, 0.5 kg/ton grower-finisher feeds) + 50 g/ton lincomycin. Birds were housed in a semi-closed deep litter house, where feed and water were available ad libitum. Results were statistically analyzed using ANOVA and Tukey's post hoc tests. RESULTS Combined dietary supplementation with SB and lincomycin (T4 and T5) significantly enhanced body weights, weight gains, feed conversion ratio, and profitability index. Also, carcasses in T4 and T5 exhibited the highest dressing, breast, thigh, and liver yields. T5 revealed the best blood biochemical indices, while T3 showed significantly elevated liver and kidney function indices. T4 and T5 exhibited the highest expression levels of IGF-1 and TLR4 genes, the greatest villi length of the intestinal mucosa, and the lowest levels of litter moisture and nitrogen. Clostridia perfringens type A alpha-toxin gene was confirmed in birds' caeca, with the lowest clostridial counts defined in T4. CONCLUSIONS Replacing half the dose of lincomycin (50 g/ton) with 0.5 or 1 kg/ton coated SB as a dietary supplement mixture showed the most efficient privileges concerning birds' performance and health.
Collapse
Affiliation(s)
- Basma Mohamed Bawish
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, 12211, Egypt
| | | | - Elshaimaa Ismael
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, 12211, Egypt.
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Dalia Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Taha Attia
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Sadat City, Minoufiya, 23897, Egypt
| | - Khaled Nasr Eldin Fahmy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
7
|
Goo D, Choi J, Ko H, Choppa VSR, Liu G, Lillehoj HS, Kim WK. Effects of Eimeria maxima infection doses on growth performance and gut health in dual-infection model of necrotic enteritis in broiler chickens. Front Physiol 2023; 14:1269398. [PMID: 37799512 PMCID: PMC10547889 DOI: 10.3389/fphys.2023.1269398] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
The objective of this study was to investigate the effects of the different doses of Eimeria maxima (EM) oocysts on growth performance and intestinal health in broiler chickens challenged with a dual infection model of necrotic enteritis (NE) using EM and NetB+ Clostridium perfringens (CP). A total of 432 fourteen-d-old male Cobb 500 broiler chickens were divided into 6 groups with 6 replicates each. The six different groups were as follows: Control, non-challenged; T0+, challenged with CP at 1 × 109 colony forming unit; T5K+, T0+ + 5,000 EM oocysts; T10K+, T0+ + 10,000 EM oocysts; T20K+; T0+ + 20,000 EM oocysts; and T40K+; T0+ + 40,000 EM oocysts. The challenge groups were orally inoculated with EM strain 41A on d 14, followed by NetB+ CP strain Del-1 on 4 days post inoculation (dpi). Increasing EM oocysts decreased d 21 body weight, body weight gain, feed intake (linear and quadratic, p < 0.001), and feed efficiency (linear, p < 0.001) from 0 to 7 dpi. Increasing EM oocysts increased jejunal NE lesion score and intestinal permeability on 5, 6, and 7 dpi (linear, p < 0.05). On 7 dpi, increasing the infection doses of EM oocysts increased jejunal CP colony counts (linear, p < 0.05) and increased fecal EM oocyst output (linear and quadratic, p < 0.001). Furthermore, increasing the infection doses of EM oocysts decreased the villus height to crypt depth ratios and the goblet cell counts (linear, p < 0.05) on 6 dpi. Increasing EM oocysts downregulated the expression of MUC2, B0AT, B0,+AT, PepT1, GLUT2, AvBD3 and 9, LEAP2, and TLR4, while upregulating CLDN1, CATHL3, IL-1β, IFN-γ, TNFSF15, TNF-α, IL-10, and Gam56 and 82 on 6 dpi (linear, p < 0.05). Additionally, increasing EM oocysts decreased Pielou's evenness and Shannon's entropy (linear, p < 0.01). In conclusion, increasing the infection doses of EM significantly aggravated the severity of NE and exerted negative impact on intestinal health from 5 to 7 dpi.
Collapse
Affiliation(s)
- Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Hanseo Ko
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Hyun Soon Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
8
|
He Z, Liu R, Wang M, Wang Q, Zheng J, Ding J, Wen J, Fahey AG, Zhao G. Combined effect of microbially derived cecal SCFA and host genetics on feed efficiency in broiler chickens. MICROBIOME 2023; 11:198. [PMID: 37653442 PMCID: PMC10472625 DOI: 10.1186/s40168-023-01627-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Improving feed efficiency is the most important goal for modern animal production. The regulatory mechanisms of controlling feed efficiency traits are extremely complex and include the functions related to host genetics and gut microbiota. Short-chain fatty acids (SCFAs), as significant metabolites of microbiota, could be used to refine the combined effect of host genetics and gut microbiota. However, the association of SCFAs with the gut microbiota and host genetics for regulating feed efficiency is far from understood. RESULTS In this study, 464 broilers were housed for RFI measuring and examining the host genome sequence. And 300 broilers were examined for cecal microbial data and SCFA concentration. Genome-wide association studies (GWAS) showed that four out of seven SCFAs had significant associations with genome variants. One locus (chr4: 29414391-29417189), located near or inside the genes MAML3, SETD7, and MGST2, was significantly associated with propionate and had a modest effect on feed efficiency traits and the microbiota. The genetic effect of the top SNP explained 8.43% variance of propionate. Individuals with genotype AA had significantly different propionate concentrations (0.074 vs. 0.131 μg/mg), feed efficiency (FCR: 1.658 vs. 1.685), and relative abundance of 14 taxa compared to those with the GG genotype. Christensenellaceae and Christensenellaceae_R-7_group were associated with feed efficiency, propionate concentration, the top SNP genotypes, and lipid metabolism. Individuals with a higher cecal abundance of these taxa showed better feed efficiency and lower concentrations of caecal SCFAs. CONCLUSION Our study provides strong evidence of the pathway that host genome variants affect the cecal SCFA by influencing caecal microbiota and then regulating feed efficiency. The cecal taxa Christensenellaceae and Christensenellaceae_R-7_group were identified as representative taxa contributing to the combined effect of host genetics and SCFAs on chicken feed efficiency. These findings provided strong evidence of the combined effect of host genetics and gut microbial SCFAs in regulating feed efficiency traits. Video Abstract.
Collapse
Affiliation(s)
- Zhengxiao He
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mengjie Wang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiao Wang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jumei Zheng
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiqiang Ding
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Wen
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Alan G Fahey
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
9
|
Ding X, Zhong X, Yang Y, Zhang G, Si H. Citric Acid and Magnolol Ameliorate Clostridium perfringens Challenge in Broiler Chickens. Animals (Basel) 2023; 13:ani13040577. [PMID: 36830364 PMCID: PMC9951709 DOI: 10.3390/ani13040577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Clostridium perfringens (C. perfringens) is a common pathogenic bacterium implicated in the enteric diseases of animals. Each year, the disease is responsible for billions of dollars of losses worldwide. The development of new phytomedicines as alternatives to antibiotics is becoming a new hotspot for treating such diseases. Citric acid (CA) and magnolol (MA) have been shown to have antibacterial, antioxidant, and growth-promoting properties. Here, the bacteriostatic effects of combinations of CA and MA against C. perfringens were investigated, together with their effects on yellow-hair chickens challenged with C. perfringens. It was found that the optimal CA:MA ratio was 50:3, with a dose of 265 μg/mL significantly inhibiting C. perfringens growth, and 530 μg/mL causing significant damage to the bacterial cell morphology. In animal experiments, C. perfringens challenge reduced the growth, damaged the intestinal structure, activated inflammatory signaling, impaired antioxidant capacity, and perturbed the intestinal flora. These effects were alleviated by combined CA-MA treatment. The CA-MA combination was found to inhibit the TLR/Myd88/NF-κB and Nrf-2/HO-1 signaling pathways. In conclusion, the results suggest the potential of combined CA-MA treatment in alleviating C. perfringens challenge by inhibiting the growth of C. perfringens and affecting the TLR/MyD88/NF-κB and Nrf-2/HO-1 signaling pathways.
Collapse
Affiliation(s)
- Xieying Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xin Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yunqiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Geyin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
10
|
Dietary Protected Sodium Butyrate and/or Olive Leaf and Grape-Based By-Product Supplementation Modifies Productive Performance, Antioxidant Status and Meat Quality in Broilers. Antioxidants (Basel) 2023; 12:antiox12010201. [PMID: 36671062 PMCID: PMC9854548 DOI: 10.3390/antiox12010201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
To meet the demand for chicken meat production, new additives that promote growth and health without adverse effects on meat quality are being investigated. This study was conducted to investigate the effect of protected sodium butyrate (PSB) (0 vs. 2 g/kg), an olive leaf and grape-based by-product (OLG-mix), or a combined supplementation of PSB and OLG-mix on productive performance, antioxidant status, carcass, and meat quality in broilers. PSB improved performance parameters with greater effect in the initial phase. Both, PSB and OLG-mix increased the plasma superoxide dismutase (SOD); however, PSB supplementation was more effective to delay the lipid oxidation of meat from the initial day of storage. OLG-mix produced meat with greater color intensity, b* value and lesser drip losses than PSB. The combination of PSB + OLG-mix did not produce more marked effects that the individual administration; except to control the oxidation of meat. Linear and positive correlations between antioxidant enzymes and weight gain were observed. Significant linear and negative relationships were quantified between plasma SOD and meat lipid oxidation according to dietary treatment. Therefore, the present study would be a first approximation to the possibilities for predicting growth range and meat quality through the evaluation of the blood oxidative status.
Collapse
|
11
|
Long-term chemically protected sodium butyrate supplementation in broilers as an antibiotic alternative to dynamically modulate gut microbiota. Poult Sci 2022; 101:102221. [PMCID: PMC9630789 DOI: 10.1016/j.psj.2022.102221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Chemically protected sodium butyrate (CSB) is a new kind of sodium butyrate. Our previous study found that 1,000 mg/kg of CSB had the potential capacity of improving growth performance and promoting early development of small intestine in broilers. This study aimed to investigate the effect of long-term antibiotics or CSB supplementation for intestinal microflora dynamical regulation in broilers. One hundred ninety-two 1-day-old Arbor Acres male broilers were randomly allocated into 3 dietary treatment (8 replicates per treatment) and fed with a basal diet (CON), a diet supplemented with the antibiotics (enramycin, 8 mg/kg and aureomycin, 100 mg/kg) (ANT), or a diet supplemented with 1,000 mg/kg of CSB, respectively. Results showed that dietary supplementation of CSB or ANT treatment elevated the weight gain and feed conversion ratio (FCR; P < 0.05), as compared with control (CON) group. Additionally, CON, CSB, or ANT administration dynamically altered the gut microbiota composition as time goes on. The increased presence of potential pathogens, such as Romboutsia and Shuttleworthia, and decreased beneficial bacteria such as Alistipes, Akkermansia, and Bacteroides were verified in new gut homeostasis reshaped by long-term antibiotics treatment, which has adverse effects on intestinal development and health of broilers. Conversely, CSB supplementation could dynamically enhance the relative abundance of Bacteroides, and decrease Romboutsia and Shuttleworthia in new microflora, which has positive effects on intestinal bacteria of broilers compared with CON group. Meanwhile, CSB supplementation was significantly increased the concentration of propionic acid and total short chain fatty acids (total SCFA; P < 0.05) in comparison with CON and ANT groups. Moreover, CSB treatment significantly increased anti-inflammatory and antioxidative capacities (P < 0.05) of broilers compared with ANT group. Taken together, we revealed characteristic structural changes of gut microbiota throughout long-term CSB or ANT supplementation in broilers, which provided a basic data for evaluating the mechanism of action affecting intestinal health by CSB or ANT administration and CSB as an alternative to antibiotics in the broilers industry.
Collapse
|
12
|
Chen B, Li D, Leng D, Kui H, Bai X, Wang T. Gut microbiota and meat quality. Front Microbiol 2022; 13:951726. [PMID: 36081790 PMCID: PMC9445620 DOI: 10.3389/fmicb.2022.951726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sustainable meat production is important to providing safe and quality protein sources for humans worldwide. Intensive artificial selection and high energy input into the diet of many commercial animals for the last decade has significantly increased the daily gain of body weight and shortened the raising period, but unexpectedly decreased the meat quality. The gastrointestinal tract of animals harbors a diverse and complex microbial community that plays a vital role in the digestion and absorption of nutrients, immune system development, pathogen exclusion, and meat quality. Fatty acid composition and oxidative stress in adipose and muscle tissue influences meat quality in livestock and poultry. Recent studies showed that nutraceuticals are receiving increased attention, which could alter the intestinal microbiota and regulate the fat deposition and immunity of hosts to improve their meat quality. Understanding the microbiota composition, the functions of key bacteria, and the host-microbiota interaction is crucial for the development of knowledge-based strategies to improve both animal meat quality and host health. This paper reviews the microorganisms that affect the meat quality of livestock and poultry. A greater understanding of microbial changes that accompany beneficial dietary changes will lead to novel strategies to improve livestock and poultry meat product quality.
Collapse
Affiliation(s)
- Binlong Chen
- College of Animal Science, Xichang University, Xichang, China
| | - Diyan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- *Correspondence: Diyan Li,
| | - Dong Leng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hua Kui
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xue Bai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- Tao Wang,
| |
Collapse
|
13
|
Large-Scale Identification of Multiple Classes of Host Defense Peptide-Inducing Compounds for Antimicrobial Therapy. Int J Mol Sci 2022; 23:ijms23158400. [PMID: 35955551 PMCID: PMC9368921 DOI: 10.3390/ijms23158400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
The rapid emergence of antibiotic resistance demands new antimicrobial strategies that are less likely to develop resistance. Augmenting the synthesis of endogenous host defense peptides (HDPs) has been proven to be an effective host-directed therapeutic approach. This study aimed to identify small-molecule compounds with a strong ability to induce endogenous HDP synthesis for further development as novel antimicrobial agents. By employing a stable HDP promoter-driven luciferase reporter cell line known as HTC/AvBD9-luc, we performed high-throughput screening of 5002 natural and synthetic compounds and identified 110 hits with a minimum Z-score of 2.0. Although they were structurally and functionally diverse, half of these hits were inhibitors of class I histone deacetylases, the phosphoinositide 3-kinase pathway, ion channels, and dopamine and serotonin receptors. Further validations revealed mocetinostat, a benzamide histone deacetylase inhibitor, to be highly potent in enhancing the expression of multiple HDP genes in chicken macrophage cell lines and jejunal explants. Importantly, mocetinostat was more efficient than entinostat and tucidinostat, two structural analogs, in promoting HDP gene expression and the antibacterial activity of chicken macrophages. Taken together, mocetinostat, with its ability to enhance HDP synthesis and the antibacterial activity of host cells, could be potentially developed as a novel antimicrobial for disease control and prevention.
Collapse
|
14
|
The Effect of Necrotic Enteritis Challenge on Production Performance, Cecal Microbiome, and Cecal Tonsil Transcriptome in Broilers. Pathogens 2022; 11:pathogens11080839. [PMID: 36014961 PMCID: PMC9414309 DOI: 10.3390/pathogens11080839] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to identify the effects of experimental necrotic enteritis (NE) infection on the production performance, gut microbiome, and cecal tonsil transcriptome in broiler birds. A total of 192 chicks were not-induced (control) or induced with NE. NE was induced by inoculating Eimeria maxima at 14 d of age and Clostridium perfringens at 19, 20, and 21 d of age. NE challenge increased (p < 0.01) NE lesion score at 7 days post-E.maxima infection (dpi), decreased (p < 0.01) average weight gain and increased (p < 0.01) mortality at 7 and 14 dpi. NE challenge increased (p < 0.05) gut permeability at 5, 6, and 7 dpi and increased ileal C. perfringens load at 5 dpi. NE challenge increased (p < 0.01) Eimeria oocyst shedding at 5, 6, 7, 8 and 14 dpi. NE challenge decreased (p < 0.05) the relative abundance of Lactobacillaceae and increased (p < 0.05) the relative abundance of Campylobacteriaceae, Comamonadaceae, and Ruminococcaceae at 6 dpi. NE challenge upregulated (p < 0.05) genes related to immune response and downregulated (p < 0.05) genes related to lipid metabolism at 6 dpi. It can be concluded that NE infection decreased beneficial bacteria and increased gut permeability.
Collapse
|
15
|
High-Throughput Identification of Epigenetic Compounds to Enhance Chicken Host Defense Peptide Gene Expression. Antibiotics (Basel) 2022; 11:antibiotics11070933. [PMID: 35884187 PMCID: PMC9311565 DOI: 10.3390/antibiotics11070933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 01/02/2023] Open
Abstract
Enhancing the synthesis of endogenous host defense peptides (HDPs) has emerged as a novel antibiotic-free approach to infectious disease control and prevention. A number of epigenetic compounds have been identified as HDP inducers and several have proved beneficial in antimicrobial therapy. However, species-specific regulation of HDP synthesis is evident. In attempt to identify epigenetic compounds with potent HDP-inducing activity for poultry-specific application, we developed a stable luciferase reporter cell line, known as HTC/AvBD10-luc, following our earlier construction of HTC/AvBD9-luc. HTC/AvBD10-luc was developed through permanent integration of a chicken macrophage cell line, HTC, with a lentiviral luciferase reporter vector driven by a 4-Kb AvBD10 gene promoter. Using a high throughput screening assay based on the two stable cell lines, we identified 33 hits, mostly being histone deacetylase (HDAC) inhibitors, from a library of 148 epigenetic compounds. Among them, entinostat and its structural analog, tucidinostat, were particularly effective in promoting multiple HDP gene expression in chicken macrophages and jejunal explants. Desirably, neither compounds triggered an inflammatory response. Moreover, oral gavage of entinostat significantly enhanced HDP gene expression in the chicken intestinal tract. Collectively, the high throughput assay proves to be effective in identifying HDP inducers, and both entinostat and tucidinostat could be potentially useful as alternatives to antibiotics to enhance intestinal immunity and disease resistance.
Collapse
|
16
|
Whitmore MA, Li H, Lyu W, Khanam S, Zhang G. Epigenetic Regulation of Host Defense Peptide Synthesis: Synergy Between Histone Deacetylase Inhibitors and DNA/Histone Methyltransferase Inhibitors. Front Immunol 2022; 13:874706. [PMID: 35529861 PMCID: PMC9074817 DOI: 10.3389/fimmu.2022.874706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/22/2022] [Indexed: 01/06/2023] Open
Abstract
Host defense peptides (HDPs) are an integral part of the innate immune system acting as the first line of defense. Modulation of HDP synthesis has emerged as a promising host-directed approach to fight against infections. Inhibition of histone deacetylation or DNA methylation is known to enhance HDP gene expression. In this study, we explored a possible synergy in HDP gene induction between histone deacetylase inhibitors (HDACi) and DNA/histone methyltransferase inhibitors (DNMTi/HMTi). Two chicken macrophage cell lines were treated with structurally distinct HDACi, HMTi, or DNMTi individually or in combinations, followed by HDP gene expression analysis. Each epigenetic compound was found to be capable of inducing HDP expression. To our surprise, a combination of HDACi and HMTi or HDACi and DNMTi showed a strong synergy to induce the expressions of most HDP genes. The HDP-inducing synergy between butyrate, an HDACi, and BIX01294, an HMTi, were further verified in chicken peripheral blood mononuclear cells. Furthermore, tight junction proteins such as claudin 1 were also synergistically induced by HDACi and HMTi. Overall, we conclude that HDP genes are regulated by epigenetic modifications. Strategies to increase histone acetylation while reducing DNA or histone methylation exert a synergistic effect on HDP induction and, therefore, have potential for the control and prevention of infectious diseases.
Collapse
Affiliation(s)
- Melanie A. Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Hong Li
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Wentao Lyu
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Sharmily Khanam
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
- *Correspondence: Guolong Zhang,
| |
Collapse
|